Lecture 20: Off-Policy
Learning

Off-policy Methods

1 Learn the value of the target policy mt from experience due
to behavior policy u

1 For example, m is the greedy policy (and ultimately the
optimal policy) while u 1s exploratory (e.g., e-soft)

1 In general, we only require coverage, i.e., that i generates
behavior that covers, or includes, 7t

m(als) > 0 implies u(als) > 0

1 Idea: importance sampling

— Weight each return by the ratio of the probabilities ot
the trajectory under the two policies

Importance Sampling in General

Suppose we want to estimate the expected value of a function f

depending on a random variable X drawn according to the target
probability distribution P(X).

If we had N samples x; drawn from P(X), we could estimate the
expectation using the empirical mean:

1 N

Ep|f] =~ sz(xi)

1=1

But instead, we have only samples drawn according to a different proposal
or sampling distribution Q(X).

How can we do the estimation?

Regular Importance Sampling

e We do a simple trick:

Ep[f] =) f(z)P(X =)

> e - Do = = B | 5]

e Only requirement: if P(z) > 0 then Q(x) > 0

e So for an estimator, we should average each sample of the function,
f(xz;) weighted by the ratio of its probability under the target and the
sampling distribution:

Applying IS to Policy Evaluation

1 Function for which we want the expectation is the return

1 Target distribution P is the distribution of trajectories under
target policy T

1 Proposal distribution Q is distribution of trajectories under

behavior policy u

1 Note that P and Q can be very different depending on the
horizon!

1 But there is structure in P and Q that we can exploit

Importance Sampling Ratio

1 Probability of the rest of the trajectory, after S;, under :
PI’{At, St—l—la At—|—17 SRIR ST | Sta At:T—l ~ 7T}
— (At|St) (St41|St, Ag)m(Agy1|Sey1) - - - p(ST|ST-1, AT-1)

H?T A |Sk)P(Sk+1|Sk, Ar),

1 In importance sampling, each return is weighted by the
relative probability of the trajectory under the two policies

T—1
[I_, #A I SOP(Skir [S AY) T2 (AL S))

Pr1—1 = — H
17 AL SOPSiar 150 AD e KA SO

1 This is called the importance sampling ratio

1 All importance sampling ratios have expected value 1

(A | Sk

w(a|Sy)
E — S) =1
U AL S | Za:ﬂ(dl k)ﬂ(6l| k)zﬂ(415

Per-reward Importance Sampling

1 Another way of reducing variance, even if y = 1

1 Uses the fact that the return is a sum of rewards

pi Ge =p{ Res1 +vpf Riga+ -+ +7" 1o Rexny+---+~" " 'p/ Rr

3 where
pr R = mAdSe) MArs1lSe) 7T(Aii7§1Sit‘ﬂ?k-)ﬂ:\;wfTgér.ﬂ«x}ST’_”i Riik
o i(A]Se) i(Aer1|S41) H (AtjL el Serr) p(Ar—1| ST—1) t+

Per-reward Importance Sampling

1 Another way of reducing variance, even if y = 1

1 Uses the fact that the return is a sum of rewards

prr1Gr = prr 1R + -+ prr i Ryt -+

w(Ae]Sp) T(Ars1lSer1) m(AerlSen) w(Az1fST-1)

Pt =1tk b(A¢|St) b(As41]St41) b(AtJrlﬁ\Sthk) """""" b(Ar—1[ST-1) bk

“Elprr—1Ritrk] = Elprptk—1 Rtk

]E[pt:T—th] =& [pt:th—l—l + T Wk_lpt:tJrk—lRtJrk ot VT_t_lptT—lRT]

_J/

v

G

. ZtGﬂT(s) ét
V)=)]

Implementation

1 Importance sampling ratios fold into the eligibility trace

1 Multiply at eac|

1 step by an extra factor

1 But on long traj

ectories traces will get cut a lot!

