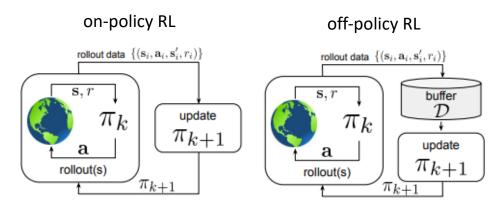
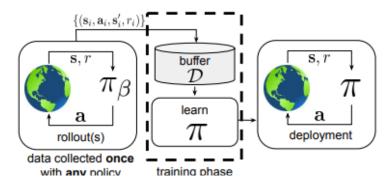
### **Batch / Offline Reinforcement Learning**

With thanks to Emma Brunskill, Scott Fujimoto, Pieter Abeell, George Tucker, Sergey Levine, Bilal Piot, Yuxin Chen, Yuejie Chi

#### On-policy vs off-policy vs offline RL



#### offline reinforcement learning



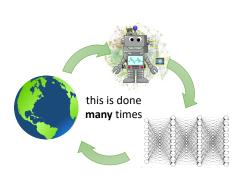
Formally:

$$\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$$
  $\mathbf{s} \sim d^{\pi_{\beta}}(\mathbf{s})$  generally **not** known  $\mathbf{a} \sim \pi_{\beta}(\mathbf{a}|\mathbf{s})$   $\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$   $r \leftarrow r(\mathbf{s}, \mathbf{a})$ 

RL objective: 
$$\max_{\pi} \sum_{t=0}^{T} E_{\mathbf{s}_{t} \sim d^{\pi}(\mathbf{s}), \mathbf{a}_{t} \sim \pi(\mathbf{a}|\mathbf{s})} [\gamma^{t} r(\mathbf{s}_{t}, \mathbf{a}_{t})]$$

### Why is this important?

- Collecting new data may be expensive / infeasible
- We may have access to existing/historical data instead











2

COMP579 Lecture 21, 2024

#### **Problem formulation**

A historical dataset  $\mathcal{D} = \{(s^{(i)}, a^{(i)}, s'^{(i)})\}$ : N independent copies of

$$s \sim \rho^{\mathsf{b}}, \qquad a \sim \pi^{\mathsf{b}}(\cdot \mid s), \qquad s' \sim P(\cdot \mid s, a)$$

for some state distribution  $\rho^{\rm b}$  and behavior policy  $\pi^{\rm b}$ 

**Goal:** given some test distribution  $\rho$  and accuracy level  $\varepsilon$ , find an  $\varepsilon$ -optimal policy  $\widehat{\pi}$  based on  $\mathcal{D}$  obeying

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) = \underset{s \sim \rho}{\mathbb{E}} \left[ V^{\star}(s) \right] - \underset{s \sim \rho}{\mathbb{E}} \left[ V^{\widehat{\pi}}(s) \right] \leq \varepsilon$$

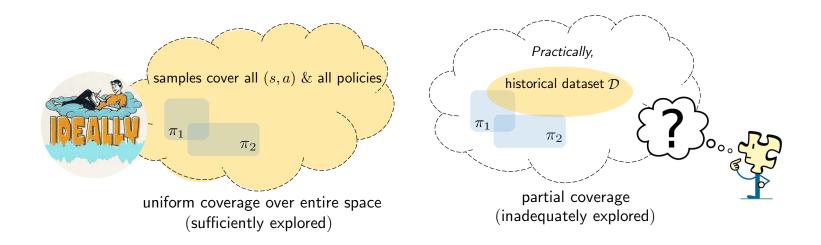
— in a sample-efficient manner

### Challenges of offline / batch RL (1)

Distribution shift:

 $distribution(\mathcal{D}) \neq target distribution under \pi^*$ 

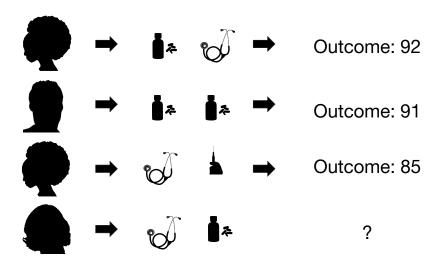
• Partial coverage of state-action space:



COMP579 Lecture 21, 2024 4

### Challenges of offline / batch RL (2)

 Data is *censored*: we only observe outcomes for decisions made (and need to generalize from them)



- Need for *counterfactual inference*: what would happen if one would take a different action?
- Often we do not observe rewards, just states and actions!

