Hierarchical Reinforcement Learning

With thanks to Rich Sutton, Satinder Singh, Gheorghe Comanici, Anna Harutyunyan, Andre Barreto, David
Silver, Pierre-Luc Bacon, Jean Harb, Shibl Mourad, Khimya Khetarpal, Zafarali Ahmed, David Abel, Sasha
Vezhnevets, Shaobo Hou, Philippe Hamel, Eser Aygun, Diana Borsa, Justin Novosad, Will Dabney, Nicholas

Heess, Remi Munos

COMP579 Lecture 18, 2024



Knowledge in AlphaGo
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e Policy: what to do (probability of action given current “state”) - ie
procedural knowledge
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e Value function: estimation of expected long-term return - ie predictive
knowledge
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From Reinforcement Learning to Al

e Growing knowledge and abilities in an environment
e Learning efficiently from one stream of data
e Reasoning at multiple levels of abstraction

e Adapting quickly to new situations
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Building Knowledge with Reinforcement Learning

e Focusing on two types of knowledge:

— Procedural knowledge: skills, goal-driven behavior
— Predictive, empirical knowledge: predicting effects of actions

e Knowledge must be:

— Expressive: able to represent many things, including abstractions

(objects, places, high-level strategies...)
— Learnable: from data, ideally without supervision (for scalability)
— Composable: suitable for fast planning by assembling existing pieces
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Abstraction and generalization

e An abstract representation ignores low-level details of the problem, or
modifies the problem representation altogether

Eg. addresses vs exact coordinates

Eg. representing graphs through vertex position and edges vs by
adjacency matrix

e Generalization is the ability to take knowledge acquired in some
circumstances and applying it in different circumstances

Eg. Being good at some games helps us learn other games faster

e These two concepts are related but not identical: an abstract
representation may helps us to generalize

e Generalization is often achieved in AlI/ML by using function
approximation (eg deep nets)

e In RL, we have an extra important dimension: time/action - can we build
abstraction /generalization here too?
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What is temporal abstraction?

e Consider an activity such as cooking dinner

— High-level steps: choose a recipe, make a grocery list, get groceries,

cook,...
— Medium-level steps: get a pot, put ingredients in the pot, stir until

smooth, check the recipe ...
— Low-level steps: wrist and arm movement while driving the car,

stirring, ...

e All have to be seamlessly integrated!
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Temporal abstraction in Al

e A cornerstone of Al planning since the 1970’s:

— Fikes et al. (1972), Newell (1972, Kuipers (1979), Korf (1985), Laird
(1986), Iba (1989), Drescher (1991) etc.

e It has been shown to :

— Generate shorter plans

— Reduce the complexity of choosing actions

— Provide robustness against model misspecification
— Allows taking shortcuts in the environment

e In robotics and hybrid systems, the use of controllers provides similar
benefits, and also improves interpretability and allows specifying prior
knowledge
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Recall: RL cartoon
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Goals of temporal abstraction:

e Reduce tree width
e Reduce tree depth
e Generalize between different branches of the tree
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Options intuition: “package” a subtree
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Options intuition: Faster updates
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Options intuition: Enable cheaper/faster planning
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Procedural, Temporally Abstract Knowledge: Options

e An option w consists of 3 components

— An initiation set I,, C S (aka precondition)
— A policy m,, : § x A — [0, 1]

Tw(a|s) is the probability of taking a in s when following option w
— A termination condition 8, : S — [0, 1]:

B, (s) is the probability of terminating the option w upon entering s

e Eg., robot navigation: if there is no obstacle in front (1), go forward
(m,,) until you get too close to another object (5,)

e Inspired from macro-actions / behaviors in robotics / hybrid planning
and control

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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Options as Behavioral Programs

e (Call-and-return execution

— When called, option w is pushed onto the execution stack

— During the option execution, the program looks at certain variables
(aka state) and executes an instruction (aka action) until a termination
condition is reached

— The option can keep track of additional /ocal variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)

— Options can invoke other options

e Interruption

— At each step, one can check if a better alternative has become available
— If so, the option currently executing is interrupted (special form of
concurrency)
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Option models

e Option model has two parts:

1. Expected reward r,(s): the expected return during w's execution from
state s

2. Transition model P, (s'|s): specifies where the agent will end up after
the option/program execution and when termination will happen

e Models are predictions about the future, conditioned on the option being
executed

e Programming languages: preconditions (initiation set) and postconditions
e Models of options represent (probabilistic) post-conditions

e "Jumpy” planning is better for temporal credit assignment, accurate
value estimation
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What type of planning?

