RL: Policy Gradient --Actor-Critic Algos

How do we decide what to do?

- Emotions/Intuition

$$
\begin{aligned}
& V_{t}(s) \quad Q_{t}(s, a) \\
& S_{t+1}=M\left(S_{t}, A_{t}, \theta\right)
\end{aligned}
$$

$$
A_{t}=\pi\left(S_{t}, \theta\right)
$$

Policy Approximation

We want to learn this directly!
 $\pi(a \mid s, \boldsymbol{\theta})<$

- Policy $=$ a function from state to action
- How does the agent select actions?
- In such a way that it can be affected by learning?
- In such a way as to assure exploration?
- Approximation: there are too many states and/or actions to represent all policies
- To handle large/continuous action spaces

Episodic policy gradients algorithm

Policy Gradient Theorem (PGT):

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} \gamma^{t} q_{\pi}\left(S_{t}, A_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- We can sample this, given a whole episode
- Typically, people pull out the sum, and split up this into separate gradients, e.g.,

$$
\Delta \boldsymbol{\theta}_{t}=\gamma^{t} G_{t} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)
$$

such that $\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t} \Delta \boldsymbol{\theta}_{t}\right]=\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi})$

- Typically, people ignore the γ^{t} term, use $\Delta \boldsymbol{\theta}_{t}=G_{t} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)$
- This is actually okay-ish — we just partially pretend on each step that we could have started an episode in that state instead. Or if we use $\gamma=1$, this is also ok. (alternatively, view it as a slightly biased gradient)

REINFORCE (Monte-Carlo)

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{\boldsymbol{T}}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_{*}

Input: a differentiable policy parameterization $\pi(a \mid s, \boldsymbol{\theta})$
Algorithm parameter: step size $\alpha>0$
Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d^{\prime}}$ (e.g., to $\mathbf{0}$)
Loop forever (for each episode):
Generate an episode $S_{0}, A_{0}, R_{1}, \ldots, S_{T-1}, A_{T-1}, R_{T}$, following $\pi(\cdot \mid, \boldsymbol{\theta})$
Loop for each step of the episode $t=0,1, \ldots, T-1$:

$$
\begin{align*}
& G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k} \tag{t}\\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha \gamma^{t} G \nabla \ln \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)
\end{align*}
$$

Example: REINFORCE

Example: REINFORCE

Improvements to REINFORCE

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- Can we use our "trick" $\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))=0\right.$ to improve REINFORCE?

Reducing Variance:

X, Y are two random variables.

$$
\begin{aligned}
\bar{X} & =\mathbb{E}(X)=0 \\
\bar{Y} & =\mathbb{E}(Y) \neq 0
\end{aligned}
$$

Using samples of X, Y, I want to estimate: $\mathbb{E}(Y X) \equiv J$

Reducing Variance:

X, Y are two random variables.

$$
\bar{X}=\mathbb{E}(X)=0
$$

$$
\bar{Y}=\mathbb{E}(Y) \neq 0
$$

Using samples of $\mathrm{X}, \mathrm{Y}, \mathrm{I}$ want to estimate: $\mathbb{E}(Y X) \equiv J$

$$
J \approx \frac{1}{N} \sum_{i}^{N} Y_{i} X_{i}
$$

Reducing Variance:

X, Y are two random variables.

$$
\bar{X}=\mathbb{E}(X)=0
$$

$$
\bar{Y}=\mathbb{E}(Y) \neq 0
$$

Using samples of X, Y, I want to estimate: $\mathbb{E}(Y X) \equiv J$

$$
J \approx \frac{1}{N} \sum_{i}^{N} Y_{i} X_{i}
$$

Can I do it with less variance??