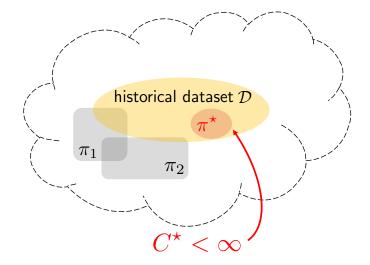
#### **Dataset quality assessment**

#### Single-policy concentrability coefficient

$$C^{\star} := \max_{s,a} \frac{d^{\pi^{\star}}(s,a)}{d^{\pi^{\mathsf{b}}}(s,a)} = \left\| \frac{\text{occupancy density of } \pi^{\star}}{\text{occupancy density of } \pi^{\mathsf{b}}} \right\|_{\infty} \ge 1$$

where 
$$d^{\pi}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}((s^t, a^t) = (s, a) \mid \pi)$$

- captures distributional shift
- allows for partial coverage

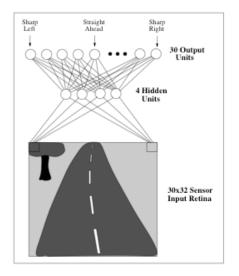


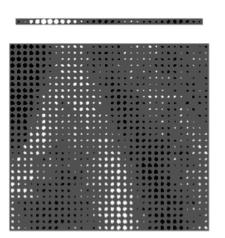
#### **Classes of algorithms**

- Behavior cloning (no rewards required)
- Learn a model, use it for model-based RL (LSTD, LSPI)
- Pessimistic algorithms (require rewards)
- Inverse RL (learn reward function from data, use it for RL agent)

### **Behavior cloning**

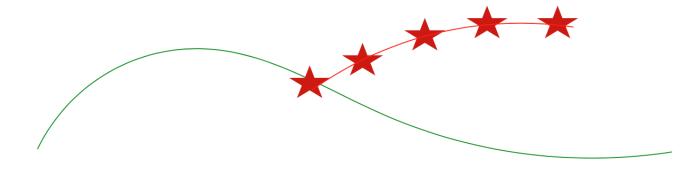
- ullet Take dataset  $\mathcal{D}$ , learn a policy from states to actions
- Often uses a rich policy class (neural net)





COMP579 Lecture 21, 2024

#### **Problem: compounding errors**



- ullet Error at time t with probability  $\epsilon$
- Approximate intuition:  $\mathbb{E}[\text{Total errors}]$  $\leq \epsilon (T + (T - 1) + (T - 2) \dots + 1) \propto \epsilon T^2$

#### One solution: dataset aggregation

```
Initialize \mathcal{D} \leftarrow \emptyset.

Initialize \hat{\pi}_1 to any policy in \Pi.

for i=1 to N do

Let \pi_i = \beta_i \pi^* + (1-\beta_i)\hat{\pi}_i.

Sample T-step trajectories using \pi_i.

Get dataset \mathcal{D}_i = \{(s, \pi^*(s))\} of visited states by \pi_i and actions given by expert.

Aggregate datasets: \mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i.

Train classifier \hat{\pi}_{i+1} on \mathcal{D}.

end for

Return best \hat{\pi}_i on validation.
```

- Idea: Get more labels of the expert action along the path taken by the policy computed by behavior cloning
- Obtains a stationary deterministic policy with good performance under its induced state distribution

#### Pessimism in the face of uncertainty

- Conservative approach
- Assume that states or state-action pairs not visited are bad
- Use a penalty to avoid the new policy visiting them

COMP579 Lecture 21, 2024

#### Value iteration with lower confidence bounds

Pessimism in the face of uncertainty: penalize value estimate of those (s,a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]

