RL: Review

RL Setting:

Environment.

RL Setting:

state reward action
S| R 25 A
Rt+1 (
4 L]
< Environment J<
_

Agent and environment interact at discrete time steps: 1 =0,1,2,3,...

Agent observes state at step t: S, €8
produces action at step : A, € A(S,)
gets resulting reward: R, E R C R
and resulting next state: S,,, € §*

Property of the Environment:

Property of the Environment:

Environment is Markov Decision Process (Mf®

PSi1s R [Ap S Ar_ 15 S5 -5 Sp)

Property of the Environment:

Environment is Markov Decision Process (Mf®

p(St+1» R |At’ Sp A 1> K> Ko %0)

— p(St+l’ R |Ar9 S;)

Agent's objective:

Agent's objective:

Maximize:
Gt = Rt+1 + }/ Rt+2 + y 2Iet+3 + L = E y th+k+1 ’
k=0

where v,0 <y <1, 1s the discount rate.

Agent's objective:

Maximize:
Gt = Rt+1 + }/ Rt+2 + y 2Iet+3 + L = E y th+k+1 ’
k=0

where v,0 <y <1, 1s the discount rate.

Agent does 2 things:

Agent does 2 things:
il g

[.earn how to choose
better actions:

Different Parts of an Agent:

e Policy: ~. 7 At — 71'(St9 9)

Value Functions :

World Model:

EEEEEEE
wwwwwww

Policy:

F———

(Replay Buffer of past experience)

A, = n(S,, 0)

Grid of RL:

EEEEEEEEEEE
RRRRRRR

Learn

7(S,, 0)

Learn

Vi(s) Qul(s,a)

Learn

Sts Ry = M(S,, A, 0)

Use (S, 0)
to choose
action.

Use
Vi(s) Qi(s,a)
to choose

action.

Use

Siv1s Ry = M(S,, A, 0

to choose
action.

Grid of RL:

EEEEEEEEEEEE
RRRRRRR

Learn

Vi(s) Qu(5,a) | SirRiyy =M(S, A, 0)

Use Use

Vils) Quls,a)| O THOAO
to choose to choose
action. action.

Grid of RL:

EEEEEEEEEEEE

RRRRRRR

Learn

7(S,, 0)

to choose
action.

Use (S, 0)

Vi(s)

Q+(s,a)

Sts Ry = M(S,, A, 0)

Use

Sivt> Ry = M(S;, A, 0

to choose
action.

Grid of RL:

EEEEEEEEEEEE

RRRRRRR

Learn

7(S,, 0)

Learn

Vi(s) Qu(s,a)

Sts Ry = M(S,, A, 0)

Use (S, 0)
to choose
action.

Use
Vi(s) Qi(s,a)
to choose

action.

Grid of RL:

EEEEEEEEEEEE
RRRRRRR

to choose
action.

Learn

Vi(s) Qu(s,a)

Sts Ry = M(S,, A, 0)

Use

Vi(s) Qi(s,a)
to choose
action.

Use

Sivt> Ry = M(S;, A, 0

to choose
action.

Grid of RL:

EEEEEEEEEEEE
RRRRRRR

Learn

7(S,, 0)

Use (S, 0)
to choose
action.

Use

Vi(s) Qi(s,a)
to choose
action.

Learn

Sts Ry = M(S,, A, 0)

Use

Sivt> Ry = M(S;, A, 0

to choose
action.

Grid of RL:

EEEEEEEEEEEE

RRRRRRR

Learn Learn

7(S,, 0)

Vi(s) Qu(s,a)

Use

%(S) Qt(sa a’)
to choose to choose

action. action.

Use

St+1’ Rt+1 = M(Sts At, 0

Use (S, 0)
to choose
action.

Grid of RL:

EEEEEEEEEEEE
RRRRRRR

Learn

Vi(s) Qu(5,a) | SirRiyy =M(S, A, 0)

Use Use

Vils) Quls,a)| O THOAO
to choose to choose
action. action.

TWO TYPES OF POLICY 7(S,, 0) :

EEEEEEEEEEEE
REACTION

Y

TWO TYPES OF POLICY 7(S,,0) -

EEEEEEEEEEEE
RRRRRRRR

Stochastic: T (At, St’) is probability.

EEEEEEEEEEEE
ACTI

Act by sampling from the distribution:

Dis.crete A1) = exp(p(A;, S))
ewons A S g, 5)
ontinuous TA|S) = N (u(S), o(S))

A=ulS)+0o(S)e, e~ N0,1)

Deterministic: At = 7Z'(St, 9)

EEEEEEEEEEE
RRRRRR

861154

 Act by applying mto state: At — (Sf’ 0)

Grid of RL:

EEEEEEEEEEEE
RRRRRRR

Learn

Sts Ry = M(S,, A, 0)

Use

Sivt> Ry = M(S;, A, 0

to choose
action.

Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

State - value function for policy 7 :

Vn(S) = Eyr {Gt | St = S} = En {iykRHkH
k=0

Action - value function for policy 7 :

QJ'[(S’a) = En {Gt | St = S’At = CZ} = En {iykRHkH

k=0

S =5,A = a}

@ Use Vi(s) @Q:(s,a) to choose action:

Action - value function for policy 7 :

q. (s,a)=FE_ {Gt | S =5,A = a} {Ey kel

=5,A = a}

@ Use Vi(s) Q:(s,a) to choose action:

Action - value function for policy 7 :

q.(s,a)=FE_ {Gt | S =5,A = a} {E)/ kel

=5,A = a}

Act by taking the action which maximizes the expected return
according to the estimate Q:

A = argmaxaQ(a, S)

Grid of RL:

Learn

Sts Ry = M(S,, A, 0)

Use SwpRi=M(S,A,9) to choose action:

Use SwpRi=M(S,A,9) to choose action:

Use Sq1,Ri1 =M, A.0) 1n conjunction with planning algorithms
(reactive planning):

Examples:

B Sampling future trajectories and taking the best one (as seen in
PlaNet)

B Monte-Carlo Tree Search (as seen in MuZero)

B Cross-Entropy Method (with particles) (as seen in Dreamer
Paper)

Grid of RL:

Learn

Sts Ry = M(S,, A, 0)

RRRRRR

Learning 7Z'(St, 6’) ;

EEEEEEEEEEEE
RRRRRRRR

Learning E(St, (9) ;

Action - value function for policy 7 :

q,.(s,a)=FE_ {Gt | S =5,A = a} =E_ {iykRHkH S =5,A = a}
k=0

EEEEEEEEEEEE
RRRRRRRR

Learning 7Z'(St, 6’) ;

Action - value function for policy 7 :

q,.(s,a)=FE_ {Gt | S =5,A = a} =E_ {iykRHkH | S =5,A = a}
k=0

Op1 = 0+ a Vg,

V,J

RRRRRR

Learning 7Z'(St, 6’) : i
Deterministic and Continuous: At —]Z'(S O

Action - value function for policy 7 :

q.(s,a)=FE_ {Gt | S =5,A = a} =E_ {iykRﬁk” S =5,A = a}
k=0

Jo(m|So = S) = q,(n(S5),5) = Q,(n(S,0),S)

RRRRRR

Learning 77 (St’ (9)
=== Deterministic and Continuous: A = (St /

Action - value function for policy 7 :

S =5,A =a}

q.(s,a)=E, {Gz | 5, =8,4, = a} =k, {ZVkRﬁkn

Jo(m|So = S) = q,(n(S5),5) = Q,(n(S,0),S)

Vol (z|S, = S) = V,0.(x(S,0),S)

_ $ 904 =x(5.0.5)
B oa;

l

V7S, 0)

= V,0, (A =(S,0),8) Vyn(S, 6)

N _ RL Learning Map:

4 N
}:M(St, A,0)

RRRRRR

Learning 7T(Sp 6’) :

Deterministic or Stochastic:

If we can plan with a World-Model M,
and planning gives us a next action A:

RRRRRR

Learning 7Z'(St, 6’) ;

Deterministic or Stochastic:

If we can plan with a World-Model M,
and planning gives us a next action A:
We can can use A as a target for
supervised learning of .

RRRRRR

Learning 7Z'(St, 6’) ;

=== Deterministic or Stochastic:

If we can plan with a World-Model M,
and planning gives us a next action A:
We can can use A as a target for
supervised learning of .

Continuous A: regression problem: MSE loss

Discrete A, stochastic 7. classification problem: Cross-Entropy
loss

EXPERIENCE
“Mnnmmi

RRRRRR

Learning 7T(Sp 6’) :

Stochastic: 7T (At, Stv 0) is probability.

Policy Gradient Theorem:

T
VoJo(n) = Ex[) (v'Gt) Vo logn(A;|S;)]
=0

Learning JZ'(St, (9) ;

Stochastic: 7T (At’ Stv 0) is probability.

Policy Gradient Theorem:

T
VoJo(r) = Ex[) (v'G:) Vo log n(A¢|S:)]
t=0

A
7t(t)

G(t1) G(t2) G(t3) G(t4) G(15)

Learning JZ'(St, (9) ;

Stochastic: 7T (At’ Stv 0) is probability.

Policy Gradient Theorem: <% REINFORCE Estimates G

Vg with Monte-Carlo
1) Vo log m(A;|Sz)]

T
VoJo(m) = Ex[) (v'
t=0

A
7t(t)

G(t1) G(t2) G(t3) G(t4) G(15)

RRRRRR

Learning 7T(Sp 6’) :

Stochastic: 7T (At, Stv 0) is probability.

Policy Gradient Theorem:

T
VoJo(n) = Ex[) (v'Gt) Vo logn(A;|S;)]
=0

RRRRRR

;;ﬁ Learning 7T (Sta ‘9) :

Stochastic: 7T (At’ St’ 0) is probability.

~% REINFORCE Estimates G
with Monte-Carlo

T /
VoJo(m) = E Z y! (qﬂ'(St’ Ap) — sz(St)) Vylog(n)
=0

Policy Gradient Theorem: .~

Advantage

RRRRRR

;;ﬁ Learning 7T (Sta ‘9) :

Stochastic: 7T (At’ St’ 0) is probability.

Policy Gradient Theorem:

T
VoJo(m) = E [Z y! (qﬂ'(St’ Ap) — sz(St)) Velog(ﬂ)]
=0
Advantage

\

Actor-Critic: use V and/or
Q to estimate G or Advantage
, €.9g. TD(A)

Grid of RL:

THE KNEE-JERK
REACTION

h¢

y /\,

Learn

Sts Ry = M(S,, A, 0)

v Learn Vi(s) Qi(s,a):

Action - value function for policy 7 :

qﬂ(s,a)=Eﬂ{Gt|St=s,At=a} {Ey e —S,At=a}

State - value function for policy 7 :

VH(S) = En {Gt | St = S} = En {iykRHkH S, =
k=0

@ Learn Vi(s) Qi(s,a):

4 value functions

state action

______________________ values | values
prediction U dr
control (V) g«

» All theoretical objects, expected values

* Distinct from their estimates: ‘/;5 (S) Qt (S, a)

@ Learn Vi(s) Qi(s,a):

qw(‘S?a):E{Gt’St:stt:aaAt—l—lzooNﬂ-} QT(':SX'-A_>§R

Monte-Carlo Estimate :)
Gt = Rt+1 + y Rt+2 + y 2Rt+3 + L = E y th+k+1‘
k=0

where y,0 <y =<1, is the discount rate.

A Every-Visit MC': average returns for every time s 1s visited
in an episode

A First-visit MC. average returns only for first time s 1s
visited 1n an episode

1 Both converge asymptotically

N _ RL Learning Map:

4 N
}:M(St, A,0)

Monte-Carlo Policy Evaluation

EEEEEEEEEEE

@ Learn Vi(s) Qi(s,a):

qw(‘g?a):E{Gt|St:87At:a7At—|—1:ooN7T} QW:SX‘A%%

Bootstrapping :
e ID: Ggl) = Riy1 +vVi(Se+1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G§2) = Rir1 4+ YRip2 +7°Vi(Sia0)

@ n-step return: G\ = R,y +yRiio + 72+ + 79" 'Ripn + 7" Vi(Siin)

with G =G, ift+n>T

@ Learn Vi(s) Qi(s,a):

qw(87a):E{Gt|St:87At:a7At—|—1:ooN7T} QW:SX‘A%%

(Expected) SARSA (Bellman Eqn) :

Q(St, Ar) +— Q(S, Ay) + :Rt—l—l +YE[Q(St+1, At41) | St+1] — Q(St, At)}
< Q(Sh, At) + « :Rt—|—1 + ’YZW(CL|St+1)Q(St+1, a) — Q(St, At)}

@ Learn Vi(s) Qi(s,a):

g+ (S,a) = max ¢ (s, a) g : S XA — R

Q-Learning (Bellman Optimality Eqn):

Q(St, Ar) = Q(Si, A) + | Reg + ymaxQ(Si1,0) = Q(Sh, Ay)

> o RL Learning Map:

P~
@M(‘St’ At’ 9)

Monte-Carlo Policy Evaluation

EEEEEEEEEEE

@ Learn Vi(s) Q:(s,a) through pro-active planning:

USE IMAGINED EXPERIENCE USING MODEL M:

(Expected) SARSA (Bellman Eqn) :

Q(St, Ar) +— Q(S, Ay) +
< Q(St, At) —+ «

:Rt—i—l +YE[Q(St+1, Ars1) | Ser1] — Q(Sy, At)}

Reci+9> (0l See1)Q(Ser1,0) — Q(Si, A

Q-Learning (Bellman Optimality Eqn):

Q(St, Ar) = Q(St, A1) + | et +ymax Q(St1,a) — Q(St, Ar)|

Monte-Carlo Policy Evaluation

THE KNEE-JERK
REACTION /

(8. 0)

shutterstock.com - 569861154

Grid of RL:

THE KNEEJERK |
REACTION

shutterstock com - 589861154

Learn SwiRiy=M(S,AL0) -

Use transition S, A,R_,S,.; :

Supervised learning

B Target for S, ,R,,, = M(S,A,0)is S,11, Riiq
B Target for inverse model

St R = Minv(St+l’ A, w)
15 5, Ry

N _ RL Learning Map:

4 N
}:M(St, A,0)

EEEEEEEEEEE

THEKNEE-JERK |

REACTION / (

(S,

/
/
/

shutterstock com - 589861154

