Multi-arm Bandits

Sutton and Barto, Chapter 2

The simplest
reinforcement learning
problem

Recall: Sequential Decision Making

e At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

e Goal of the agent is to maximize long-term return

@
N

Lt
/5

’\ CM;UZ aéséx"mt

Simple case: One step!

No x, take an action, observe a reward immediately

So, a degenerate tree (not truly sequential)

This is what we call a simple bandit problem

No credit assignment, only exploration / exploitation

Later: contextual bandits (there’s x, feedback still immediate)

Lots of applications in ad placement, more recently in large
language models

What is a bandit!?

The simplest kind of structure: every node is a copy of every
other node, and they are not connected!

Which means there are no delayed action effects, simplifying
credit assignment!

Therefore, the main problem in bandits is exploration
Vanilla multi-arm bandits: nodes do not have any observation

Contextual bandits have observations (more on that later)

Let’s play a bandit!
Imagine you have two actions
You play action | and get a reward of 0
You play action 2 and get a reward of |
Which action should you prefer?

Which action should you try next?

Let’s play a bandit!
Imagine you have two actions
You played action | three times and got rewards of O, [, -1
You played action 2 three times and got a rewards of |, 10,-10
Which action should you prefer?

Which action should you try next?

Let’s play a bandit!

Imagine you have two actions

You played action | for 300 times and got rewards of 0 (200
times), | (50 times), -1 (50 times)

You played action 2 for 300 times and got a rewards of | (200
times), 10 (50 times), -10 (50 times)

Which action should you prefer?

Which action should you try next?

Let’s play a bandit!

Imagine you have two actions

You played action | for 3000 times and got rewards of 0 (300
times), | (2000 times), -1 (600 times), +10 (100 times)

You played action 2 for 3000 times and got a rewards of |
(2000 times), 10 (1000 times),-10 (1000 times)

Which action should you prefer?

Which action should you try next?

Main Principles
Optimize Expected Value
Other criteria are possible, eg conditional value at risk (CVaR)
Need to balance exploration (trying all actions) vs exploitation

Reduce uncertainty in the mean of each action

You are the algorithm! (banditl)

* Action | — Reward is always 8

 value of action | is q.(1) =
e Action 2 — 88% chance of 0, 2% chance of 100!
 value of action 2 is q+(2) = .88 x 0+ .12 x 100 =

* Action 3 — Randomly between -10 and 35, equiprobable

| 3) —
-10 0 q*l(3> 35 q*()

* Action 4 — a third 0, a third 20, and a third from {8,9,..., |8}

q«(4) =

The k-armed Bandit Problem

* On each of an infinite sequence of time steps,t=1,2, 3, ...,
you choose an action A; from k possibilities, and receive a real-
valued reward R;

* The reward depends only on the action taken;
it is identically, independently distributed (i.i.d.):

g«(a) =E|Ri|As = a], Vae{l,... k} true values
* These true values are unknown. The distribution is unknown
* Nevertheless, you must maximize your total reward

* You must both try actions to learn their values (explore),
and prefer those that appear best (exploit)

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Q+ (a) X (x (a), Ya action-value estimates

* Define the greedy action at time t as

A} = argmax Q¢ (a)

« If Ay = A7 then you are exploiting
If A, # A then you are exploring

* You can’t do both, but you need to do both

* You can never stop exploring, but maybe you should explore
less with time. Or maybe not.

