
General Value Functions, General Policy
Evaluation and General Policy Improvement

With thanks to Rich Sutton, Satinder Singh, Gheorghe Comanici, Anna Harutyunyan, Andre Barreto, David

Silver, Pierre-Luc Bacon, Jean Harb, Shibl Mourad, Khimya Khetarpal, Zafarali Ahmed, David Abel, Sasha

Vezhnevets, Shaobo Hou, Philippe Hamel, Eser Aygun, Diana Borsa, Justin Novosad, Will Dabney, Nicholas

Heess, Remi Munos

COMP579 Lecture 20, 2024

Recall: General Value Functions (GVFs)

• Given a cumulant function c, state-dependent continuation function γ
and policy π, the General Value Function vπ,γ,c is defined as:

vπ,c,γ(s) = E

[∞∑

k=t

c(Sk, Ak, Sk+1)

k∏

i=t+1

γ(Si)|St = s,At:∞ ∼ π
]

• Cumulant c can output a vector (even a matrix)

• Continuation function γ maps states to [0,1] (further generalizations are
possible)

• Cf. Horde architecture (Sutton et al, 2011); Adam White’s thesis;
inspiration from Pandemonium architecture

• Special case: policy is optimal wrt c, γ, v∗c,γ - Universal Value Function
approximation (UVFA) (Schaul et al, 2015)

• No single task is required, just a multitude of cumulants and time scales!

COMP579 Lecture 20, 2024 1

GVFs as building blocks of knowledge

v

GVF

⇡(✓)�R

s

r✓v

GVF

⇡(✓)�⇥

s

GVF

⇡(✓)�R

s̄, ā

r✓ log ⇡(✓)

Figure 1: GVFs for Policy Gradient. On the left, we illustrate the value of a parameterised policy
⇡(✓) within the general value function framework. On the right, the gradient of the policy is illustrated
as a general value function whose cumulant is a function of the original value function conditioned
on an initial state-action pair.

Q(s0, !)

GVF

⇡(!)�(1� �(!))C(!)

s0

Q(·, w0)

R

Q(·, w1)

...

Q(·, wk)

(a) GVFs for Option-Critic.

vW

GVF

⇡(g(M), ⌘)�MR + RI(g(M))

s

vM

GVF

⇡(W, ✓)�WR

s

(b) GVFs for Feudal Networks.

Figure 2: On the left: Every option corresponds to a separate GVF, concerned both with external
reward function R, as well as predictions corresponding to all other GVFs. On the right, Manager
(M) and worker (W) are trained using separate GVFs: vM, concerned with external return as
corresponding to the policy of W; vW, based on cumulant and policy conditioned on specific goals
specified by M.

The policy gradient theorem shows that these widely used methods for policy improvement are based136

on the estimation of two interdependent GVFs. Improvements to a parameterised model of ⇡(s|a)137

is computed using an auxiliary prediction problem on a signal (i.e. cumulant) computed from the138

output of the prediction for the reward corresponding to the task at hand. This alternative view of139

the theorem suggests that we could use approximation techniques for estimating these predictions to140

improve on current algorithms. Proposition 1 provides a procedure for estimating the gradient r✓v141

from a finite number of auxiliary predictions on a spanning set of cumulants {Ci}n
i=1: if C can be142

approximated by some Ĉ =
P

wiCi, then r✓v(C, �, ⇡) ⇡Pwiv(·; Ci, �, ⇡).143

Universal Value Functions (UVFs) Schaul et al. [26] address the issue of learning a large number144

of GVFs individually, which is not scalable and does not take advantage of shared structure. They145

propose UVFs to generalise both over states and goals (i.e. (C, �) pairs) to approximate V (s, g), the146

value of the optimal policy that achieves goal g from state s. Define the set of all “goals achieved by a147

policy” as (⇡) := {(C, �) | v(C, �, ⇡) = max⇡0 v(C, �, ⇡0)}. These sets are all uncountable: let �148

be a constant, k 2 R<0 and define C⇡(s, a) = k if a 6= ⇡(s) and 0 otherwise; then (C⇡, �) 2 (⇡).149

