RL: Review

RL Setting:

Environment:

Agent:

Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...

Agent observes state at step t: $S_t \in S$ produces action at step t: $A_t \in A(S_t)$

gets resulting reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$

and resulting next state: $S_{t+1} \in S^+$

Property of the Environment:

Property of the Environment:

Environment is Markov Decision Process (MDP)

$$p(S_{t+1}, R_{t+1} | A_t, S_t, A_{t-1}, S_{t-1}, ..., S_0)$$

Property of the Environment:

Environment is Markov Decision Process (MDP)

$$p(S_{t+1}, R_{t+1} | A_t, S_t, A_{t-1}, S_{t-1}, X_t, X_0)$$

$$= p(S_{t+1}, R_{t+1} | A_t, S_t)$$

Agent's objective:

Agent's objective:

Maximize:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + L = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1},$$

where γ , $0 \le \gamma \le 1$, is the **discount rate**.

Agent's objective:

Maximize:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + L = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1},$$

where γ , $0 \le \gamma \le 1$, is the **discount rate**.

Agent does 2 things:

Agent does 2 things:

Choose actions:

Learn how to choose better actions:

Different Parts of an Agent:

Different Parts of an Agent:

Value Functions :

• World Model:

$$S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$$

• Policy:

$$A_t = \pi(S_t, \theta)$$

Different Parts of an Agent:

Value Functions :

• World Model:

$$S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$$

• Policy:

$$A_t = \pi(S_t, \theta)$$

(Replay Buffer of past experience)

THE KNEE-JERK REACTION shutterstock.com - 599861154		
Learn $\pi(S_t, \theta)$	Learn $V_t(s)$ $Q_t(s,a)$	Learn $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$
Use $\pi(S_t, \theta)$ to choose action.	Use $V_t(s) = Q_t(s, a)$ to choose action.	Use $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$ to choose action.

THE KNEE-JERK REACTION shutterstock.com - 599861154		
Learn $\pi(S_t, \theta)$	Learn $V_t(s)$ $Q_t(s,a)$	Learn $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$
Use $\pi(S_t, \theta)$ to choose action.	Use $V_t(s) = Q_t(s, a)$ to choose action.	Use $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$ to choose action.

THE KNEE-JERK REACTION shutterstock.com - 589861154		
Learn $\pi(S_t, \theta)$	Learn $V_t(s)$ $Q_t(s,a)$	Learn $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$
Use $\pi(S_t, \theta)$ to choose action.	Use $V_t(s) = Q_t(s, a)$ to choose action.	Use $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$ to choose action.

TWO TYPES OF POLICY $\pi(S_t, \theta)$:

TWO TYPES OF POLICY $\pi(S_t, \theta)$:

Stochastic:

Deterministic:

$$\pi(A_t, S_t, \theta)$$
 is probability.

$$A_t = \pi(S_t, \theta)$$

Stochastic: $\pi(A_t, S_t, \theta)$ is probability.

Act by sampling from the distribution:

Discrete Actions:

$$\pi(A_i | S) = \frac{\exp(\phi(A_i, S))}{\sum_j \exp(\phi(A_j, S))}$$

Continuous Actions:

$$\pi(A \mid S) = \mathcal{N}(\mu(S), \sigma(S))$$

$$A = \mu(S) + \sigma(S)\epsilon$$
, $\epsilon \sim \mathcal{N}(0,1)$

Deterministic: $A_t = \pi(S_t, \theta)$

Value Functions

☐ The **value of a state** is the expected return starting from that state; depends on the agent's policy:

State - value function for policy π :

$$v_{\pi}(s) = E_{\pi} \left\{ G_t \mid S_t = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

☐ The value of an action (in a state) is the expected return starting after taking that action from that state; depends on the agent's policy:

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

Use $V_t(s)$ $Q_t(s,a)$ to choose action:

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

Use $V_t(s)$ $Q_t(s,a)$ to choose action:

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

Act by taking the action which maximizes the expected return according to the estimate Q:

$$A_t = \operatorname{argmax}_a Q(a, S_t)$$

Use $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$ to choose action:

Use $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$ to choose action:

Use $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$ in conjunction with planning algorithms (reactive planning):

Examples:

- Sampling future trajectories and taking the best one (as seen in PlaNet)
- Monte-Carlo Tree Search (as seen in MuZero)
- Cross-Entropy Method (with particles) (as seen in Dreamer Paper)

Learning $\pi(S_t, \theta)$:

Learning $\pi(S_t, \theta)$:

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

$$\theta_{t+1} = \theta_t + \alpha \underbrace{\nabla_{\theta} q_{\pi}}$$

$$abla_{ heta} J$$

Deterministic and Continuous: $A_t = \pi(S_t, \theta)$

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

$$J_{\theta}(\pi \mid S_0 = S) = q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S)$$

Deterministic and Continuous: $A_t = \pi(S_t, \theta)$

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

$$J_{\theta}(\pi \mid S_0 = S) = q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S)$$

$$\nabla_{\theta} J_{\theta}(\pi \mid S_{0} = S) \approx \nabla_{\theta} Q_{\pi}(\pi(S, \theta), S)$$

$$= \sum_{i}^{m} \frac{\partial Q_{\pi}(A = \pi(S, \theta), S)}{\partial a_{i}} \nabla_{\theta} \pi_{i}(S, \theta)$$

$$= \nabla_{A} Q_{\pi} (A = \pi(S, \theta), S) \nabla_{\theta} \pi(S, \theta)$$

Deterministic or Stochastic:

If we can plan with a World-Model M, and planning gives us a next action A:

Deterministic or Stochastic:

If we can plan with a World-Model M, and planning gives us a next action A: We can can use A as a target for supervised learning of π .