Action-Value Methods

* Methods that learn action-value estimates and nothing else

* For example, estimate action values as sample averages:

sum of rewards when a taken prior to ¢t Zf;% Ri-14.—4

Qt(a) =

number of times a taken prior to ¢ Zf;% 14,4

* The sample-average estimates converge to the true values
If the action is taken an infinite number of times

lim Qi(a) = g«(a)

Ni(a)—o0

The number of times action a
has been taken by time ¢

e-Greedy Action Selection

* In greedy action selection, you always exploit

* In g-greedy, you are usually greedy, but with probability € you

instead pick an action at random (possibly the greedy action
again)

* This is perhaps the simplest way to balance exploration and
exploitation

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) <0
N(a) <0

Repeat forever:
A . | argmax, Q(a) with probability 1 —e (breaking ties randomly)
a random action with probability ¢
R + bandit(A)
N(A)+ N(A)+1
Q(A) + Q(A) + xzy [R — Q(A)]

One Bandit Task from

The 10-armed Testbed

4

3 Ry ~N(gs(a), 1)
Q*(g)
2 q:(5)
1 :+(9)
Q*(4)
Reward , _C-«Wp | I N B N B

distribution 4:(7) ¢-(10)

1 q:+(2) a:(8)
Q*(6)

2 Run for 1000 steps
3 Repeat the whole

thing 2000 times
with different bandit
-4 tasks

I I é I I I I
1 2 3 4 5 7 8 9 10

Action

¢-Greedy Methods on the 10-Armed Testbed

1.5 _
e=0.
VA A
=001
1 L W hMM‘ﬁﬂ
€ =0 (greedy)
Average
reward

0.5 4

0 I I I I

1 250 500 750 1000
Steps

100% _,

80% | oo
% 60% |

Optimal
action 40%

€ = () (greedy)

20%

0%

| | | |
1 250 500 750 1000
Steps

Averaging — learning rule

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n-1 rewards:

. Ri+Re+--+ Ry
B n—1

@n

How can we do this incrementally (without storing all the rewards)?

Could store a running sum and count (and divide), or equivalently:

Quir = Qn+ R0~ Q)

This is a standard form for learning/update rules:

NewkEstimate < OldEstimate + StepSize [Target — OldEstimate

Derivation of incremental update

;R1‘|‘R2‘|‘""|‘Rn—1

@n m—
oo = ISR
n+1 — n.:1)
1 n—1
- Rn Rz

Averaging — learning rule

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

. Ri+Re+--+ Ry
B n—1

@n

How can we do this incrementally (without storing all the rewards)?

Could store a running sum and count (and divide), or equivalently:

Quir = Qn+ R0~ Q)

This is a standard form for learning/update rules:

NewkEstimate < OldEstimate + StepSize [Target — OldEstimate

Tracking a Non-stationary Problem

Suppose the true action values change slowly over time

* then we say that the problem is non-stationary

In this case, sample averages are not a good idea (Why?)

Better is an “exponential, recency-weighted average”:

Qn+1 = Qn + [Rn — Qn]

=(1—a)"Q1+ Za(l —a)"'R;,

i=1
where « is a constant step-size parameter, a € (0, 1]

* There is bias due to (), that becomes smaller over time

Standard stochastic approximation
convergence conditions

* To assure convergence with probability |:
Z ap(a) = oo and Z o (a) < 0o
n=1 n=1

* eg., Ay =
if a,=n"?, pe(0,1)

then convergence is
at the optimal rate:

O(1/v/n)

* nhot o, =

%JPA S|

Optimistic Initial Values

* All methods so far depend on Qi (a), i.e., they are biased.
So far we have used Qi(a) =0

» Suppose we initialize the action values optimistically (Q1(a) = 5),
e.g.,on the |0-armed testbed (with o =0.1)

100% -
optimistic, greedy
80% - Q,=5,€=0
% 60% realistic, e-greedy
Optimal 0,=0,€=0.1

action 40% -

20%

0% — T T T T 1
1 200 400 600 800 1000

Upper Confidence Bound (UCB) action selection

* A clever way of reducing exploration over time
* Estimate an upper bound on the true action values

* Select the action with the largest (estimated) upper bound

N logt
Ay = argznax [Qt(a) +c N, (a)]

15} UCB C = 2) \))
| w-‘V»MM'M‘JM’WM.ﬁrWr”"r'nl“sd*fw\fﬁl}rwn’ﬂ‘f‘*“‘“""*’*f‘“\“’wr” W ket e
it

At e-greedy £ =0.1

H

Average | |y
reward

05+

1 250 500 750 1000

Steps

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Note that this allows us to work with unnormalized preferences and turn
them into probabilities!