Additionally, these sets provide a cover for all goals: G = [⇡:deterministic (⇡), as every goal can be150

achieved by a deterministic policy. The UVFs model a subset of all GVFs with one less degree of151

freedom: V (s, (C, �)) = v(s; C, �, ⇡) if and only if (C, �) 2 (⇡). The policies in the GVFs that152

can be modelled using UVFs have to be compatible to some preset goal (C, �).153

We proceed to prove that GVFs extend two existing popular architectures for learning hierarchical154

structures for temporal abstraction in reinforcement learning [35, 2]. We prove that both FeUdal155

Networks (FuN) and the Option-Critic Architecture (OC) learn using a set of separate prediction156

problems about the external environment signals as well as other internal signals that are specific to157

the learning process.158

4

• Note that one can take the output of a GVF and make it an input to
another GVF

• Or, the output of a GVF could become part of the “state” for another
GVF

COMP579 Lecture 20, 2024 2

Option models are GVFs

• The reward model for an option ω is defined as:

rω(s) = Eω[r(St, At) + γ(1− βω(St+1))rω(St+1)|St = s]

• This means the option reward model is a GVF:

– policy is πω
– cumulant is the environment reward r
– continuation function is γ(1− βω)

• Option transition model can be similarly written as a GVF

COMP579 Lecture 20, 2024 3

Many other approaches that can be expressed as GVFs

• Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)

• Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

• Value transport (Hung et al, 2018)

• Auxilliary tasks (Jaderberg et al, 2016)

• Are GVFs just an interesting insight or can they be useful?

COMP579 Lecture 20, 2024 4

Policy Evaluation and Policy Improvement

• Consider a Markov Decision Process 〈S,A, P, r〉 and a policy π : S →
Dist(A)

• Classic dynamic programming relies on two basic operations:

– Policy evaluation: given policy π, compute the value function V πr
and/or Qπr

– Policy improvement: given value function Qπr , compute an improved
policy: π′(s) = arg maxa′∈AQπr (s, a′)

• Policy improvement guarantee:

Qπ
′
r (s, a) ≥ Qπr (s, a), ∀s ∈ S,∀a ∈ A

• Dynamic programming: interleave these steps (executed exactly)

• Reinforcement learning: carry out these steps approximately

COMP579 Lecture 20, 2024 5

Visualizing Policy Evaluation and Policy Improvement

reduce the amount of data needed to solve the problem.
Together, these two strategies give rise to a divide-and-conquer
approach to RL that can potentially help scale our agents to
problems that are currently intractable.

RL

We consider the RL framework outlined in the Introduction: an
agent interacts with an environment by selecting actions to get
as much reward as possible in the long run (1). This interaction
happens at discrete time steps, and, as usual, we assume it can be
modeled as a Markov decision process (MDP) (18).

An MDP is a tuple M ⌘ (S, A, p, r , �) whose components are
defined as follows. The sets S and A are the state space and
action space, respectively (we will consider that A is finite to
simplify the exposition, but most of the ideas extend to infinite
action spaces). At every time step t , the agent finds itself in a
state s 2S and selects an action a 2A. The agent then transi-
tions to a next state s 0, where a new action is selected, and so
on. The transitions between states can be stochastic: the dynam-
ics of the MDP, p(·|s, a), give the next-state distribution upon
taking action a in state s . In RL, we assume that the agent does
not know p, and thus it must learn based on transitions sampled
from the environment.