Deterministic or Stochastic:

If we can plan with a World-Model M, and planning gives us a next action A: We can can use A as a target for supervised learning of π .

Continuous A: regression problem: MSE loss Discrete A, stochastic π : classification problem: Cross-Entropy loss

Stochastic: $\pi(A_t, S_t, \theta)$ is probability.

$$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \left(\gamma^{t} G_{t} \right) \nabla_{\boldsymbol{\theta}} \log \pi (A_{t} | S_{t}) \right]$$

Stochastic: $\pi(A_t, S_t, \theta)$ is probability.

$$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \left(\gamma^{t} G_{t} \right) \nabla_{\boldsymbol{\theta}} \log \pi (A_{t} | S_{t}) \right]$$

REINFORCE Estimates G

Stochastic: $\pi(A_t, S_t, \theta)$ is probability.

$$abla_{m{ heta}} J_{m{ heta}}(\pi) = \mathbb{E}_{\pi} [\sum_{t=0}^{T} \left(\gamma^t G_t \right) \nabla_{m{ heta}} \log \pi(A_t | S_t)]$$

Stochastic: $\pi(A_t, S_t, \theta)$ is probability.

$$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \left(\gamma^{t} G_{t} \right) \nabla_{\boldsymbol{\theta}} \log \pi (A_{t} | S_{t}) \right]$$

Stochastic: $\pi(A_t, S_t, \theta)$ is probability.

Policy Gradient Theorem: REINFORCE Estimates G

$$\nabla_{\theta} J_{\theta}(\pi) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} \left(q_{\pi}(S_{t}, A_{t}) - v_{\pi}(S_{t})\right) \nabla_{\theta} \log(\pi)\right]$$
 with Monte-Carlo

Advantage

Stochastic: $\pi(A_t, S_t, \theta)$ is probability.

Policy Gradient Theorem:

$$\nabla_{\theta} J_{\theta}(\pi) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} \left(q_{\pi}(S_{t}, A_{t}) - v_{\pi}(S_{t})\right) \nabla_{\theta} \log(\pi)\right]$$
 Advantage

Actor-Critic: use V and/or Q to estimate G or Advantage , e.g. TD(λ)

Grid of RL:

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

State - value function for policy π :

$$v_{\pi}(s) = E_{\pi} \left\{ G_{t} \mid S_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right\}$$

4 value functions

	state values	action values	
prediction	v_{π}	q_{π}	
control	v_*	q_*	

- All theoretical objects, expected values
- Distinct from their estimates: $V_t(s) \qquad Q_t(s,a)$

$$q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\} \qquad q_{\pi} : S \times A \to \Re$$

Monte-Carlo Estimate:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + L = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where γ , $0 \le \gamma \le 1$, is the **discount rate**.

- ☐ *Every-Visit MC:* average returns for *every* time *s* is visited in an episode
- ☐ *First-visit MC:* average returns only for *first* time *s* is visited in an episode
- ☐ Both converge asymptotically

Monte-Carlo Policy Evaluation

$$q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\} \qquad q_{\pi} : S \times A \to \Re$$

Bootstrapping:

- TD: $G_t^{(1)} \doteq R_{t+1} + \gamma V_t(S_{t+1})$
 - Use V_t to estimate remaining return
- *n*-step TD:
 - 2 step return: $G_t^{(2)} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 V_t(S_{t+2})$
 - *n*-step return: $G_t^{(n)} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V_t(S_{t+n})$ with $G_t^{(n)} \doteq G_t$ if $t+n \geq T$

$$q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\} \qquad q_{\pi} : S \times A \to \Re$$

(Expected) SARSA (Bellman Eqn):

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \right]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \sum_{t} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \right]$$

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \qquad q_* : S \times A \to \Re$$

Q-Learning (Bellman Optimality Eqn):

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Learn $V_t(s)$ $Q_t(s,a)$ through pro-active planning:

USE IMAGINED EXPERIENCE USING MODEL M:

(Expected) SARSA (Bellman Eqn):

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \right]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \sum_{t} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \right]$$

Q-Learning (Bellman Optimality Eqn):

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Grid of RL:

THE KNEE-JERK REACTION shutterstock.com - 589861154		
Learn $\pi(S_t, \theta)$	Learn $V_t(s)$ $Q_t(s,a)$	Learn $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$
Use $\pi(S_t, \theta)$ to choose action.	Use $V_t(s) Q_t(s,a)$ to choose action.	Use $S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$ to choose action.

Learn
$$S_{t+1}, R_{t+1} = M(S_t, A_t, \theta)$$
:

Use transition $S_t, A_t, R_{t+1}, S_{t+1}$:

Supervised learning

- **Target for** \hat{S}_{t+1} , $\hat{R}_{t+1} = M(S_t, A_t, \theta)$ is S_{t+1} , R_{t+1}
- Target for inverse model

$$\hat{S}_{t}, \hat{R}_{t+1} = M_{inv}(S_{t+1}, A_{t}, \psi)$$

is
$$S_t, R_{t+1}$$