e Models that are compositional can be used to plan through value iteration

e Sequencing

Fojws, — Tuy + Pw1r02

Pwle — Pwlpwg

Cf. Sutton et al, 1999, Sorg & Singh, 2011
e Stochastic choice: can take expectations of reward and transition models
e These are sufficient conditions to allow Bellman equations to hold

e Silver & Ciosek (2012): re-write model in one matrix, compose models
to construct programs

e Model-predictive control (receding horizon planning) is also possible
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Option Models Provide Semantics

e Models of actions consist of immediate reward and transition probability

to next state
e Models of options consist of reward until termination and (discounted)

transition to termination state

e Models are predictions about the future
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lllustration: Navigation

with cell-to-cell
primitive actions

with room-to-room
options

lteration #0 Iteration #1 lteration #2
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lllustration: Options and Primitives

Initial values

lteration #3
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Benefits of options (cf Botvinick & Weinstein, 2014)
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Decision-Making with Options
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Learning and planning algorithms are the same at all levels of abstraction!

COMP579 Lecture 18, 2024 19



Option-value function

e The option-value function of a policy over options 7, is defined as:

QWQ(va) — Em [Rt—l—l + Wﬁw(stﬂ)qm(stﬂawtﬂ))
+ (1 = Bu(St41))Grg (St11,w)| St = s

e One can use eg Q-learning, actor-critic,... to learn this!

e Note that if we learn/plan in an SMDP, the contraction factor will be
lower than -y

e So fixing a set of options may allow solving the problem faster, but
maybe in a slightly sub-optimal way

e Intuitively, models are more self-contained than option-value functions
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Advantages

e Easy to learn using temporal-difference-style methods, from a single
stream of experience

e Planning with option models is done just like planning with primitives -
no explicit hierarchy

e Result of planning with a set of options {2 is an option-value function,
e.g. Vo, Qq

e But we can also use the underlying MDP structure to help in learning
the options
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How Should Options Be Created?

e Options can be given by a system designer (eg robotics)

e If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

— Eg. acquiring certain objects in a game
— Eg. Intrinsic motivation

o What is a good set of subgoals / options?
e This is a representation discovery problem
e Studied a lot over the last 15 years

e Bottleneck states and change point detection currently the most
successful methods
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Bottleneck States

"} A
L4 N

e Perhaps the most explored idea in options construction
e A bottleneck allows “circulating” between many different states
e Lots of different approaches!

— Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
— Graph partitioning / state graph analysis (Simsek et al, 2004, Menache

et al, 2004, Bacon & Precup, 2013)
— Information-theoretic ideas (Peters et al., 2010)

e People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)

e Main drawback: expensive both in terms of sample size and computation

COMP579 Lecture 18, 2024 23



1.0

Random Subgoals Also Help

PFV]

0.8 F
0.6 |-
0.4F

0.2F
oo R

0.0

COMP579 Lecture 18, 2024

0.2

0.4 0.6 0.8 1.0

0.8
0.6
0.4
0.2
0.0

0.0 0.2 0.4

LAV

% &> :

C‘D“'?G@@%

Cf. Mann, Mannor & Precup, 2015

0.8 1.0

24



Inventory management application

e Manage a warehouse that can stock 8 different commodities
e At most 500 items can be stored at any given time
e Demand is stochastic and depends on time of year

e Negative rewards are given for unfulfilled orders and for the cost of
ordered items

e Hand-crafted options: order nothing until some threshold is crossed

e Primitive actions: specify amount of order for each item
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Inventory management results

e Comparing a random policy and a 1-step greedy choice with using just
primitives (PFVI) using primitives and hand-crafted options (OFVI),

using “landmarks” (LOFVI) and using landmarks and only computing
values for landmarks states (LAVI)
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e Randomly generated landmarks perform much better
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Performance and time evaluation

e Performance of initial and final policy (left) and running time (right)
averaged offer 20 independent runs
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e Computing values only at landmark states yields a good policy almost
immediately

e Handcrafted options are better than primitives in the beginning but
slightly worse in the long run but randomly generated landmarks are
much better
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Option-Critic: Learn Options that Optimize Return

e Explicitly state an optimization objective and then solve it to find a set
of options

e Handle both discrete and continuous set of state and actions

e Learning options should be continual (avoid combinatorially-flavored
computations)

e Options should provide improvement within one task (or at least not
cause slow-down...)
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Results: Transfer in Rooms Domain
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Quantitative and qualitative results in Atari games
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Preserving Procedural Knowledge over Time

e Successful simultaneous learning of terminations and option policies

e But, as expected, options shrink over time unless additional regularization
Is imposed

Cf. time-regularized options, Mann et al, (2014)

e [ntuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

e Diverse options are useful for exploration in continual learning setting
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Bounded Rationality as Regularization

e Problem: optimizing return leads to option collapse (primitive actions
are sufficient for optimal behaviour)

e Bounded rationality: reasoning about action choices is expensive (energy
consumption and missed-opportunity cost)