A sample transition is a tuple (s, a, r 0, s 0) where r 0 is the
reward given by the function r(s, a, s 0), also unknown to the
agent. As discussed, here we adopt the view that different reward
functions give rise to distinct tasks. Given a task r , the agent’s
goal is to find a policy ⇡ : S 7!A, that is, a mapping from states
to actions, that maximizes the value of every state–action pair,
defined as

Q⇡
r (s, a)⌘E⇡

" 1X

i=0

�ir(St+i ,At+i ,St+i+1) |St = s,At = a

#
,

[1]
where St and At are random variables indicating the state occu-
pied and the action selected by the agent at time step t , E⇡[·]
denotes expectation over the trajectories induced by ⇡, and � 2
[0, 1) is the discount factor, which gives less weight to rewards
received further into the future. The function Q⇡

r (s, a) is usu-
ally referred to as the “action-value function” of policy ⇡ on
task r ; sometimes, it will be convenient to also talk about the
“state-value function” of ⇡, defined as V ⇡

r (s)⌘Q⇡
r (s,⇡(s)).

Given an MDP representing a task r , there exists at least one
optimal policy ⇡⇤

r that attains the maximum possible value at
all states; the associated optimal value function V ⇤

r is shared
by all optimal policies (18). Solving a task r can thus be seen
as the search for an optimal policy ⇡⇤

r or an approximation
thereof. Since the number of possible policies grows exponen-
tially with the size of S and A, a direct search in the space of
policies is usually infeasible. One way to circumvent this difficulty
is to resort to methods based on dynamic programming, which
exploit the properties of MDPs to reduce the cost of searching
for a policy (19).

Policy Updates. RL algorithms based on dynamic programming
build on two fundamental operations (1).
Definition 1. “Policy evaluation” is the computation of Q⇡

r , the
value function of policy ⇡ on task r .
Definition 2. Given a policy ⇡ and a task r , “policy improvement”
is the definition of a policy ⇡0 such that

Q⇡0
r (s, a)�Q⇡

r (s, a) for all (s, a)2S ⇥A. [2]

We call one application of policy evaluation followed by one
application of policy improvement a “policy update.” Given an
arbitrary initial policy ⇡, successive policy updates give rise to
a sequence of improving policies that will eventually reach an

optimal policy ⇡⇤
r (18). Even when policy evaluation and policy

improvement are not performed exactly, it is possible to derive
guarantees on the performance of the resulting policy based on
the approximation errors introduced in these steps (20, 21). Fig. 1
illustrates the basic intuition behind policy updates.

What makes policy evaluation tractable is a recursive relation
between state-action values known as the Bellman equation:

Q⇡
r (s, a) = ES 0⇠p(·|s,a)

⇥
r(s, a,S 0) + �Q⇡

r (S 0,⇡(S 0))
⇤
. [3]

Expression (Exp.) 3 induces a system of linear equations whose
solution is Q⇡

r . This immediately suggests ways of performing
policy evaluation when the MDP is known (18). Importantly, the
Bellman equation also facilitates the computation of Q⇡

r with-
out knowledge of the dynamics of the MDP. In this case, one
estimates the expectation on the right-hand side of Exp. 3 based
on samples from p(·|s, a), leading to the well-known method of
temporal differences (22, 23). It is also often the case that in
problems of interest the state space S is too big to allow for a
tabular representation of the value function, and hence Q⇡

r is
replaced by an approximation Q̃⇡

r .
As for policy improvement, it is in fact simple to define a policy

⇡0 that performs at least as well as, and generally better than, a
given policy ⇡. Once the value function of ⇡ on task r is known,
one can compute an improved policy ⇡0 as

⇡0(s)2 arg max
a2A

Q⇡
r (s, a). [4]

In words, the action selected by policy ⇡0 on state s is the one that
maximizes the action-value function of policy ⇡ on that state. The
fact that policy ⇡0 satisfies Definition 2 is one of the fundamen-
tal results in dynamic programming and the driving force behind
many algorithms used in practice (18).

The specific way policy updates are carried out gives rise to
different dynamic programming algorithms. For example, value
iteration and policy iteration can be seen as the extremes of a
spectrum of algorithms defined by the extent of the policy evalua-
tion step (19, 24). RL algorithms based on dynamic programming
can be understood as stochastic approximations of these methods
or other instantiations of policy updates (25).

Generalized Policy Updates

From the discussion above, one can see that an important
branch of the field of RL depends fundamentally on the notions
of policy evaluation and policy improvement. We now discuss
generalizations of these operations.
Definition 3. “Generalized policy evaluation” (GPE) is the com-
putation of the value function of a policy ⇡ on a set of
tasks R.