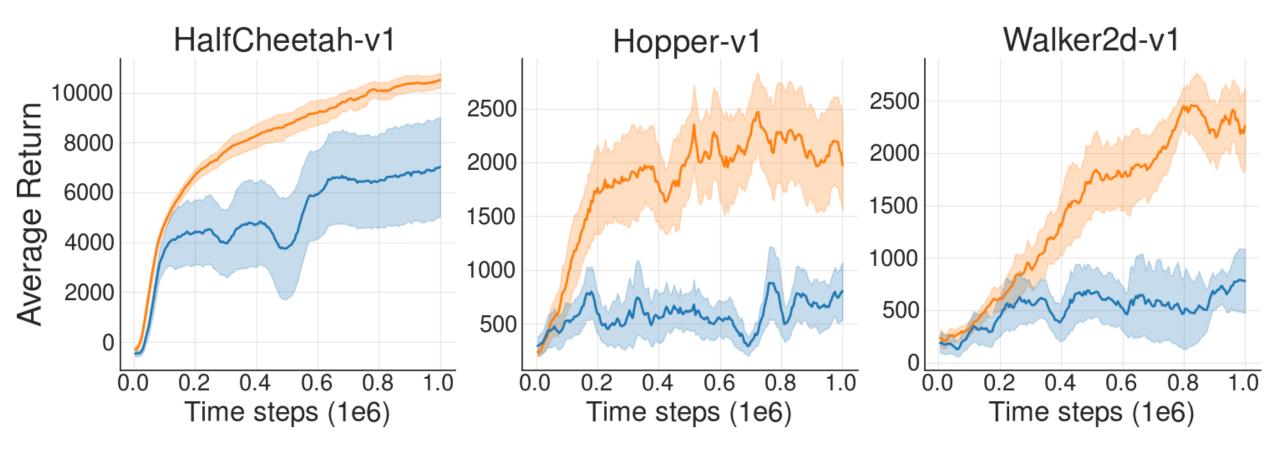
**Algorithm:** value iteration w/ <u>lower confidence bounds</u>

- $\bullet$  compute empirical estimate  $\widehat{P}$  of P
- initialize  $\widehat{Q} = 0$ , and repeat

$$\widehat{Q}(s,a) \leftarrow \max \left\{ r(s,a) + \gamma \left\langle \widehat{P}(\cdot \mid s,a), \widehat{V} \right\rangle - \underbrace{b(s,a;\widehat{V})}_{\text{Bernstein-style confidence bound}}, 0 \right\}$$

for all 
$$(s, a)$$
, where  $\widehat{V}(s) = \max_a \widehat{Q}(s, a)$ 

Q-learning version exists as well



### Surprise!

Agent orange and agent blue are trained with...

1. The same off-policy algorithm (DDPG).

2. The same dataset.

### The Difference?

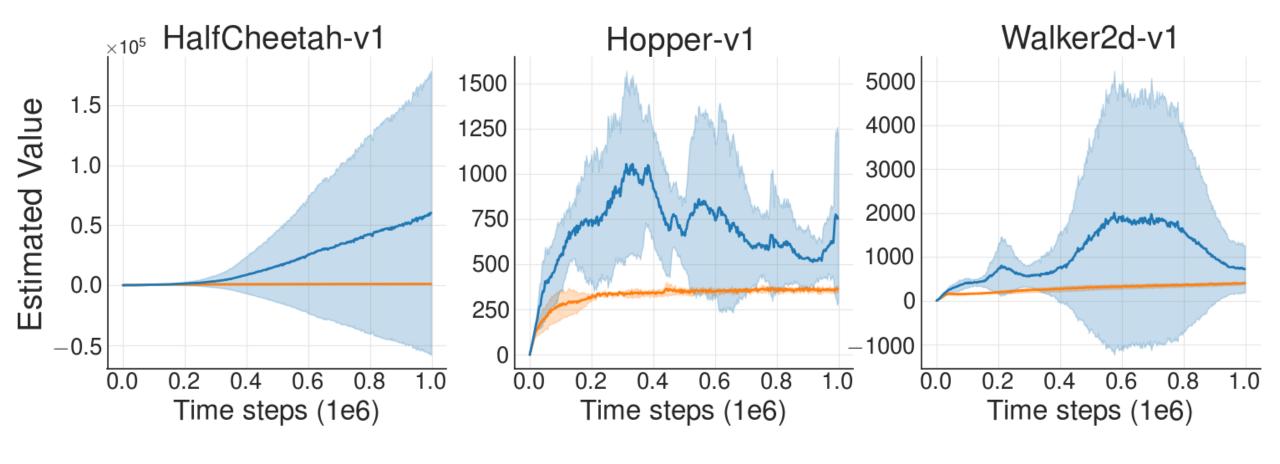
- 1. Agent orange: Interacted with the environment.
  - Standard RL loop.
  - Collect data, store data in buffer, train, repeat.

