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On-policy vs off-policy vs offline RL
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What does offline RL mean?
on-policy RL off-policy RL

offline reinforcement learning

generally not known
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Why is this important?

• Collecting new data may be expensive / infeasible

• We may have access to existing/historical data instead

18

Why should we care?

this is done
many times
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Problem formulationO✏ine RL / batch RL

A historical dataset D =
�
(s(i), a(i), s0(i))

 
: N independent copies of

s ⇠ ⇢b, a ⇠ ⇡b(· | s), s0 ⇠ P (· | s, a)

for some state distribution ⇢b and behavior policy ⇡b

Goal: given some test distribution ⇢ and accuracy level ", find an
"-optimal policy b⇡ based on D obeying

V ?(⇢)� V b⇡(⇢) = E
s⇠⇢

⇥
V ?(s)

⇤
� E

s⇠⇢

⇥
V b⇡(s)

⇤
 "

— in a sample-e�cient manner
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Challenges of offline / batch RL (1)
Challenges of o✏ine RL

• Distribution shift:

distribution(D) 6= target distribution under ⇡?

• Partial coverage of state-action space:

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>
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1
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D
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Practically,

1
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Challenges of offline / batch RL (2)

• Data is censored: we only observe outcomes for decisions made (and
need to generalize from them)1HHG�IRU�*HQHUDOL]DWLRQ

2XWFRPH����

2XWFRPH����

2XWFRPH����

"
ÂÄ

• Need for counterfactual inference: what would happen if one would take
a different action?

• Often we do not observe rewards, just states and actions!
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Dataset quality assessmentHow to quantify quality of historical dataset D (induced by ⇡b)?

Single-policy concentrability coe�cient

C? := max
s,a

d⇡
?
(s, a)

d⇡b(s, a)
=

����
occupancy density of ⇡?

occupancy density of ⇡b

����
1
� 1

where d⇡(s, a) = (1 � �)
P1

t=0 �
tP
�
(st, at) = (s, a) |⇡

�

• captures distributional shift

• allows for partial coverage ⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>

⇡�
<latexit sha1_base64="iqr6wuLcMtqjcfhh1eGDtJOJmBA=">AAAB8HicdVDLSsNAFJ34rPVVdelmsAiuQpKGtu6KblxWsA9pYplMJ+3QmUmYmQil9CvcuFDErZ/jzr9x0lZQ0QMXDufcy733RCmjSjvOh7Wyura+sVnYKm7v7O7tlw4O2yrJJCYtnLBEdiOkCKOCtDTVjHRTSRCPGOlE48vc79wTqWgibvQkJSFHQ0FjipE20m2Q0rtAaST7pbJjn9ernl+Fju04Nddzc+LV/IoPXaPkKIMlmv3SezBIcMaJ0JghpXquk+pwiqSmmJFZMcgUSREeoyHpGSoQJyqczg+ewVOjDGCcSFNCw7n6fWKKuFITHplOjvRI/fZy8S+vl+m4Hk6pSDNNBF4sijMGdQLz7+GASoI1mxiCsKTmVohHSCKsTUZFE8LXp/B/0vZst2J71365cbGMowCOwQk4Ay6ogQa4Ak3QAhhw8ACewLMlrUfrxXpdtK5Yy5kj8APW2ydT6ZDD</latexit>

C� <1
<latexit sha1_base64="OkNkM06J2op6/zU9FLP9Q6tlTww=">AAAB+HicdVBdSwJBFJ21L7MPrR57GZKgJ9ldRQ16kHzp0SA/QE1mx1kdnJ1dZu4GJv6SXnoootd+Sm/9m2bVoKIOXDiccy/33uNFgmuw7Q8rtba+sbmV3s7s7O7tZ3MHhy0dxoqyJg1FqDoe0UxwyZrAQbBOpBgJPMHa3qSe+O07pjQP5Q1MI9YPyEhyn1MCRhrksvXbngai8EWPSx+mg1zeLpxXy26pjO2CbVcc10mIWykVS9gxSoI8WqExyL33hiGNAyaBCqJ117Ej6M+IAk4Fm2d6sWYRoRMyYl1DJQmY7s8Wh8/xqVGG2A+VKQl4oX6fmJFA62ngmc6AwFj/9hLxL68bg1/tz7iMYmCSLhf5scAQ4iQFPOSKURBTQwhV3NyK6ZgoQsFklTEhfH2K/yctt+AUC+51KV+7XMWRRsfoBJ0hB1VQDV2hBmoiimL0gJ7Qs3VvPVov1uuyNWWtZo7QD1hvn7CWkyA=</latexit>
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Classes of algorithms

• Behavior cloning (no rewards required)

• Learn a model, use it for model-based RL (LSTD, LSPI)

• Pessimistic algorithms (require rewards)

• Inverse RL (learn reward function from data, use it for RL agent)
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Behavior cloning

• Take dataset D, learn a policy from states to actions

• Often uses a rich policy class (neural net)

20

COMP-424: Artificial intelligence Joelle Pineau39

Example: ALVINN (Pomerleau, 1993)

• Task: automatically learn how to steer a car.

• Inputs: grey-level pixels from images captured by camera on top of car.

• Output: 30 units, corresponding to different steering angles.