A B

Fig. 1. (A) Sequence of policy updates as a trajectory that alternates
between the policy and value spaces and eventually converges to an optimal
solution (1). (B) Detailed view of the trajectory across the value space for a
state space with two states only. The shadowed rectangles associated with
each value function represent the region of the value space containing the
value function that will result from one application of policy improvement
followed by policy evaluation (cf. Exp. 2).

2 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1907370117 Barreto et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

• Generalize this process to multiple reward functions (ie tasks) r ∈ R and
multiple policies π ∈ Π

COMP579 Lecture 20, 2024 6

Generalized Policy Updates

• Generalized policy evaluation (GPE): compute the value of a policy π on
a set of reward functions R
• Generalized policy improvement (GPI): given a set of policies Π and a

reward function r, compute a new policy such that:

Qπ
′
r (s, a) ≥ sup

π∈Π
Qπr (s, a), ∀s ∈ S∀a ∈ A

• If we have only one r and one π, we recover usual policy evaluation and
policy improvement

COMP579 Lecture 20, 2024 7

Visualizing Generalized Policy Updates

C
O

L
L
O

Q
U

IU
M

P
A

P
E
R

C
O

M
P

U
T
E
R

S
C

IE
N

C
E
S

Definition 4. Given a set of policies ⇧ and a task r , “generalized
policy improvement” (GPI) is the definition of a policy ⇡0 such
that

Q⇡0
r (s, a)� sup

⇡2⇧
Q⇡

r (s, a) for all (s, a)2S ⇥A. [5]

GPE and GPI are strict generalizations of their standard coun-
terparts, which are recovered when R has a single task and ⇧
has a single policy. However, it is when R and ⇧ are not single-
tons that GPE and GPI reach their full potential. In this case,
they become a mechanism to quickly construct a solution for a
task, as we now explain. Suppose we are interested in one of
the tasks r 2R, and we have a set of policies ⇧ available. The
origin of these policies is not important: they may have come
up as solutions for specific tasks or have been defined in any
other arbitrary way. If the policies ⇡ 2⇧ are submitted to GPE,
we have their value functions on the task r 2R. We can then
apply GPI over these value functions to obtain a policy ⇡0 that
represents an improvement over all policies in ⇧. Clearly, this
reasoning applies without modification to any task in R. There-
fore, by applying GPE and GPI to a set of policies ⇧ and a set
of tasks R, one can compute a policy for any task in R that will
in general outperform every policy in ⇧. Fig. 2 shows a graphical
depiction of GPE and GPI.

Obviously, in order for GPE and GPI to be useful in practice,
we must have efficient ways of performing these operations. Con-
sider GPE, for example. If we were to individually evaluate the
policies ⇡ 2⇧ over the set of tasks r 2R, it is unlikely that the
scheme above would result in any gains in terms of computa-
tion or consumption of data. To see why this is so, suppose again
that we are interested in a particular task r . Computing the value
functions of policies ⇡ 2⇧ on task r would require |⇧| policy
evaluations with a naive form of GPE (here, | · | denotes the car-
dinality of a set). Although the resulting GPI policy ⇡0 would
compare favorably to all policies in ⇧, this guarantee would be
vacuous if these policies are not competent at task r . There-
fore, a better allocation of resources might be to use the policy
evaluations for standard policy updates, which would generate a
sequence of |⇧| policies with increasing performance on task r
(compare Figs. 1 and 2). This difficulty in using generalized pol-

Fig. 2. Depiction of generalized policy updates on a state space with two
states only. With GPE each policy ⇡ 2⇧ is evaluated on all tasks r 2R. The
state-value function of policy ⇡ on task r, V

⇡
r

, delimits a region in the value
space where the next value function resulting from policy improvement
will be (cf. Fig. 1). The analogous space induced by GPI corresponds to the
intersection of the regions associated with the individual value functions
(represented as dark gray rectangles in the figure). The smaller the space of
value functions associated with GPI, the stronger the guarantees regarding
the performance of the resulting policy.

icy updates in practice is further aggravated if we do not have a
fast way to carry out GPI. Next, we discuss efficient instantiations
of GPE and GPI.

