Batch / Offline Reinforcement Learning

With thanks to Emma Brunskill, Scott Fujimoto, Pieter Abeell, George Tucker, Sergey Levine, Bilal Piot,
Yuxin Chen, Yuejie Chi
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On-policy vs off-policy vs offline RL

on-policy RL

f / \
rollout data {(s;.a;.s}.r;)}

rollout(s)

datacollected ONCE w= == == == =
with anv nalicv trainina ohase
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off-policy RL

o o
rollout data {(s;.a;.s;,7;)}

Formally:
D= {(S’ia a;, S;7 Irz)}
s~ d"(s)
generally not known
a~ mg(als) —
s’ ~ p(S/|Sa a)
r < r(s,a)
T
RL objective: mgxz By dn(s).ay~m(als) V7 (51, ar)]
t=0



Why is this important?

e Collecting new data may be expensive / infeasible

e We may have access to existing/historical data instead

this is done
many times
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Problem formulation

A historical dataset D = {(s'9,a(?, s'D)}: N independent copies of
s~ p°, a~ (-] s), s' ~ P(-|s,a)

for some state distribution p® and behavior policy 7°

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

~

V¥(p)=V™(p)= E [V*(s)] - E [V%(s)] <e

s~p S~p

— in a sample-efficient manner
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e Distribution shift

Challenges of offline / batch RL (1)

distribution(D) # target distribution under 7

e Partial coverage of state-action space
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Challenges of offline / batch RL (2)

e Data is censored: we only observe outcomes for decisions made (and
need to generalize from them)

§=- (’d; =  Qutcome: 92

= B$2 #= = Ooutcome: 91

=) ydj A -) Outcome: 85

Q- ?

e Need for counterfactual inference: what would happen if one would take
a different action?

e Often we do not observe rewards, just states and actions!
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Dataset quality assessment

Single-policy concentrability coefficient

C™* := max d b(s,a,) =
s,a d™ (s, a)

where d”(s,a) = (1 —v) Y2 Y'P((s",a") = (s,a) | )

occupancy density of m*

- b
occupancy density of w° ||

e captures distributional shift ,\

e allows for partial coverage (

COMP579 Lecture 21, 2024



Classes of algorithms

e Behavior cloning (no rewards required)
e Learn a model, use it for model-based RL (LSTD, LSPI)

e Pessimistic algorithms (require rewards)

e Inverse RL (learn reward function from data, use it for RL agent)
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Behavior cloning

e Take dataset D, learn a policy from states to actions

e Often uses a rich policy class (neural net)
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Problem: compounding errors

@ Error at time t with probability €

e Approximate intuition: E[Total errors]
<e(TH(T-1)+(T—-2)...4+1) xeT?
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One solution: dataset aggregation

Initialize D « 0.

Initialize 7; to any policy in II.

for: =1to N do
Let m; = G;7" + (1 — ﬁz)ﬁz
Sample 7'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D «— D |JD;.
Train classifier ;41 on D.

end for

Return best 7; on validation.

@ Ildea: Get more labels of the expert action along the path taken by
the policy computed by behavior cloning

@ Obtains a stationary deterministic policy with good performance
under its induced state distribution
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Pessimism in the face of uncertainty

e (onservative approach
e Assume that states or state-action pairs not visited are bad

e Use a penalty to avoid the new policy visiting them
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Value iteration with lower confidence bounds

Pessimism in the face of uncertainty: penalize value estimate of those
(s,a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]

Algorithm: value iteration w/ lower confidence bounds

e compute empirical estimate P of P

e initialize @ = 0, and repeat

@(s,a) ¢ max {r(s,a)+7<]3('\s,a),‘7> — b(s,a; ‘7) , O}

Bernstein-style confidence bound

for all (s,a), where V(s) = max, Q(s, a)

Q-learning version exists as well
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Surprise!

Agent orange and agent blue are trained with...
1. The same off-policy algorithm (DDPG).

2. The same dataset.



The Difference?

1. Agent orange: Interacted with the environment.

e Standard RL loop.
* Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment.
* Trained with data collected by agent orange concurrently.



1. Trained with the same off-policy algorithm.

2. Trained with the same dataset.
3. One interacts with the environment. One doesn’t.



Off-policy deep RL fails when truly off-policy.



Estimated Value

Value Predictions
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Extrapolation Error

Q(s,a) «r+yQ(s,a’)



Extrapolation Error

Q(s,a) <« r +vyQ(s,a’)
Rl

GIVEN GENERATED



Extrapolation Error

Q(s,a) «r+yQ(s,a’)

1. (s,a,7,s')~Dataset
2. a ~m(s")



Extrapolation Error

Q(s,a) «r+yQ(s,a’)

(s’,a’) € Dataset —» Q(s’,a’) = bad
— Q(s,a) = bad



Extrapolation Error

Q(s,a) «r+yQ(s,a’)

(s’,a’) € Dataset - Q(s’,a’) = bad
— Q(s,a) = bad



Extrapolation Error

Q(s,a) <« r +yQ(s,a’)

(s’,a’) € Dataset - Q(s’,a’) = bad
— Q(s,a) = bad



Extrapolation Error

Attempting to evaluate m without (sufficient)
access to the (s, a) pairs T visits.



Batch-Constrained Reinforcement Learning

Only choose i such that we have access to
the (s, a) pairs T visits.



Batch-Constrained Reinforcement Learning

1. a~m(s) such that (s,a) € Dataset.
2. a~m(s) such that (S’,ﬂ(s’)) € Dataset.
3. a~m(s) such that Q(s, a) is maxed.




Batch-Constrained Deep Q-Learning (BCQ)

First imitate dataset via generative model:
G(a‘s) ~ PDataset(a‘S)-

n(s) = argmax,, Q (s, a;), where a;~G
(l.e. select the best action that is likely under the dataset)

(+ some additional deep RL Magic)
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m BCQ
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BCQ comparison

HalfCheetah-v1

EAN
o
o
o

N
o
o
o

1

Average Return

o

Padi NI St NS

\/J\’/W

0.0 0.1 0.2
Time steps (1€6)

m DQN m BC

0.3 BCQ figure from Fujimoto,
' Meger, Precup ICML 2019

m VAE-BC mm Behavioral .

13