Eg Russell, 1995, Lieder & Griffiths, 2018

e |dea: switching options incurs an additional cost

Time

Base MDP + Options

Deliberation Costs O O“O\.\O . °

e Can be shown equivalent to requiring that advantage exceeds a threshold
before switching
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lllustration: Amidar
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(a) Without a deliberation cost, options ter- (b) Options are used for extended periods (c) Termination is sparse when using the
minate instantly and are used in any scenario  and in specific scenarios through a trajectory, deliberation cost. The agent terminates op-

without specialization. when using a deliberation cost. tions at intersections requiring high level de-
cisions.

e Deliberation costs prevent options from becoming too short

e [erminations are intuitive
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Should All Option Components Optimize the Same
Thing?

e Deliberation cost can be viewed as associated specifically with termination
e Rewards could be optimized mainly by the internal policy of the option

e Can we generalize this idea to other optimization criteria?
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Termination-Ciritic

e Optimize the termination condition independently of the policy inside
the option

e Option termination should focus on predictability ie finding “funnelling
states”

e Interesting side effect: if each option ended at a funelling state,
expectation and distribution model would be almost identical and the
option would be almost deterministic

e Implementation: minimize the entropy of the option transition model P,

cf. Harutyunyan et al, AISTATS'2019
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lllustration: Rooms environment
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Predictive knowledge: Value Function

e Given a policy 7, a discount factor v and a reward function r, the value
function of the policy is given by:

ve(s) = E[Y r(Sk, Ax)y _t|St = 8, Ap.0o ~ 7]

||
e 10

T(Sk,Ak H ’}/|St—8 AtooN ]

1=t+1

7
Il

e 1 is the signal of interest for the prediction

e - defines the time scale over which we want to make the prediction (in
a very crude way)

e Optimal value function: given a discount factor v and a reward function
r, compute v+ and 7*, the optimal policy wrt 7, r
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Focusing on value function

e Definition allows us to leverage great tools: bootstrapping (as in dynamic
programming) and sampling

e We have good ideas for how to learn value functions from data using
temporal-difference methods, off-policy learning...

e Usual objection: this is restricted to one reward function and usually a
fixed time scale (discount)

e An agent may need to make predictions about many different things and
at many different time scales
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There are many things to learn! (Adam White's thesis)
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Sensory stream of Critterbot robot about different sensors for different policies
Can we learn about all these signals in parallel from one stream of data?

COMP579 Lecture 18, 2024 39



Temporally Abstract Predictions: General Value
Functions (GVFs)

e Given a cumulant function ¢, state-dependent continuation function ~
and policy m, the General Value Function v, - . is defined as:

00 k
/UTr,C,’V(S) =E ZC(SkaAka Sk—|—1> H ’Y(SZ)|S75 — S7At:oo ~ T
k=t 1=t+1

e Cumulant ¢ can output a vector (even a matrix)

e Continuation function vy maps states to [0,1] (further generalizations are
possible)

e Cf. Horde architecture (Sutton et al, 2011); Adam White's thesis;
inspiration from Pandemonium architecture

*

e Special case: policy is optimal wrt ¢,v, v,
approximation (UVFA) (Schaul et al, 2015)

- Universal Value Function
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e No single task is required, just a multitude of cumulants and time scales!
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GVFs as building blocks of knowledge

e Note that one can take the output of a GVF and make it an input to
another GVF

e Or, the output of a GVF could become part of the “state” for another
GVF
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Successor states and successor features are GVFs

e Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states (Dayan, 1992)

e Successor states give the expected occupancy of future states

o If states are defined by a feature vector ¢(s), successor features give the
expected, discounted sum of future feature vectors from a state.

e In GVF terms, the cumulant is ¢ = ¢, and there is a fixed policy and
discount

e Interesting property highlighted in Barreto et al:

v?T,WTC,"y (S) — WTUW,CN (8)

which leads to one-shot computation of new GVFs
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Option models are GVFs

e The reward model for an option w is defined as:
rw(s) = Eu[r(Se, Ar) + (1 = Bu(St41))7w(Se41)[Se = 3]

e This means the option reward model is a GVF:

— policy is
— cumulant is the environment reward r
— continuation function is v(1 — f3,,)

e Option transition model can be similarly written as a GVF
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Many other approaches that can be expressed as GVFs

e Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)
e Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

e Value transport (Hung et al, 2018)

e Auxilliary tasks (Jaderberg et al, 2016)

e Are GVFs just an interesting insight or can they be useful?
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GVFs for synthesizing new behaviors
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Option-keyboard - Barreto et al, 2019, based on ideas of Rich Sutton
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Policy Evaluation and Policy Improvement

e Consider a Markov Decision Process (S, A, P,r) and a policy 7 : S —

Dist(A)

e Classic dynamic programming relies on two basic operations:

— Policy evaluation: given policy m, compute the value function V7

and/or QT

— Policy improvement: given value function )7, compute an improved

policy: m'(s) = argmax,c4 Q7 (s,a’)
e Policy improvement guarantee:

Q7 (s,a) > Q7(s,a), Vs € S,Ya € A

e Dynamic programming: interleave these steps (executed exactly)
e Reinforcement learning: carry out these steps approximately
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Visualizing Policy Evaluation and Policy Improvement

e Generalize this process to multiple reward functions (ie tasks) r € R and
multiple policies m € 11
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Generalized Policy Updates

e Generalized policy evaluation (GPE): compute the value of a policy 7 on
a set of reward functions R

e Generalized policy improvement (GPI). given a set of policies II and a
reward function r, compute a new policy such that:

Q:l(s, a) > supQr(s,a), Vs € SVa € A

mell

e |f we have only one r and one 7, we recover usual policy evaluation and
policy improvement
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Visualizing Generalized Policy Updates
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Fast Generalized Policy Evaluation

e If we had a nice map from r to Q)7, GPE could be efficient
e Consider the class of reward functions that are linear in some feature

space ¢(s,a):
rw(s,a) = w' ¢(s,a) and Ry =A{rwlw € R}

Note that ¢ can be learned and non-linear

o Successor features: Y™ (s,a) = Ex[> " v'o(st, at)|so = s, a0 = a]

e Then the value function for a specified reward function can be easily
computed as a function of the successor features:

Qu(s,a) = w9 (s, a)

e Successor features can be pre-computed for ™ once and re-used thereafter
(a form of model!)
e Connections to hippocampus representations
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Fast Generalized Policy Improvement

e Compute the improved policy as:

/ _ T
m(s) = arg max maxQy(s, a)

e Note that #’ could choose actions that are not chosen by any of the w

e The process takes only one iteration, after which no further change to

the policy " would happen

e |n contrast with iterative policy improvement...
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lllustration

e The three policies correspond to three weight vectors: like red (w; =

[1,0]%), like blue (wq = [0,1]7) and like red not blue (w3 = [1, —1]%)
e Note that w can be viewed as a preference function over features!

e We can pre-train the policies that optimize for each preference, and train

their successor features as well

e Then just do GPE/GPI!
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lllustration: Results

>
99)

5+ Q-learning after 106 sample transitions 5+ Q-learning after 10° sample transitions
7 7
2 o
o m o
=4 =4
Y |- — Q - = .
ey pr = T O T T LY st T S e
) : p o) /ﬁn—n— . —
3 / 3 >
£ , £ ST
7 / 23 -
/ S
2 / o2 /‘ o
(@)] / (@) R4
© / S i’ 5 —— GPE+GPI with true w
) / . GL_, + ," =s== GPE+GPI with regressed w
3: 1 ,/ == Q-learning . 3: 11 4» = = GPE+GPI with regressed w and learned ¢ of dimension 2
e — GPE+GPI with true w o »=+= GPE+GPI with regressed w and learned ¢ of dimension 3
_=7 =++= GPE+GPI with regressed w ==+ GPE+GPI with regressed w and learned ¢ of dimension 4
—_ . T T T - - 0 . . . . . . .
%.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 200 400 600 800 1000 1200 1400

le5

Number of sample transitions (x10°) Number of sample transitions

e Training the successor features for wy, wy over 5 x 10° samples then
GPE/GPI for wj

e GPE/GPI with successor features achieves 75x improvement in sample
size compared to Q-learning

e Obtaining w, ¢ by learning almost as good as knowing these in advance

COMP579 Lecture 18, 2024 54



Option-Keyboard for Moving Target Arena
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General way to synthesize quickly new behavior for combinations of reward functions!
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Generalizing Initiation Sets: Affordances
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Why is temporal abstraction useful for complex RL tasks

e Advantages to planning

— Need to generate shorter plans

— Improves robustness to model errors

— Might need to look at fewer states, since the abstract actions have
pre-defined termination conditions

— Discretize the action space in continuous problems

e Advantages to learning

— Improves exploration (can travel in larger leaps)
— Gives a natural way of using a single stream of data to learn many
things (off-policy learning)
e Advantages to interpretability:
— Focusing attention: Sub-plans ignore a lot of information

— Improves readability of both models and resulting plans
— Reduces the problem size
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Towards General Al Agents Built with Reinforcement
Learning

e Reinforcement learning suggests very powerful tools for knowledge
representation

— Options are a way to encode procedural knowledge

— General Value Functions are a way to encode predictive knowledge

— Both can be combined as building blocks to quickly solve new problems
e Open questions:

— Can these ideas lead to build integrated lifelong learning Al?
— How should we evaluate empirically lifelong learning Al?
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