Fast GPE with Successor Features. Conceptually, we can think of
GPE as a function associated with a policy ⇡ that takes a task
r as input and outputs a value function Q⇡

r (26). Hence, a
practical way of implementing GPE would be to define a suit-
able representation for tasks and then learn a mapping from r
to value functions Q⇡

r (27). This is feasible when such a map-
ping can be reasonably approximated by the choice of function
approximator and enough examples (r ,Q⇡

r) are available to
characterize the relation underlying these pairs. Here, we will
focus on a form of GPE that is based on a similar premise but
leads to a form of generalization over tasks that is correct by
definition.

Let � : S ⇥A⇥S 7!Rd be an arbitrary function whose output
we will see as “features.” Then, for any w2Rd , we have a task
defined as

rw(s, a, s 0) =�(s, a, s 0)>w, [6]

where > denotes the transpose of a vector. Let

R� ⌘{rw =�>w | w2Rd}

be the set of tasks induced by all possible instantiations of w2Rd .
We now show how to carry out an efficient form of GPE over R�.

Following Barreto et al. (28), we define the “successor
features” (SFs) of policy ⇡ as

 ⇡(s, a)⌘E⇡

" 1X

i=0

�i�(St+i ,At+i ,St+i+1) |St = s,At = a

#
.

The ith component of ⇡(s, a) gives the expected discounted
sum of �i when following policy ⇡ starting from (s, a). Thus, ⇡

can be seen as a d -dimensional value function in which the fea-
tures �i(s, a, s 0) play the role of reward functions (cf. Exp. 1).
As a consequence, SFs satisfy a Bellman equation analogous to
Exp. 3, which means that they can be computed using standard
RL methods like temporal differences (22).

Given the SFs of a policy ⇡, ⇡ , we can quickly evaluate ⇡ on
task rw 2R� by computing

 ⇡(s, a)>w = E⇡

"1X

i=0

�i�(St+i ,At+i ,St+i+1)
>w|St = s,At = a

#

= E⇡

" 1X

i=0

�irw(St+i ,At+i ,St+i+1) |St = s,At = a

#

=Q⇡
rw(s, a)⌘Q⇡

w (s, a). [7]

That is, the computation of the value function of policy ⇡ on task
rw is reduced to the inner product ⇡(s, a)>w. Since this is true
for any task rw, SFs provide a mechanism to implement a very
efficient form of GPE over the set R� (cf. Definition 3).

The question then arises as to how inclusive the set R� is.
Since R� is fully determined by �, the answer to this question
lies in the definition of these features. Mathematically speak-
ing, R� is the linear space spanned by the d features �i . This
view suggests ways of defining � that result in a R� contain-
ing all possible tasks. A simple example can be given for when
both the state space S and the action space A are finite. In this
case, we can recover any possible reward function by making
d = |S |2 ⇥ |A| and having each �i be an indicator function asso-
ciated with the occurrence of a specific transition (s, a, s 0). This

Barreto et al. PNAS Latest Articles | 3 of 9

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

COMP579 Lecture 20, 2024 8

Fast Generalized Policy Evaluation

• If we had a nice map from r to Qπr , GPE could be efficient
• Consider the class of reward functions that are linear in some feature

space φ(s, a):

rw(s, a) = w
T
φ(s, a) and Rφ = {rw|w ∈ Rd}

Note that φ can be learned and non-linear
• Successor features: ψπ(s, a) = Eπ[

∑∞
t=1 γ

tφ(st, at)|s0 = s, a0 = a]

• Then the value function for a specified reward function can be easily
computed as a function of the successor features:

Qπw(s, a) = wTψπ(s, a)

• Successor features can be pre-computed for π once and re-used thereafter
(a form of model!)
• Connections to hippocampus representations

COMP579 Lecture 20, 2024 9

Successor states and successor features are GVFs

• Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states (Dayan, 1992)

• Successor states give the expected occupancy of future states

• If states are defined by a feature vector φ(s), successor features give the
expected, discounted sum of future feature vectors from a state.