Recall: Q-Learning is Off-Policy TD Control

One-step Q-learning: I

Q(St, Ar) = Q(Si, A1) + | Riyy +ymax Q(Siy1,0) — Q(Si, Ay)|

Behavior is randomized, but we are evaluating the greedy policy

10

Off-policy Expected Sarsa

@ Expected Sarsa generalizes to arbitrary behavior policies u

@ 1n which case 1t includes Q-learning as the special case in which
7t 1s the greedy policy

Q(St, Ar) +— Q(St, Ar) +

— Q(Sta At) + «

Nothing
changes
®
here
—— A4
/8\
® o ©

(Q-learning

Ri1 +1EIQ(Sre, Aren) | Sia] — Q(Si, Ar)

:Rt—i—l + Z m(a|St4+1)Q(St+1,a) — Q(St, At)}

A4

/D\

y
® o o

Expected Sarsa

11

Tree Backup

[Precup, Sutton, Singh, 2000]

a
/ AQ(x,a) = 2\ H m(as|xs)od;

’ 1<s<t

Reweight the traces by the product of target probabilities

12

Q-learning with Eligibility Traces
Q™ (M) algorithm

[Harutyunyan, Bellemare, Stepleton, Munos, 2016]

X

1 —
é works if || — p|l1 < mlt
Ay

, may not work otherwise Not safe!

13

Blueprint Off-policy Q-Algorithms

Z Y H ’I“t + VYERQ(T¢41,) — Q¢ at))

t>0 1<s<t

Ot
Algorithm: Trace coefficient: Problem:
1S ¢y = T\0sls) high vari
(s |5) gh variance
Q™ (M) Cs = A not safe (off-policy)

TB()\) cs = Am(as|Ts) not efficient (on-policy)

14

Retrace (Munos et al, 2016)

Use Retrace(A) defined by c; = A min (1» W(asle))

pas|zs)
Properties:
e Low variance since c; <1
: m(as|Ts)
e Safe (off policy): cut the traces when needed c¢s € |0,
p(aa|s)

e Efficient (on policy): but only when needed. Note that ¢, > Am(as|zs)

2500

2000

1000

500

16000

14000

12000

10000

8000

€000

4000

2000

Retrace in Atari

1 2 3 4
step_vlad

—— DON
— Retrace())

1 2 3 4
step_vlad

Games:

— DON
= Retrace())

50000

40000

30000

20000

10000

1

12000

10000

8000

6000

4000

2000

—— DON
— Retrace())

4
step_vlad

4
step_vlad

6 7
1e
—— DON
— Retrace())
6 7 8
1e7

140000
— DON

— Retrace())
120000

100000

80000

60000

40000

20000

)
-
w

4 5 6 7 8
step_vlad le7

90000
— DON
80000 — Retrace())
70000
60000
50000
40000
30000

20000

10000

0 1 2 3 4 5 6 7 8

step_vlad 1le7

Asteroids, Defender, Demon Attack, Hero, Krull,

River Raid, Space Invaders, Star Gunner, Wizard of Wor, Zaxxon

30000

25000

20000

15000

10000

12000

10000

8000

2000

— DQN
— Retrace(\)

4
step_vlad

4
step_vlad

; 4 8
1le7
—— DON
—— Retrace())
7 8
le7

16000
— DON
14000 = Retrace(\)

12000

10000

0 1 2 3 4 5 6 7 8
step_vlad 1e7

20000
— DON
—— Retrace())

15000
10000

5000

-5000
] 1 2 3 4 5 3 7 8
step_vlad 1e7

16

Retrace vs Tree Backup

Fraction of Games

1
fa(x) = @Hg ! Za,g 2 x}}

1.0

0.8}

0.61

0.4+

0.2

0.0

200M TRAINING FRAMES

Retrace

Tree-backup

(Q-Learning ‘o

1.0 0.8 0.6 0.4 0.2 0.0

Inter-algorithm Score

17

Off-policy is much harder with Function Approximation

1 Even linear FA
1 Even for prediction (two fixed policies st and)

1 Even for Dynamic Programming
1 The deadly triad: FA, TD, off-policy
= Any two are OK, but not all three

= With all three, we may get instability
(elements of @ may increase to +)

18

Two Off-Policy Learning Problems

1 The easy problem is that of off-policy targets (future)
= Use importance sampling in the target

1 The hard problem is that of the distribution of states to
update (present): we are no longer updating according to
the on-policy distribution

19

Baird’s counterexample

m(solid|-) =1
p(dashed|-) = 6/7
u(solid|-) = 1/7

300

200 +

100

Components
of the parameter vector

at the end of the episode s
under semi-gradient

off-policy TD(0)
(similar for DP)

Episodes

100

20

TD(0) can diverge: A simple example

6 = r+~0"¢' —0"¢
= 0+4+20-—-90
= 0

TD update: A9 = ado
= of Diverges!