Same idea as using potentials in graphical models

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

Pridi=a} = z’g_l CHi (D) m(@)

Ht_|_1(At) = Ht(At) —|— Q{(Rt — Rt) (]. — Wt(At))

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

. el
Pridi=a} = SOy eHe(d) = m(a)

Hyi1(a) = Hi(a) + a(Ry — Ry) (1a=a, — m(a)), Va,

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

Pr{d—a} = "
I‘{ t_a/} T 2]521 th(b)
Hiy1(a)
1 d
Ry = - Z R;
1=1
%
Optimal
action

= Hi(a) + a(Rt — Rt) (Lo=a, —
100% [
80%
60%
40%
20% |

0% L,

Wt(a)

me(a)), Va,

]

o= 01 - g
Wline
a =0.

i IR -

/ a=01__

f_,w*”"* without baseline
————————————§=0.

4

e A A b b

R

500 750

Steps

250

1000

Derivation of gradient-bandit algorithm

In exact gradient ascent:

OF [Ri]

Ht-l—l(a) = Ht(a) + 8Ht(a) y (1)

where:

E[R:] = Z m¢(b)q«(b),
b

OE[R:] O
OH:(a) OH:(a)

where X; does not depend on b, because) _, gzzgsg = 0.

OE[R:] 0 m(b)
(a) ~ 20)aHt(a)

O
= L r(b)a-(b)aHtE i/wt()

=K ((t) - Xt) 867;5(/4)) /Wt(At)]
— B[(R R) T)]

where here we have chosen X; = R; and substituted R; for g.(A;),
which is permitted because E[R;:|At] = g.(A¢).

For now assume: g:,igsg = 7¢(b)(1a=p — me(a)). Then:
=E|[(R: — Rt)ﬂ't(At)(la:At — m¢(a)) /me(Ar)]
=E[(R: — Re) (1aza, — me(a))] -

Hep1(a) = He(a) + (Re — Re) (1a—p, — me(a)), (from (1), QED)

Thus it remains only to show that

0 m(b)
OH:(a)

= 7¢(b) (]-a:b — ﬂt(a)).

Recall the standard quotient rule for derivatives:

%, [f(x)] _ Adg(x) — f(x) 5
Ox | g(x) |

Using this, we can write...

8f(><) ag(x)
Quotient Rule: 88 [f(x)] _ g(x) — f(X)
X

g(x) g(x)?
aﬂ't(b))
9H:(a) ~ oHe(a) "t P
9 oHe(b)
8Ht(a) Sk eti(e)
HeHt(b) c (b) O eHt(c)
8Ht(a) Zc 1 th() — e’ (5) Z Ht(a)

- 5 (Q.R.)
(Zlc(:l th(C))

B la:ber(a) Zlc(:l oHi(c) _ gHi(b) gHe(a) o -

— 9er _
(Zlc(:l th(C))2

He (b) eHe(b) gHe(2)

la:be

Sk eth(a) (Zlé:l th(c))2

= 1,_pm(b) — me(b)me(a)
= 7¢(b) (La=p — m(a)). (Q.E.D.)

Softmax (Boltzmann) Exploration

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Consider H/(a) = Q(a)/T
This is Boltzmann or softmax exploration!
If the temperature T is very large (towards infinity) - same as uniform

If temperature T goes to 0, same as greedy

Summary Comparison of Bandit Algorithms

' UCB greedy with
optimistic
initialization

o =0.1

1.4}

Average ;|

e-greedy _— |
reward .\
: gradient\
over first ol bandit
1000 steps
1.1+
1-

1/128 1/64 1/32 1/16 1/

e/ a/c/ Qo