- 2. Agent blue: Never interacted with the environment.
  - Trained with data collected by agent orange concurrently.

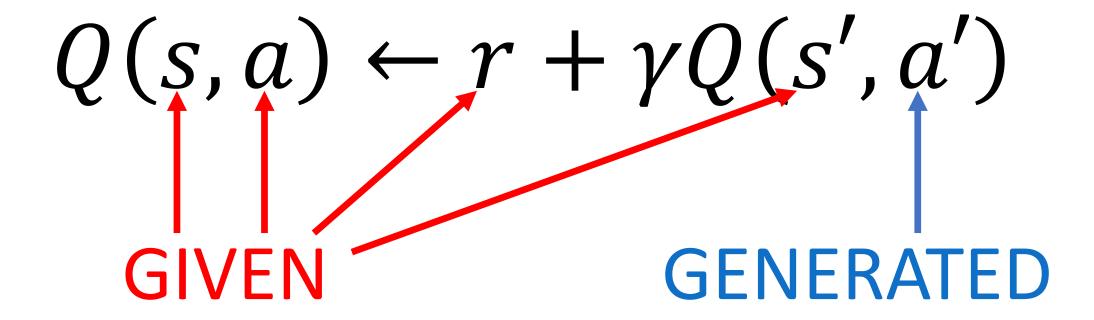
- 1. Trained with the same off-policy algorithm.
- 2. Trained with the same dataset.
- 3. One interacts with the environment. One doesn't.

Off-policy deep RL fails when truly off-policy.

### Value Predictions



$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$



$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

- 1.  $(s, a, r, s') \sim Dataset$
- 2.  $a' \sim \pi(s')$

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

$$(s',a') \notin Dataset \rightarrow Q(s',a') = \mathbf{bad}$$
  
 $\rightarrow Q(s,a) = \mathbf{bad}$ 

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

$$(s',a') \notin Dataset \rightarrow Q(s',a') = \mathbf{bad}$$
  
 $\rightarrow Q(s,a) = \mathbf{bad}$ 

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

$$(s',a') \notin Dataset \rightarrow Q(s',a') = \mathbf{bad}$$
  
 $\rightarrow Q(s,a) = \mathbf{bad}$ 

Attempting to evaluate  $\pi$  without (sufficient) access to the (s, a) pairs  $\pi$  visits.

# Batch-Constrained Reinforcement Learning

Only choose  $\pi$  such that we have access to the (s, a) pairs  $\pi$  visits.

## Batch-Constrained Reinforcement Learning

- 1.  $a \sim \pi(s)$  such that  $(s, a) \in Dataset$ .
- 2.  $a \sim \pi(s)$  such that  $(s', \pi(s')) \in Dataset$ .
- 3.  $a \sim \pi(s)$  such that Q(s, a) is maxed.

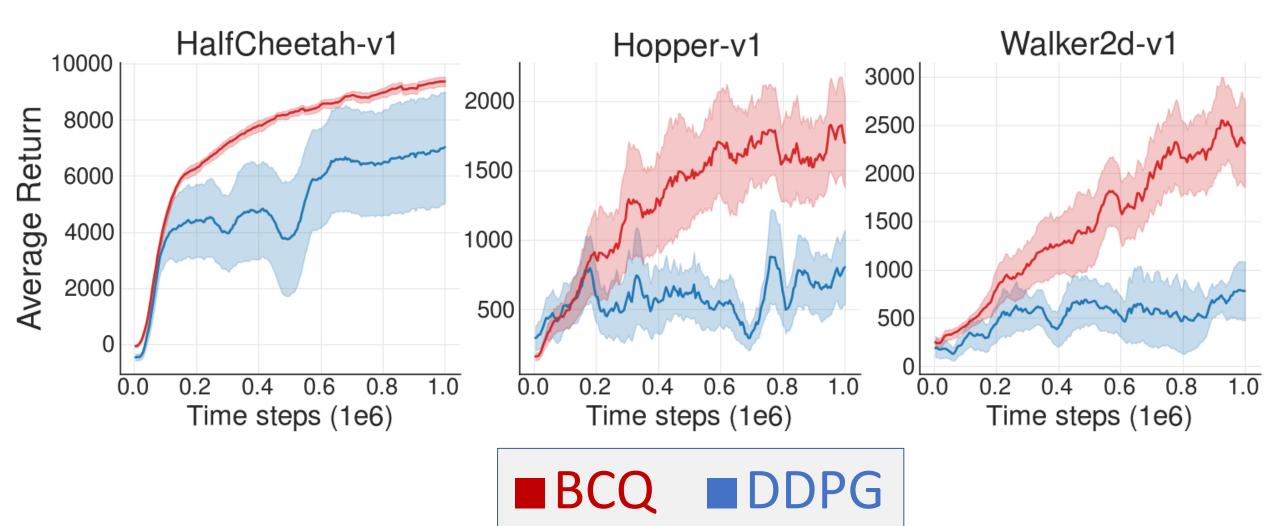
# Batch-Constrained Deep Q-Learning (BCQ)

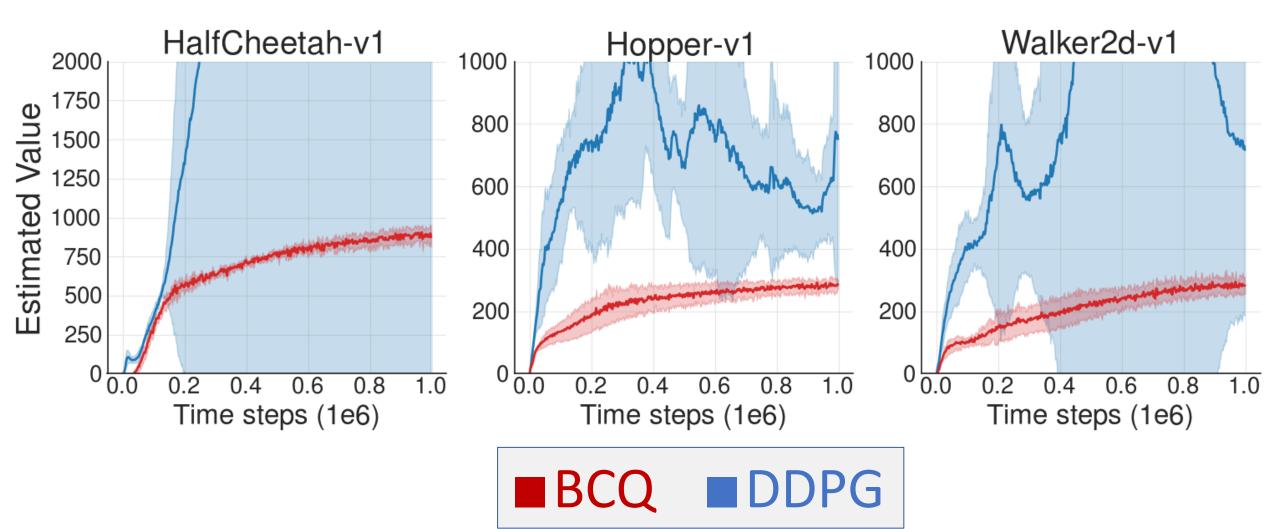
First imitate dataset via generative model:

$$G(a|s) \approx P_{Dataset}(a|s).$$

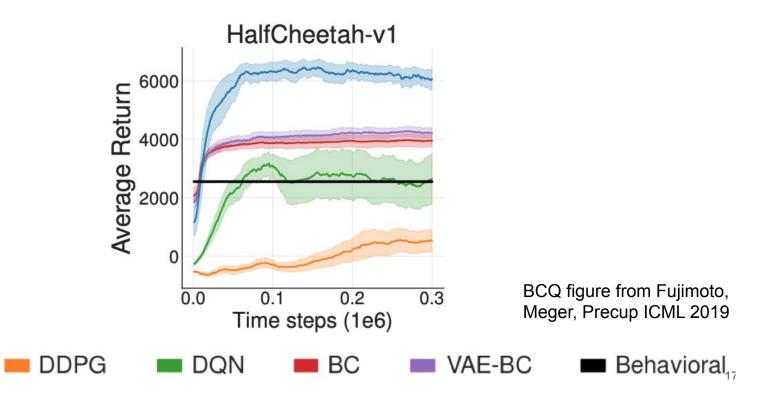
 $\pi(s) = \operatorname{argmax}_{a_i} Q(s, a_i)$ , where  $a_i \sim G$  (I.e. select the best action that is likely under the dataset)

(+ some additional deep RL magic)





#### **BCQ** comparison



COMP579 Lecture 21, 2024 13

**BCQ**