Reducing Variance:

X, Y are two random variables.

$$
\bar{X}=\mathbb{E}(X)=0
$$

$$
\bar{Y}=\mathbb{E}(Y) \neq 0
$$

Using samples of X, Y, I want to estimate: $\mathbb{E}(Y X) \equiv J$
$\mathbb{E}(Y X)=\mathbb{E}[(Y-\bar{Y}) X+\bar{Y} X]=\mathbb{E}[(Y-\bar{Y}) X]+\bar{Y} \mathbb{E}[X]$

Reducing Variance:

X, Y are two random variables.

$$
\bar{X}=\mathbb{E}(X)=0
$$

$$
\bar{Y}=\mathbb{E}(Y) \neq 0
$$

Using samples of X, Y, I want to estimate: $\mathbb{E}(Y X) \equiv J$
$\mathbb{E}(Y X)=\mathbb{E}[(Y-\bar{Y}) X+\bar{Y} X]=\mathbb{E}[(Y-\bar{Y}) X]+\bar{Y} \mathbb{E}[X]$

Reducing Variance:

$$
\bar{X}=\mathbb{E}(X)=0
$$

X, Y are two random variables.

$$
\bar{Y}=\mathbb{E}(Y) \neq 0
$$

Using samples of X, Y, I want to estimate: $\mathbb{E}(Y X) \equiv J$

$$
\mathbb{E}(Y X)=\mathbb{E}[(Y-\bar{Y}) X+\bar{Y} X]=\mathbb{E}[(Y-\bar{Y}) X]+\bar{Y} \mathbb{E}[X]
$$

$$
J \approx \frac{1}{N} \sum_{i}^{N}\left(Y_{i}-\bar{Y}\right) X_{i}+\frac{\bar{Y}}{N} \sum_{i}^{N} X_{i}
$$

Improvements to REINFORCE

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- Can we use our "trick" $\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))=0\right.$ to improve REINFORCE?

$$
\nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t}\left(G_{t}-\bar{G}\right) \nabla_{\theta} \log (\pi)\right]
$$

Improvements to REINFORCE

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- Can we use our "trick" $\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))=0\right.$ to improve REINFORCE?

$$
\begin{aligned}
& \nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t}\left(G_{t}-\bar{G}\right) \nabla_{\theta} \log (\pi)\right] \\
& \nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t}\left(q_{\pi}\left(S_{t}, A_{t}\right)-v_{\pi}\left(S_{t}\right)\right) \nabla_{\theta} \log (\pi)\right]
\end{aligned}
$$

Improvements to REINFORCE

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- Can we use our "trick" $\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))=0\right.$ to improve REINFORCE?

$$
\begin{aligned}
& \nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t}\left(G_{t}-\bar{G}\right) \nabla_{\theta} \log (\pi)\right] \\
& \nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}[\sum_{t=0}^{T} \gamma^{t}(\underbrace{\left(S_{v}, A_{t}\right)-v_{\pi}\left(S_{t}\right)}_{\text {Advantage }}) \nabla_{\theta} \log (\pi)
\end{aligned}
$$

REINFORCE with baseline:

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_{*}$

Input: a differentiable policy parameterization $\pi(a \mid s, \boldsymbol{\theta})$
Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$
Algorithm parameters: step sizes $\alpha^{\boldsymbol{\theta}}>0, \alpha^{\mathbf{w}}>0$ Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d^{\prime}}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to $\mathbf{0}$)

Loop forever (for each episode):
Generate an episode $S_{0}, A_{0}, R_{1}, \ldots, S_{T-1}, A_{T-1}, R_{T}$, following $\pi(\cdot \mid \cdot, \boldsymbol{\theta})$ Loop for each step of the episode $t=0,1, \ldots, T-1$:

$$
\begin{align*}
& G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k} \tag{t}\\
& \delta \leftarrow G-\hat{v}\left(S_{t}, \mathbf{w}\right) \\
& \mathbf{w} \leftarrow \mathbf{w}+\alpha^{\mathbf{w}} \delta \nabla \hat{v}\left(S_{t}, \mathbf{w}\right) \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha^{\boldsymbol{\theta}} \gamma^{t} \delta \nabla \ln \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)
\end{align*}
$$

REINFORCE with baseline:

Actor-Critic Algorithms

- ACTOR: policy π
- CRITIC: value fct V (or Q)

Actor-Critic Algorithms

- ACTOR: policy π - CRITIC: value fct V (or Q)

Policy Gradient Theorem:

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{\boldsymbol{T}}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Actor-Critic Algorithms

- ACTOR: policy π
 - CRITIC: value fct V (or Q)