TD fixpoint: * = 0

21

What causes the instability?

1 It has nothing to do with learning or sampling

= Even dynamic programming suffers from divergence

with FA

1 It has nothing to do with exploration, greedification, or

control

= Even prediction alone can diverge

1 It has nothing to do with loca]

 minima

or complex non-linear approximators

= Even simple linear approximators can produce instability

22

The deadly triad

1 The risk of divergence arises whenever we combine three
things:
7 Function approximation
7 significantly generalizing from large numbers of examples

7 Bootstrapping
7]earning value estimates from other value estimates,
as in dynamic programming and temporal-difference learning
3 Off-policy learning
7 learning about a policy from data not due to that policy,
as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy

23

How to survive the deadly triad

1 Least-squares methods like off-policy LSTD(A) (Yu 2010,
Mahmood et al. 2015, Bradtke & Barto 1996, Boyan 2000)
computational costs scale with the square of the number of
parameters

1 True-gradient RL methods (Gradient-TD and proximal-
gradient-TD) (Maei et al, 2011, Mahadevan et al, 2015)

1 Emphatic-TD methods (Sutton, White & Mahmood 2015,
Yu 2015). These semi-gradient methods attain stability
through an extension of the early on-policy theorems

24

Linear Least-Squares

m At minimum of LS5(w), the expected update must be zero

a Y x(se)(vi —x(se) 'w) =0
z:x(st)vgr = Zx(st)x(st)Tw
w = (Z x(st)x(st)T> Zx(st)vf

m For N features, direct solution time is O(N3)

m Incremental solution time is O(N?) using Shermann-Morrison

25

LSTD

m We do not know true values v/

m In practice, our “training data’ must use noisy or biased
samples of v[

LSMC Least Squares Monte-Carlo uses return
v &~ Gy
LSTD Least Squares Temporal-Difference uses TD target
vi = Rep1 +70(Se41, w)
LSTD(A) Least Squares TD(A) uses A-return

T o~ (A

m In each case solve directly for fixed point of MC / TD / TD(\)

26

Convergence Properties

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

MC v v v

. LSMC v v :

On-Policy D / / X

LSTD v v -

. MC v v v

Off-Policy LSMC / /]

D v X X

LSTD v v -

Algorithm Table Lookup Linear Non-Linear

Monte-Carlo Control v (V) X
Sarsa v (V) X
Q-learning v X X
LSPI v (V) :

(v/) = chatters around near-optimal value function

27

Proximal Gradient (Touati et al, 2018)

Given: target policy 7, behavior policy u
Initialize 6y and wq
forn=0... do
seteg = 0
for k=0 ...end of episode do
Observe sg, ag, g, Sg+1 according to u
Update traces
er = ANYK(Sk, ag)ex—1 + O(Sk, ax)
Update parameters
O =1k + 70, Erd(spt1,.) — 0, d(sk,ar)
w41 = Wk + Mk (dker — wp d(Sk, ar)d(sk, ax))

Hk-l—l = 01 — QW €k (’Y]Eﬁqﬁ(sk-klv) — ¢(37€7 ak))
end for

end for

28

Results

_ 0.6
1.50 TB(A) — GTB(\)
| —— Ret —— GRetrace(\)
125 ctrace(A) 0.4
2 i
7 1.00 %
= =02
=075 ‘
0.50{ | | 0.01 - .
0 50 100 0 50 100
episode episode

29

Value function geometry

Previous work on T takes you
gradient methods for TD 7 outside
minimized this objective fa—_ o N TV, the space

(Baird 1995, 1999) ™~

i 11 projects you

HTVQ back
into it

-

VH \“
‘. RMSPBE ~~

®,D = \/Bretter objective fn?

The space spanned by the feature vectors, Vo = 1IT'Vy
weighted by thel%tate visitation distribution|g the TD fx-point

diag(d)

Mean Square Projected Bellman Error (MSPBE)

30

(stable,
1 Is simp.