• In GVF terms, the cumulant is c = φ, and there is a fixed policy and
discount

• Interesting property highlighted in Barreto et al:

vπ,wT c,γ(s) = wTvπ,c,γ(s)

which leads to one-shot computation of new GVFs

COMP579 Lecture 20, 2024 10

Fast Generalized Policy Improvement

• Compute the improved policy as:

π′(s) = arg max
a∈A

max
π∈Π

Qπr (s, a)

• Note that π′ could choose actions that are not chosen by any of the π

• The process takes only one iteration, after which no further change to
the policy π′ would happen

• In contrast with iterative policy improvement...

COMP579 Lecture 20, 2024 11

Illustration

C
O

L
L
O

Q
U

IU
M

P
A

P
E
R

C
O

M
P

U
T
E
R

S
C

IE
N

C
E
S

of arithmetic over features provides a rich interface for the agent
to interact with the environment at a higher level of abstraction
in which decisions correspond to preferences encoded as a vec-
tor w. Next, we discuss how this can be leveraged to speed up the
solution of an RL task.

Fast RL with GPE and GPI

We now describe how to build and use the adaptable policy
⇡ implemented by GPE and GPI. To make the discussion
more concrete, we consider a simple RL environment depicted
in Fig. 4. The environment consists of a 10⇥ 10 grid with four
actions available: A = {up, down, left, right}. The agent occu-
pies one of the grid cells, and there are also 10 objects spread
across the grid. Each object belongs to one of two types. At each
time step t , the agent receives an image showing its position and
the position and type of each object. Based on this information,
the agent selects an action a 2A, which moves it one cell along
the desired direction. The agent can pick up an object by moving
to the cell occupied by it; in this case, it gets a reward defined by
the type of the object. A new object then pops up in the grid, with
both its type and location sampled uniformly at random (more
details are in SI Appendix).

This simple environment can be seen as a prototypical mem-
ber of the class of problems in which GPE and GPI could be
useful. This becomes clear if we think of objects as instances of
(potentially abstract) concepts, here symbolized by their types,
and note that the navigation dynamics are a proxy for any sort
of dynamics that mediate the interaction of the agent with the
world. In addition, despite its small size, the number of possible
configurations of the grid is actually quite large, of the order of
1015. This precludes an exact representation of value functions
and illustrates the need for approximations that inevitably arises
in many realistic scenarios.

By changing the rewards associated with each object type, one
can create different tasks. We will consider that the agent wants
to build a set of SFs that give rise to a generalized policy
⇡ (s; w) that can adapt to different tasks through the vector of
preferences w. This can be either because the agent does not
know in advance the task it will face or because it will face more
than one task.

Defining a Basis for Behavior. In order to build the SFs , the
agent must define two things: features � and a set of policies ⇧.
Since � should be associated with rewarding events, we define

Fig. 4. Depiction of the environment used in the experiments. The shape of
the objects (square or triangle) represents their type; the agent is depicted
as a circle. We also show the first 10 steps taken by 3 policies, ⇡1, ⇡2, and
⇡3, that would perform optimally on tasks w1 = [1, 0], w2 = [0, 1], and w3 =

[1, �1] for any discount factor �� 0.5.

each feature �i as an indicator function signaling whether an
object of type i has been picked up by the agent (i.e., �2R2).
To be precise, we have that �i(s, a, s 0) = 1 if the transition from
state s to state s 0 is associated with the agent picking up an object
of type i , and �i(s, a, s 0) = 0 otherwise. These features induce a
set R� where task rw 2R� is characterized by how desirable or
undesirable each type of object is.