Policy Gradient Theorem:

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Actor-Critic Algorithms

- ACTOR: policy π
 - CRITIC: value fct V (or Q)

Policy Gradient Theorem:

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Actor-Critic 1-step TD / TD(0) estimate:

Policy Gradient Theorem:

$$
\left.\begin{array}{l}
\nabla_{\theta} J_{\theta}(\pi) \\
\text { eorem }
\end{array}\right]\left[\sum_{\text {Advantage }}^{T} \gamma_{t=0}^{t}\left(q_{\pi}\left(S_{t}, A_{t}\right)-v_{\pi}\left(S_{t}\right)\right) \nabla_{\theta} \log (\pi)\right]
$$

$$
\begin{aligned}
\boldsymbol{\theta}_{t+1} & \doteq \boldsymbol{\theta}_{t}+\alpha\left(G_{t: t+1}-\hat{v}\left(S_{t}, \mathbf{w}\right)\right) \frac{\nabla \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}_{t}\right)}{\pi\left(A_{t} \mid S_{S}, \boldsymbol{\theta}_{t}\right)} \\
& =\boldsymbol{\theta}_{t}+\alpha\left(R_{t+1}+\gamma \hat{v}\left(S_{t+1}, \mathbf{w}\right)-\hat{v}\left(S_{t}, \mathbf{w}\right)\right) \frac{\nabla \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}_{t}\right)}{\pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}_{t}\right)} \\
& =\boldsymbol{\theta}_{t}+\alpha \delta_{t} \frac{\nabla \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}_{t}\right)}{\pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}_{t}\right)} .
\end{aligned}
$$

Actor-Critic 1-step TD / TD(0) estimate:

Policy Gradient Theorem:

$$
\begin{aligned}
& \text { eorem: } \\
& \nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t}\left(q_{\pi}\left(S_{t}, A_{t}\right)-v_{\pi}\left(S_{t}\right)\right) \nabla_{\theta} \log (\pi)\right]
\end{aligned}
$$

Advantage

One-step Actor-Critic (episodic), for estimating $\pi_{\theta} \approx \pi_{*}$

Input: a differentiable policy parameterization $\pi(a \mid s, \boldsymbol{\theta})$
Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$
Parameters: step sizes $\alpha^{\boldsymbol{\theta}}>0, \alpha^{\mathbf{w}}>0$
Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d^{\prime}}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to $\mathbf{0}$)
Loop forever (for each episode):
Initialize S (first state of episode)
$I \leftarrow 1$
Loop while S is not terminal (for each time step):
$A \sim \pi(\cdot \mid S, \boldsymbol{\theta})$
Take action A, observe S^{\prime}, R
$\delta \leftarrow R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})$
(if S^{\prime} is terminal, then $\hat{v}\left(S^{\prime}, \mathbf{w}\right) \doteq 0$)
$\mathbf{w} \leftarrow \mathbf{w}+\alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})$
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha^{\boldsymbol{\theta}} I \delta \nabla \ln \pi(A \mid S, \boldsymbol{\theta})$
$I \leftarrow \gamma I$
$S \leftarrow S^{\prime}$

A3C: Asynchronous Advantage Actor Critic:

$$
\nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}[\sum_{t=0}^{T} \gamma^{t}(\underbrace{}_{\text {Advantage }}\left(S_{v} A_{t}\right)-v_{\pi}\left(S_{t}\right)) \nabla_{\theta} \log (\pi)]
$$

A3C: Asynchronous Advantage Actor Critic:

$$
\nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}[\sum_{t=0}^{T} \gamma^{t}(q_{\pi}(\underbrace{S_{t}}_{\text {Advantage }}, A_{t})-v_{\pi}\left(S_{t}\right)) \nabla_{\theta} \log (\pi)]
$$

GAE: Generalized Advantage Estimation

- Use Advantage (i.e. $\mathrm{G}-\mathrm{V}(\mathrm{S})$)
- Use $\mathrm{TD}(\lambda)$ target for G

GAE: Generalized Advantage Estimation

- Use Advantage (i.e. G-V(S))
- Use $\mathrm{TD}(\lambda)$ target for G

GAE: Generalized Advantage Estimation

- Use Advantage (i.e. $\mathrm{G}-\mathrm{V}(\mathrm{S})$)

- Use $\mathrm{TD}(\lambda)$ target for G

What about if we want a Deterministic Policy?

