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Recall: General Value Functions (GVFs)

e Given a cumulant function ¢, state-dependent continuation function -~
and policy 7, the General Value Function v . is defined as:
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e Cumulant ¢ can output a vector (even a matrix)

e Continuation function vy maps states to [0,1] (further generalizations are
possible)

e Cf. Horde architecture (Sutton et al, 2011); Adam White's thesis;
inspiration from Pandemonium architecture

*

e Special case: policy is optimal wrt ¢, 7, v,
approximation (UVFA) (Schaul et al, 2015)
e No single task is required, just a multitude of cumulants and time scales!

- Universal Value Function

COMP579 Lecture 20, 2024 1



GVFs as building blocks of knowledge

e Note that one can take the output of a GVF and make it an input to
another GVF

e Or, the output of a GVF could become part of the “state” for another
GVF
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Option models are GVFs

e The reward model for an option w is defined as:
rw(s) = Eu[r(Se, Ar) + (1 = Bu(St41))7w(Se41)[Se = 3]

e This means the option reward model is a GVF:

— policy is
— cumulant is the environment reward r
— continuation function is v(1 — f3,,)

e Option transition model can be similarly written as a GVF
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Many other approaches that can be expressed as GVFs

e Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)
e Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

e Value transport (Hung et al, 2018)

e Auxilliary tasks (Jaderberg et al, 2016)

e Are GVFs just an interesting insight or can they be useful?
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Policy Evaluation and Policy Improvement

e Consider a Markov Decision Process (S, A, P,r) and a policy 7 : S —
Dist(A)
e Classic dynamic programming relies on two basic operations:

— Policy evaluation: given policy m, compute the value function V7
and/or QT

— Policy improvement: given value function )7, compute an improved
policy: m'(s) = argmax,c4 Q7 (s,a’)
e Policy improvement guarantee:

Q7 (s,a) > Q7(s,a), Vs € S,Ya € A

e Dynamic programming: interleave these steps (executed exactly)
e Reinforcement learning: carry out these steps approximately
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Visualizing Policy Evaluation and Policy Improvement

e Generalize this process to multiple reward functions (ie tasks) r € R and
multiple policies m € 11
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Generalized Policy Updates

e Generalized policy evaluation (GPE): compute the value of a policy 7 on
a set of reward functions R

e Generalized policy improvement (GPI). given a set of policies II and a
reward function r, compute a new policy such that:

Q:l(s, a) > supQr(s,a), Vs € SVa € A

mell

e |f we have only one r and one 7, we recover usual policy evaluation and
policy improvement
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Visualizing Generalized Policy Updates

72
jr = -~
o N
GPE /’ ’// | I \\ ( \\
s I N
7 / I | \\
7 / o \
’ ’
R y Lo \ N
[ :
/ // o \\ \\ R
/ 1 N
T \
. y . ! Vrr31 \
N V7r1 I o | V‘Il’z c \
= Yr1 | = ;, T2 '
. V'sz B V™ YWQ
‘,—(\]] ‘]-(\]] ‘,—(\l]
task rq task ro task 73

COMP579 Lecture 20, 2024



Fast Generalized Policy Evaluation

e If we had a nice map from r to Q)7, GPE could be efficient
e Consider the class of reward functions that are linear in some feature

space ¢(s,a):

rw(s,a) = w' ¢(s,a) and Ry =A{rwlw € R}
Note that ¢ can be learned and non-linear
o Successor features: Y™ (s,a) = Ex[> " v'o(st, at)|so = s, a0 = a]

e Then the value function for a specified reward function can be easily
computed as a function of the successor features:

Qu(s,a) = w9 (s, a)

e Successor features can be pre-computed for ™ once and re-used thereafter
(a form of model!)
e Connections to hippocampus representations
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Successor states and successor features are GVFs

e Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states (Dayan, 1992)

e Successor states give the expected occupancy of future states

o If states are defined by a feature vector ¢(s), successor features give the
expected, discounted sum of future feature vectors from a state.

e In GVF terms, the cumulant is ¢ = ¢, and there is a fixed policy and
discount

e Interesting property highlighted in Barreto et al:

v?T,WTC,"y (S) — WTUW,CN (8)

which leads to one-shot computation of new GVFs

COMP579 Lecture 20, 2024 10



Fast Generalized Policy Improvement

e Compute the improved policy as:

/ _ T
m(s) = arg max maxQy(s, a)

e Note that #’ could choose actions that are not chosen by any of the w

e The process takes only one iteration, after which no further change to
the policy " would happen

e |n contrast with iterative policy improvement...
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lllustration

e The three policies correspond to three weight vectors: like red (w; =

[1,0]%), like blue (wq = [0,1]7) and like red not blue (w3 = [1, —1]%)
e Note that w can be viewed as a preference function over features!

e We can pre-train the policies that optimize for each preference, and train

their successor features as well

e Then just do GPE/GPI!
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lllustration: Results
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e Training the successor features for wy, wy over 5 x 10° samples then
GPE/GPI for wj

e GPE/GPI with successor features achieves 75x improvement in sample
size compared to Q-learning

e Obtaining w, ¢ by learning almost as good as knowing these in advance
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Synthesizing new behavior: Moving Target Arena
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General way to synthesize quickly new behavior for combinations of reward functions!
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