Now that we have defined �, we turn to the question of how to
determine an appropriate set of policies ⇧. We will restrict the
policies in ⇧ to be solutions to tasks rw 2R�. We start with what
is perhaps the simplest choice in this case: a set ⇧12 = {⇡1,⇡2}
whose two elements are solutions to the tasks w1 = [1, 0]> and
w2 = [0, 1]> (henceforth, we will drop the transpose superscript
to avoid clutter). Note that the goal in tasks w1 and w2 is to pick
up objects of one type while ignoring objects of the other type.

We are now ready to compute the SFs induced by our
choices of � and ⇧. In our experiments, we used an algorithm
analogous to Q-learning to compute approximate SFs ̃

⇡1 and
 ̃

⇡2 (pseudocode in SI Appendix). We represented the SFs using
multilayer perceptrons with two hidden layers (33).

The set of SFs ̃ yields a generalized policy ⇡ ̃(s; w) param-
eterized by w. We now evaluate ⇡ ̃ on the task whose goal is
to pick up objects of the first type while avoiding objects of
the second type. Using � defined above, this task can be rep-
resented as rw3(s, a, s 0) =�(s, a, s 0)>w3, with w3 = [1,�1]. We
thus evaluate the generalized policy instantiated as ⇡ ̃(s; w3).

Results are shown in Fig. 5A. As a reference, we also show
the learning curve of Q-learning (23) using the same architec-
ture to directly approximate Q⇡

w3
. GPE and GPI allow one to

compute an instantaneous solution for a new task, without any
learning on the task itself, that is competitive with the policies
found by Q-learning when using around 6⇥ 104 sample tran-
sitions. The performance of the policy ⇡ ̃ synthesized by GPE
and GPI corresponds to more than 70% of the performance
eventually achieved by Q-learning after processing 106 transi-
tions. This is quite an impressive result when we note that ⇡ ̃
managed to avoid objects of the second type even though its con-
stituents policies ⇡1 and ⇡2 were never trained to actively avoid
objects.

We used a total of 106 sample transitions to learn both SFs
 ̃

⇡1 and ̃
⇡2 , which is the same amount of data used by Q-

learning to achieve its final performance. The advantage of doing
the former is that, once we have the SFs, we can use GPE
and GPI to instantaneously compute a solution for any task in
R�. However, how well do GPE and GPI actually perform on
R�? To answer this question, we ran a second round of exper-
iments to assess the generalization of ⇡ ̃ over the entire set
R�. Since this evaluation clearly depends on the set of policies
used, we consider two other sets in addition to ⇧12 = {⇡1,⇡2}.
The new sets are ⇧34 = {⇡3,⇡4} and ⇧5 = {⇡5}, where the poli-
cies ⇡i are solutions to the tasks w3 = [1,�1], w4 = [�1, 1], and
w5 = [1, 1]. We repeated the previous experiment with each pol-
icy set and evaluated the resulting policies ⇡ ̃ over 19 tasks w
evenly spread over the nonnegative quadrants of the unit cir-
cle (tasks in the negative quadrant are uninteresting because
all of the agent must do is to avoid hitting objects). Results
are shown in Fig. 6A. As expected, the generalization ability of
GPE and GPI depends on the set of policies used. Perhaps more
surprising is how well the generalized policy ⇡ ̃ induced by some
of these sets perform across the entire space of tasks R�, some-
times matching the best performance of Q-learning when solving
each task individually.

These experiments show that a proper choice of base policies
⇧ can lead to good generalization over the entire set of tasks
R�. In general, though, it is unclear how to define an appropri-
ate⇧. Fortunately, we can refer to our theoretical understanding
of GPE and GPI to have some guidance. First, we know from

Barreto et al. PNAS Latest Articles | 5 of 9

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

• The three policies correspond to three weight vectors: like red (w1 =
[1, 0]T), like blue (w2 = [0, 1]T) and like red not blue (w3 = [1,−1]T)
• Note that w can be viewed as a preference function over features!
• We can pre-train the policies that optimize for each preference, and train

their successor features as well
• Then just do GPE/GPI!

COMP579 Lecture 20, 2024 12

Illustration: Results

A B

Fig. 5. Average sum of rewards on task w3 = [1, �1]. GPE and GPI used ⇧12 = {⇡1,⇡2} as the base policies and the corresponding SFs consumed 5 ⇥ 105

sample transitions to be trained each. B is a zoomed-in version of A showing the early performance of GPE and GPI under different setups. The results reflect
the best performance of each algorithm over multiple parameter configurations (SI Appendix). Shadowed regions are one standard error over 100 runs.

the discussion above that the larger the number of policies in
⇧ the stronger the guarantees regarding the performance of
the resulting policy ⇡ ̃ (Exp. 5). In addition to that, Barreto
et al. have shown that it is possible to guarantee a minimum
performance level for ⇡ ̃ on task w based on minikw�wik,
where k · k is some norm and wi are the tasks associated with
the policies ⇡i 2⇧ used for GPE and GPI (theorem 2 in ref.
28). Together, these two insights suggest that, as we increase
the size of ⇧, the performance of the resulting policy ⇡ ̃ should
improve across R�, especially on tasks that are close to the tasks
wi . To test this hypothesis empirically, we repeated the previous
experiment, but now, instead of comparing disjoint policy sets,
we compared a sequence of sets formed by adding one by one
the policies ⇡2, ⇡5, ⇡1, and ⇡3, in this order, to the initial set
{⇡4}. The results, in Fig. 6B, confirm the trend implied by the
theory.

Task Inference. So far, we have assumed that the agent knows the
vector w that describes the task of interest. Although this can
be the case in some scenarios, ideally we would be able to apply
GPE and GPI even when w is not provided. In this section and
in Preferences as Actions, we describe two possible ways for the
agent to learn w.

Given a task r , we are looking for a w2Rd that leads to good
performance of the generalized policy ⇡ (s; w). We could in
principle approach this problem as an optimization over w2Rd

whose objective is to maximize the value of ⇡ (s; w) across
(a subset of) the state space. It turns out that we can exploit
the structure underlying SFs to efficiently determine w with-
out ever looking at the value of ⇡ . Suppose we have a set
of m sample transitions from a given task, {(si , ai , r

0
i , s

0
i)}m

i=1.
Then, based on Exp. 6, we can infer w by solving the following
minimization:

min
w̃

mX

i=1

|�(si , ai , s
0
i)

>w̃� r 0
i |p , [9]

where p � 1 (one may also want to consider the inclusion of a
regularization term, see ref. 33). Observe that, once we have a
solution w̃ for the problem above, we can plug it in Exp. 7 and
use GPE and GPI as we did before—that is, we have just turned
an RL task into an easier linear regression problem.

To illustrate the potential of this approach, we revisited the
task w3 = [1,�1] tackled above, but now, instead of assuming
we knew w3, we solved the problem in Exp. 9 using p = 2. We
collected sample transitions using a policy ⇡̂ that picks actions

A B

Fig. 6. Results on the space of tasks R� induced by a two-dimensional �. The sets of policies ⇧ used in A are disjoint; in B these sets overlap. The evaluation
of an algorithm on a task is represented as a vector whose direction indicates the task w and whose magnitude gives the average sum of rewards over 10
runs with 250 trials each. Q-learning learned each task individually, from scratch; the dotted curves correspond to its performance after having processed
5 ⇥ 104, 1 ⇥ 105, 2 ⇥ 105, 5 ⇥ 105, and 1 ⇥ 106 sample transitions. Our method only learned the policies in the sets ⇧ and then generalized across all others
tasks through GPE and GPI. The SFs used for GPE and GPI consumed 5⇥ 105 sample transitions to be trained each.

6 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1907370117 Barreto et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

• Training the successor features for w1, w2 over 5 × 105 samples then
GPE/GPI for w3

• GPE/GPI with successor features achieves 75x improvement in sample
size compared to Q-learning

• Obtaining w, φ by learning almost as good as knowing these in advance

COMP579 Lecture 20, 2024 13

Synthesizing new behavior: Moving Target Arena

General way to synthesize quickly new behavior for combinations of reward functions!

COMP579 Lecture 20, 2024 14