We can't use the Policy Gradient Theorem :

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

How can we estimate $\quad \nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi}) ? \quad$ When $\quad A=\pi(S, \theta)$

What about if we want a Deterministic Policy?

We can't use the Policy Gradient Theorem :

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{\boldsymbol{T}}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

How can we estimate $\quad \nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi}) ? \quad$ When $\quad A=\pi(S, \theta)$

$$
J_{\theta}\left(\pi \mid S_{0}=S\right)=q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S)
$$

What about if we want a Deterministic Policy?

How can we estimate $\quad \nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi}) ? \quad$ When $\quad A=\pi(S, \theta)$

$$
A=\left(a_{1}, \ldots, a_{m}\right), \pi=\left(\pi_{1}, \ldots, \pi_{m}\right)
$$

$$
J_{\theta}\left(\pi \mid S_{0}=S\right)=q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S)
$$

What about if we want a Deterministic Policy?

How can we estimate $\quad \nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi}) ? \quad$ When $\quad A=\pi(S, \theta)$

$$
A=\left(a_{1}, \ldots, a_{m}\right), \pi=\left(\pi_{1}, \ldots, \pi_{m}\right)
$$

$$
J_{\theta}\left(\pi \mid S_{0}=S\right)=q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S)
$$

$$
\nabla_{\theta} J_{\theta}\left(\pi \mid S_{0}=S\right) \approx \nabla_{\theta} Q_{\pi}(\pi(S, \theta), S)
$$

What about if we want a Deterministic Policy?

How can we estimate $\quad \nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi}) ? \quad$ When $\quad A=\pi(S, \theta)$

$$
A=\left(a_{1}, \ldots, a_{m}\right), \pi=\left(\pi_{1}, \ldots, \pi_{m}\right)
$$

$$
J_{\theta}\left(\pi \mid S_{0}=S\right)=q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S)
$$

$$
\begin{aligned}
\nabla_{\theta} J_{\theta}\left(\pi \mid S_{0}=S\right) & \approx \nabla_{\theta} Q_{\pi}(\pi(S, \theta), S) \\
& =\sum_{i}^{m} \frac{\partial Q_{\pi}(A=\pi(S, \theta), S)}{\partial a_{i}} \nabla_{\theta} \pi_{i}(S, \theta)
\end{aligned}
$$

What about if we want a Deterministic Policy?

How can we estimate $\quad \nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi}) ? \quad$ When $\quad A=\pi(S, \theta)$

$$
A=\left(a_{1}, \ldots, a_{m}\right), \pi=\left(\pi_{1}, \ldots, \pi_{m}\right)
$$

$$
J_{\theta}\left(\pi \mid S_{0}=S\right)=q_{\pi}(\pi(S), S) \approx Q_{\pi}(\pi(S, \theta), S)
$$

$$
\begin{aligned}
\nabla_{\theta} J_{\theta}\left(\pi \mid S_{0}=S\right) & \approx \nabla_{\theta} Q_{\pi}(\pi(S, \theta), S) \\
& =\sum_{i}^{m} \frac{\partial Q_{\pi}(A=\pi(S, \theta), S)}{\partial a_{i}} \nabla_{\theta} \pi_{i}(S, \theta) \\
& =\nabla_{A} Q_{\pi}(A=\pi(S, \theta), S) \nabla_{\theta} \pi(S, \theta)
\end{aligned}
$$

Deterministic Policy Gradient:

How can we estimate $\quad \nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi}) ? \quad$ When $\quad A=\pi(S, \theta)$

$$
A=\left(a_{1}, \ldots, a_{m}\right), \pi=\left(\pi_{1}, \ldots, \pi_{m}\right)
$$

$$
\begin{aligned}
\nabla_{\theta} J_{\theta}\left(\pi \mid S_{0}=S\right) & \approx \sum_{i}^{m} \frac{\partial Q_{\pi}(A=\pi(S, \theta), S)}{\partial a_{i}} \nabla_{\theta} \pi_{i}(S, \theta) \\
& =\nabla_{A} Q_{\pi}(A=\pi(S, \theta), S) \nabla_{\theta} \pi(S, \theta)
\end{aligned}
$$

Deterministic Policy Gradient (on Continuous Control Tasks):

Deterministic Policy Gradient Algorithms

Figure 1. Comparison of stochastic actor-critic (SAC-B) and deterministic actor-critic (COPDAC-B) on the continuous bandit task.

