RL: Review

RL Setting:

Environment:

Agent:

RL Setting:

Agent and environment interact at discrete time steps: $\boldsymbol{t}=0,1,2,3, \ldots$
Agent observes state at step $t: \quad S_{t} \in \mathcal{S}$ produces action at step $t: A_{t} \in \mathcal{A}\left(S_{t}\right)$ gets resulting reward: $\quad R_{t+1} \in \mathcal{R} \subset \mathbb{R}$ and resulting next state: $S_{t+1} \in \mathcal{S}^{+}$

Property of the Environment:

Property of the Environment:

Environment is Markov Decision Process (MDP)

$$
p\left(S_{t+1}, R_{t+1} \mid A_{t}, S_{t}, A_{t-1}, S_{t-1}, \ldots, S_{0}\right)
$$

Property of the Environment:

Environment is Markov Decision Process (MDP)

$$
\begin{aligned}
& p\left(S_{t+1}, R_{t+1} \mid A_{t}, S_{t}, A_{-1}, X_{1}, \cdot X, \mathbb{X}_{0}\right) \\
& =p\left(S_{t+1}, R_{t+1} \mid A_{t}, S_{t}\right)
\end{aligned}
$$

Agent's objective:

Agent's objective:

Maximize:

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\mathrm{L}=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1},
$$

where $\gamma, 0 \leq \gamma \leq 1$, is the discount rate.

Agent's objective:

Maximize:

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\mathrm{L}=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1},
$$

where $\gamma, 0 \leq \gamma \leq 1$, is the discount rate.

Agent does 2 things:

Agent does 2 things:

Choose actions:

Learn how to choose better actions:

Different Parts of an Agent:

Different Parts of an Agent:

- Value Functions :

- World Model:

$$
S_{t+1}, R_{t+1}=M\left(S_{t}, A_{t}, \theta\right)
$$

- Policy:

THE KNEE-JERK
THE KNEE-JERK
REACTION

$$
A_{t}=\pi\left(S_{t}, \theta\right)
$$

Different Parts of an Agent:

- Value Functions :

- World Model:

$$
S_{t+1}, R_{t+1}=M\left(S_{t}, A_{t}, \theta\right)
$$

- Policy:

$$
A_{t}=\pi\left(S_{t}, \theta\right)
$$

- (Replay Buffer of past experience)

Grid of RL:

Grid of RL:

Grid of RL:

Grid of RL:

Grid of RL:

Grid of RL:

Grid of RL:

Grid of RL:

TWO TYPES OF POLICY $\pi\left(S_{t}, \theta\right)$:
$=$

TWO TYPES OF POLICY $\pi\left(S_{t}, \theta\right)$:

Stochastic:

$\pi\left(A_{t}, S_{t}, \theta\right)$ is probability. $\quad A_{t}=\pi\left(S_{t}, \theta\right)$

Stochastic: $\quad \pi\left(A_{t}, S_{t}, \theta\right)$ is probability.

Act by sampling from the distribution:

Discrete Actions:

$$
\pi\left(A_{i} \mid S\right)=\frac{\exp \left(\phi\left(A_{i}, S\right)\right)}{\sum_{j} \exp \left(\phi\left(A_{j}, S\right)\right)}
$$

Continuous Actions:

$$
\pi(A \mid S)=\mathcal{N}(\mu(S), \sigma(S))
$$

$$
A=\mu(S)+\sigma(S) \epsilon, \quad \epsilon \sim \mathcal{N}(0,1)
$$

Deterministic: $\quad A_{t}=\pi\left(S_{t}, \theta\right)$
$\underset{\substack{\text { THE KNEEJERK } \\ \text { REACTION }}}{\substack{\text {. } \\ \text {. }}}$

Act by applying π to state: $\quad A_{t}=\pi\left(S_{t}, \theta\right)$

Grid of RL:

Value Functions

\square The value of a state is the expected return starting from that state; depends on the agent's policy:

State - value function for policy $\boldsymbol{\pi}$:

$$
v_{\pi}(s)=E_{\pi}\left\{G_{t} \mid S_{t}=s\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right\}
$$

\square The value of an action (in a state) is the expected return starting after taking that action from that state; depends on the agent's policy:

Action - value function for policy $\boldsymbol{\pi}$:

$$
q_{\pi}(s, a)=E_{\pi}\left\{G_{t} \mid S_{t}=s, A_{t}=a\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right\}
$$

Use $V_{t}(s) \quad Q_{t}(s, a)$ to choose action:

Action - value function for policy $\boldsymbol{\pi}$:

$$
q_{\pi}(s, a)=E_{\pi}\left\{G_{t} \mid S_{t}=s, A_{t}=a\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right\}
$$

Use $V_{t}(s) \quad Q_{t}(s, a)$ to choose action:

Action - value function for policy $\boldsymbol{\pi}$:

$$
q_{\pi}(s, a)=E_{\pi}\left\{G_{t} \mid S_{t}=s, A_{t}=a\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right\}
$$

Act by taking the action which maximizes the expected return according to the estimate Q:

$$
A_{t}=\operatorname{argmax}_{a} Q\left(a, S_{t}\right)
$$

Grid of RL:

Use $S_{t+1}, R_{t+1}=M\left(S_{l}, A_{t}, \theta\right)$ to choose action:

Use $S_{t+1}, R_{t+1}=M\left(S_{t}, A_{t}, \theta\right)$ to choose action:

Use $S_{t+1}, R_{t+1}=M\left(S_{t}, A_{t}, \theta\right)$ in conjunction with planning algorithms (reactive planning):

Examples:

- Sampling future trajectories and taking the best one (as seen in PlaNet)
Monte-Carlo Tree Search (as seen in MuZero)
\square Cross-Entropy Method (with particles) (as seen in Dreamer Paper)

Grid of RL:

Learning $\pi\left(S_{t}, \theta\right)$:

Learning $\pi\left(S_{t}, \theta\right)$:

Action - value function for policy $\boldsymbol{\pi}$:

$$
q_{\pi}(s, a)=E_{\pi}\left\{G_{t} \mid S_{t}=s, A_{t}=a\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right\}
$$

Learning $\pi\left(S_{t}, \theta\right)$:

Action - value function for policy $\boldsymbol{\pi}$:

$$
q_{\pi}(s, a)=E_{\pi}\left\{G_{t} \mid S_{t}=s, A_{t}=a\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right\}
$$

$\theta_{t+1}=\theta_{t}+\alpha \nabla_{\theta} q_{\pi}$

$\nabla_{\theta} J$

Learning $\pi\left(S_{t}, \theta\right)$:

Deterministic and Continuous: $A_{t}=\pi\left(S_{t}, \theta\right.$

Action - value function for policy $\boldsymbol{\pi}$:

$$
q_{\pi}(s, a)=E_{\pi}\left\{G_{t} \mid S_{t}=s, A_{t}=a\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right\}
$$

$$
J_{\theta}\left(\pi \mid S_{0}=S\right)=q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S)
$$

Learning $\pi\left(S_{t}, \theta\right)$:

Deterministic and Continuous: $A_{t}=\pi\left(S_{t}, \theta\right.$

Action - value function for policy $\boldsymbol{\pi}$:

$$
q_{\pi}(s, a)=E_{\pi}\left\{G_{t} \mid S_{t}=s, A_{t}=a\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right\}
$$

$$
\begin{aligned}
& J_{\theta}\left(\pi \mid S_{0}=S\right)=q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S) \\
& \begin{aligned}
\nabla_{\theta} J_{\theta}\left(\pi \mid S_{0}=S\right) & \approx \nabla_{\theta} Q_{\pi}(\pi(S, \theta), S) \\
& =\sum_{i}^{m} \frac{\partial Q_{\pi}(A=\pi(S, \theta), S)}{\partial a_{i}} \nabla_{\theta} \pi_{i}(S, \theta) \\
& =\nabla_{A} Q_{\pi}(A=\pi(S, \theta), S) \nabla_{\theta} \pi(S, \theta)
\end{aligned}
\end{aligned}
$$