Gradient-Based TD

1 Bootstraps (genuine TD)

1 Works with linear function approximation

reliably convergent)
e, like linear TD — O(n)

1 Learns

ast, like linear TD

1 Can learn off-policy

1 Learns from online causal trajectories

(no repeat sampling from the same state)

31

TD is not the gradient of anything

TD(0) algorithm:

A0 = add
Assume there is a | such S=r+~0Td —0" ¢
that: o
90 0P
Then look at the second
derivative:
0.7 26.00, U
0*J _ 0(d¢;) _ (v — b:)b. 90;00; ~ 90,00, **(Cl‘/b
=208 — (161 6, N

Real 2nd derivatives must be symmetric

Etienne Barnard 19¢

32

The Gradient-TD Family of Algorithms

1 True gradient-descent algorithms in the Projected
Bellman Error

1 GTD(A) and GQ(A), for learning V and Q
1 Solve two open problems:

= convergent linear-complexity off-policy TD learning

= convergent non-linear TD

1 Extended to control variate, proximal forms by
Mahadevan et al.

33

First relate the geometry to the iid statistics

MSPBE(6) .0
— Vo — IITV, 2 matrix of the feature vectors for all staggs
— 0 0) ID T D(TVy — Vy) = E[0¢]
= (II(Vy = TVR)) ' D(II(Vy — TVy)) 37 D& — E[po7]

= (Vo —TVy) 'II' DII(Vy — TVy)
= (Vy—TVy)'D'®(@"'D®)"'d" D(Vy — TVp)
= (®'D(TVy—Vp)) (@' D®)1®"'D(TVy — Vp)

— E[6¢] E[po'] E[54].

34

Derivation of the TDC algorithm

AO = ——aVyJ(0)

(sampling)

Q

. s— g
—§&V9 | Vo —ITVy |5 l l/
: b ¢

—5aVy (E[6E [¢0"] ' E [56)])

—a (VoE[06))E [¢6¢7] E[o¢]

—aE [Vl (r+7¢'T0 — ¢"0)]| E [¢p¢] E[69]
~E[6(¢'~)"] ElpsT] "Els9
~a(E[¢0"] ~E[s9])E[067] E[5¢)

aE(06] - B [$0T]E [007] " Rlogl
alE [6¢] — ayE |¢'¢ }w " trick!
adp — ayg'¢'w weR” isa
second set of
weights

35

T'D with gradient correction (TDC) algorithm

1 on each transition

aka GTD(0)

1 update two parameters s——s'

with gradient
1 where, as usual ~ correction

0 — 0 +Hadd)—(0rd (@ w)
w <« w+ (5 —)¢ estimate of the

D error ¢) for
the current stat@

d=r+~0'¢'—0'¢

36

Convergence theorems

1 All algorithms converge w.p.1 to the TD fix-point:

Eldp] — 0
1 GTD, GTD-2 converges at one time scale

a=0-—70

1 TD-C converges in a two-time-scale sense

o, — 0 2 0

p

37

Off-policy result: Baird’s counter-example

10 ‘
10™ |
8] . 7
_ 10° |
E; J=10% Lol oo b b oo o
" 6* qE) +/—10
m <
o © 5
n & _q0° ¢}]
s GTD \J
s 47 - 10 &
10 1000 2000 3000 4000 5000
GTD-2 Sweeps
27
OO 20 40 60 80 100 120 140 160 180 200

Sweeps

Gradient algorithms converge. TD diverges.

38

A little more theory

Aocdp = (r++0'¢ —0'¢)¢
= 0'(v¢' —) d+ 710
= ¢(y¢ —) 0+7¢
E[A0] o« —E|¢(6—79)"|0+Erd

| |
/ / convergent if
E[A0] o — Af + b A
is pos. def.
therefore, at A —
the TD) B P LSTD computes this directly

fixpoint: - -
1 . 0 =B fos

—§V9MSPBE = —A'C™ (A|¢9 —b) covariance

always pos. def. matrix

39

Example: Go

1 Learn a linear value function (probability of winning)
for 9x9 Go from self play

1 One million features, each corresponding to a template
on a part of the Go board

0.8 =

0.6

RNEU
04 +

0.2 7t

0 t t t t t i
.000001 .000003 .00001 .00003 .0001 .0003 .001

X

Summary

ALGORIIHM

TD(\), Approx. LSTD(N), [r... . ~ Residual GTD(N),
Sarsa(\) DP LSPE(A) st gradient G2 GQ(A)

Linear
computation

Nonlinear
convergent

Off-policy
convergent

Model-free,
online

Converges to
PBE=0