Figure 2. Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic (OffPAC), and deterministic off-policy actor-critic (COPDAC) on continuous-action reinforcement learning. Each point is the average test performance of the mean policy.

Deterministic Policy Gradient (on Continuous Control Tasks): \rightarrow Actor critic wint stonensitic policy

 Deterministic Policy Gradient Algorithms

Figure 1. Comparison of stochastic actor-critic (SAC-B) and deterministic actor-critic (COPDAC-B) on the continuous bandit task.

Figure 2. Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic (OffPAC), and deterministic off-policy actor-critic (COPDAC) on continuous-action reinforcement learning. Each point is the average test performance of the mean policy.

Deep Deterministic Policy Gradient (DDPG):

```
Algorithm 1 DDPG algorithm
    Randomly initialize critic network \(Q\left(s, a \mid \theta^{Q}\right)\) and actor \(\mu\left(s \mid \theta^{\mu}\right)\) with weights \(\theta^{Q}\) and \(\theta^{\mu}\).
    Initialize target network \(Q^{\prime}\) and \(\mu^{\prime}\) with weights \(\theta^{Q^{\prime}} \leftarrow \theta^{Q}, \theta^{\mu^{\prime}} \leftarrow \theta^{\mu}\)
    Initialize replay buffer \(R\)
    for episode = 1 , M do
        Initialize a random process \(\mathcal{N}\) for action exploration
        Receive initial observation state \(s_{1}\)
        for \(t=1\), \(T\) do
            Select action \(a_{t}=\mu\left(s_{t} \mid \theta^{\mu}\right)+\mathcal{N}_{t}\) according to the current policy and exploration noise
            Execute action \(a_{t}\) and observe reward \(r_{t}\) and observe new state \(s_{t+1}\)
            Store transition \(\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)\) in \(R\)
            Sample a random minibatch of \(N\) transitions \(\left(s_{i}, a_{i}, r_{i}, s_{i+1}\right)\) from \(R\)
            Set \(y_{i}=r_{i}+\gamma Q^{\prime}\left(s_{i+1}, \mu^{\prime}\left(s_{i+1} \mid \theta^{\mu^{\prime}}\right) \mid \theta^{Q^{\prime}}\right)\)
            Update critic by minimizing the loss: \(L=\frac{1}{N} \sum_{i}\left(y_{i}-Q\left(s_{i}, a_{i} \mid \theta^{Q}\right)\right)^{2}\)
            Update the actor policy using the sampled policy gradient:
\[
\left.\left.\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q\left(s, a \mid \theta^{Q}\right)\right|_{s=s_{i}, a=\mu\left(s_{i}\right)} \nabla_{\theta^{\mu}} \mu\left(s \mid \theta^{\mu}\right)\right|_{s_{i}}
\]
```

Update the target networks:

$$
\begin{aligned}
\theta^{Q^{\prime}} & \leftarrow \tau \theta^{Q}+(1-\tau) \theta^{Q^{\prime}} \\
\theta^{\mu^{\prime}} & \leftarrow \tau \theta^{\mu}+(1-\tau) \theta^{\mu^{\prime}}
\end{aligned}
$$

end for
end for

Conclusion

- Policy Gradient Theorem: $\quad \nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\theta} \log \pi\left(A_{A} \mid S_{t}\right)\right]$
- REINFORCE: PGT + MC for estimate of G
- Actor-Critic: PGT + V,Q for estimate of G
- Deterministic Policy Gradient: $\nabla_{\theta} J_{\theta}\left(\pi \mid S_{0}=S\right) \approx \nabla_{\theta} Q_{\pi}(\pi(S, \theta), S)$