EXPERIENCE

Learning $\pi\left(S_{t}, \theta\right)$:

Deterministic or Stochastic:

If we can plan with a World-Model M, and planning gives us a next action A :

Learning $\pi\left(S_{t}, \theta\right)$:

Deterministic or Stochastic:

If we can plan with a World-Model M, and planning gives us a next action A: We can can use A as a target for supervised learning of π.

Learning $\pi\left(S_{t}, \theta\right)$:

Deterministic or Stochastic:

If we can plan with a World-Model M, and planning gives us a next action A:
We can can use A as a target for supervised learning of π.

Continuous A: regression problem: MSE loss
Discrete A, stochastic π : classification problem: Cross-Entropy loss

RL Learning Map:

EXPERIENCE

Learning $\pi\left(S_{t}, \theta\right)$:
Stochastic: $\pi\left(A_{t}, S_{t}, \theta\right)$ is probability.

Policy Gradient Theorem:

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Learning $\pi\left(S_{t}, \theta\right)$:

Stochastic: $\pi\left(A_{t}, S_{t}, \theta\right)$ is probability.

Policy Gradient Theorem:

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Learning $\pi\left(S_{t}, \theta\right)$:

Stochastic: $\pi\left(A_{t}, S_{t}, \theta\right)$ is probability.

Policy Gradient Theorem:

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

RL Learning Map:

Learning $\pi\left(S_{t}, \theta\right)$:
Stochastic: $\pi\left(A_{t}, S_{t}, \theta\right)$ is probability.

Policy Gradient Theorem:

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Learning $\pi\left(S_{t}, \theta\right)$:

Stochastic: $\pi\left(A_{t}, S_{t}, \theta\right)$ is probability.

Policy Gradient Theorem:
$\nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}[\sum_{t=0}^{T} \gamma^{t}(q_{\pi}(\underbrace{\left.S_{t}, A_{t}\right)-v_{\pi}\left(S_{t}\right)}_{\text {Advantage }}) \nabla_{\theta}^{\text {with Monte }} \log (\pi)]$

Learning $\pi\left(S_{t}, \theta\right)$:

Stochastic: $\pi\left(A_{t}, S_{t}, \theta\right)$ is probability.

Policy Gradient Theorem:

$$
\nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}[\sum_{t=0}^{T} \gamma^{t}(q_{\pi}(S_{t}, \underbrace{\left.A_{t}\right)-v_{\pi}\left(S_{t}\right)}_{\text {Advantage }}) \nabla_{\theta} \log (\pi)]
$$

Actor-Critic: use V and/or Q to estimate \mathbf{G} or Advantage , e.g. TD(λ)

Grid of RL:

Learn $V_{t}(s) \quad Q_{t}(s, a)$:

Action - value function for policy $\boldsymbol{\pi}$:

$$
q_{\pi}(s, a)=E_{\pi}\left\{G_{t} \mid S_{t}=s, A_{t}=a\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right\}
$$

State - value function for policy π :

$$
v_{\pi}(s)=E_{\pi}\left\{G_{t} \mid S_{t}=s\right\}=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right\}
$$

Learn $V_{t}(s) \quad Q_{t}(s, a)$:

4 value functions

- All theoretical objects, expected values
- Distinct from their estimates: $V_{t}(s) \quad Q_{t}(s, a)$

$$
q_{\pi}(s, a)=\mathbb{E}\left\{G_{t} \mid S_{t}=s, A_{t}=a, A_{t+1: \infty} \sim \pi\right\} \quad q_{\pi}: \mathcal{S} \times \mathcal{A} \rightarrow \Re
$$