• The action is picked according to which unit has the highest activation.

• Training data gathered during roughly 2 hours of driving by a person.

• Training algorithm: backpropagation.

• Was able to drive across the US (with a person braking, and on

highways only.)

COMP-424: Artificial intelligence Joelle Pineau40

Example: ALVINN (Pomerleau, 1993)

• The right shows the weights of one of the hidden units to the output

(top row) and the weights coming into the hidden units from the inputs.
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Problem: compounding errorsProblem: Compounding Errors

Error at time t with probability ✏

Approximate intuition: E[Total errors]
 ✏(T + (T � 1) + (T � 2) . . . + 1) / ✏T 2

Real result requires more formality. See Theorem 2.1 in
http://www.cs.cmu.edu/~sross1/publications/

Ross-AIStats10-paper.pdf with proof in supplement:
http://www.cs.cmu.edu/~sross1/publications/

Ross-AIStats10-sup.pdf

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning, Ross et al. 2011

Emma Brunskill (CS234 Reinforcement Learning. )Imitation Learning in Large State Spaces1 Winter 2023 25 / 49
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One solution: dataset aggregationDAGGER: Dataset Aggregation

Idea: Get more labels of the expert action along the path taken by
the policy computed by behavior cloning

Obtains a stationary deterministic policy with good performance
under its induced state distribution

Key limitation?

Emma Brunskill (CS234 Reinforcement Learning. )Imitation Learning in Large State Spaces1 Winter 2023 26 / 49
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Pessimism in the face of uncertainty

• Conservative approach

• Assume that states or state-action pairs not visited are bad

• Use a penalty to avoid the new policy visiting them
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Value iteration with lower confidence boundsA model-based o✏ine algorithm: VI-LCB

Pessimism in the face of uncertainty: penalize value estimate of those
(s, a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]

Algorithm: value iteration w/ lower confidence bounds

• compute empirical estimate bP of P

• initialize bQ = 0, and repeat

bQ(s, a)  max
n

r(s, a) + �
⌦ bP (· | s, a), bV

↵
� b(s, a; bV )| {z }

Bernstein-style confidence bound

, 0
o

for all (s, a), where bV (s) = maxa
bQ(s, a)
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Q-learning version exists as well
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Surprise!

�ŐĞŶƚ�ŽƌĂŶŐĞ�ĂŶĚ�ĂŐĞŶƚ�ďůƵĞ�ĂƌĞ�ƚƌĂŝŶĞĚ�ǁŝƚŚ͙

1. The same off-policy algorithm (DDPG).

2. The same dataset.



The Difference?

1. Agent orange: Interacted with the environment.
� Standard RL loop. 
� Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment. 
� Trained with data collected by agent orange concurrently.



1. Trained with the same off-policy algorithm.
2. Trained with the same dataset.
3. One interacts with the ĞŶǀŝƌŽŶŵĞŶƚ͘�KŶĞ�ĚŽĞƐŶ͛ƚ.



Off-policy deep RL fails when truly off-policy. 



Value Predictions



Extrapolation Error

ܳ ǡݏ ܽ ՚ ݎ ൅ ܳߛ Ԣǡݏ ܽԢ



Extrapolation Error

ܳ ǡݏ ܽ ՚ ݎ ൅ ܳߛ Ԣǡݏ ܽԢ

GIVEN GENERATED



Extrapolation Error

ܳ ǡݏ ܽ ՚ ݎ ൅ ܳߛ Ԣǡݏ ܽԢ
1. ǡݏ ܽǡ ǡݎ ᇱݏ ݐ݁ݏܽݐܽܦ̱
2. ܽᇱ̱ߨሺݏᇱሻ
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Extrapolation Error

ܳ ǡݏ ܽ ՚ ݎ ൅ ܳߛ Ԣǡݏ ܽԢ
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Extrapolation Error

Attempting to evaluate ߨ without (sufficient) 
access to the ሺݏǡ ܽሻ pairs ߨ visits.



Batch-Constrained Reinforcement Learning

Only choose ߨ such that we have access to 
the ሺݏǡ ܽሻ pairs ߨ visits.



Batch-Constrained Reinforcement Learning

1. ߨ̱� ݏ such that ݏǡ ܽ א .ݐ݁ݏܽݐܽܦ
2. ߨ̱� ݏ such that ݏᇱǡ ߨ ᇱݏ א .ݐ݁ݏܽݐܽܦ
3. ߨ̱� ݏ such that ܳሺݏǡ ܽሻ is maxed.



Batch-Constrained Deep Q-Learning (BCQ)

First imitate dataset via generative model:
ሻݏሺܽȁܩ ൎ ஽ܲ௔௧௔௦௘௧ሺܽȁݏሻ.

ߨ ݏ ൌ ������௔೔ ܳ ሺݏǡ ܽ௜ሻ, where ܽ௜̱ܩ
(I.e. select the best action that is likely under the dataset)

(+ some additional deep RL magic)



DDPGז BCQז



DDPGז BCQז



BCQ comparison,PSRUWDQW�LQ�3UDFWLFH

%&4�ILJXUH�IURP�)XMLPRWR��
0HJHU��3UHFXS�,&0/�����

��
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