Monte-Carlo Estimate :

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\mathrm{L}=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}
$$

where $\gamma, 0 \leq \gamma \leq 1$, is the discount rate.
\square Every-Visit MC: average returns for every time s is visited in an episode
\square First-visit MC: average returns only for first time s is visited in an episode
\square Both converge asymptotically

EXPERIENCE

$$
q_{\pi}(s, a)=\mathbb{E}\left\{G_{t} \mid S_{t}=s, A_{t}=a, A_{t+1: \infty} \sim \pi\right\} \quad q_{\pi}: \mathcal{S} \times \mathcal{A} \rightarrow \Re
$$

Bootstrapping :

- TD: $\quad G_{t}^{(1)} \doteq R_{t+1}+\gamma V_{t}\left(S_{t+1}\right)$
- Use V_{t} to estimate remaining return
- n-step TD:
-2 step return: $G_{t}^{(2)} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} V_{t}\left(S_{t+2}\right)$
- n-step return: $G_{t}^{(n)} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^{n} V_{t}\left(S_{t+n}\right)$ with $\quad G_{t}^{(n)} \doteq G_{t}$ if $t+n \geq T$

Learn $V_{t}(s) \quad Q_{t}(s, a)$:

$$
q_{\pi}(s, a)=\mathbb{E}\left\{G_{t} \mid S_{t}=s, A_{t}=a, A_{t+1: \infty} \sim \pi\right\} \quad q_{\pi}: \mathcal{S} \times \mathcal{A} \rightarrow \Re
$$

(Expected) SARSA (Bellman Eqn) :

$$
\begin{aligned}
Q\left(S_{t}, A_{t}\right) & \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma \mathbb{E}\left[Q\left(S_{t+1}, A_{t+1}\right) \mid S_{t+1}\right]-Q\left(S_{t}, A_{t}\right)\right] \\
& \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma \sum \pi\left(a \mid S_{t+1}\right) Q\left(S_{t+1}, a\right)-Q\left(S_{t}, A_{t}\right)\right]
\end{aligned}
$$

Learn $V_{t}(s) \quad Q_{t}(s, a)$:

$$
q_{*}(s, a)=\max _{\pi} q_{\pi}(s, a) \quad q_{*}: \mathcal{S} \times \mathcal{A} \rightarrow \Re
$$

Q-Learning (Bellman Optimality Eqn):

$$
Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)-Q\left(S_{t}, A_{t}\right)\right]
$$

RL Learning Map:

EXPERIENCE

USE IMAGINED EXPERIENCE USING MODEL M:

(Expected) SARSA (Bellman Eqn) :

$$
\begin{aligned}
Q\left(S_{t}, A_{t}\right) & \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma \mathbb{E}\left[Q\left(S_{t+1}, A_{t+1}\right) \mid S_{t+1}\right]-Q\left(S_{t}, A_{t}\right)\right] \\
& \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma \sum \pi\left(a \mid S_{t+1}\right) Q\left(S_{t+1}, a\right)-Q\left(S_{t}, A_{t}\right)\right]
\end{aligned}
$$

Q-Learning (Bellman Optimality Eqn):

$$
Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)-Q\left(S_{t}, A_{t}\right)\right]
$$

RL Learning Map:

Grid of RL:

Use transition $S_{t}, A_{t}, R_{t+1}, S_{t+1}$:

Supervised learning

- Target for $\hat{S}_{t+1}, \hat{R}_{t+1}=M\left(S_{t}, A_{t}, \theta\right)$ is S_{t+1}, R_{t+1}

■ Target for inverse model

$$
\hat{S}_{t}, \hat{R}_{t+1}=M_{i n v}\left(S_{t+1}, A_{t}, \psi\right)
$$

is S_{t}, R_{t+1}

RL Learning Map:

RL Learning Map:

