
RL: Policy Gradient



How do we decide what to do?

• Emotions/Intuition     :  

• Thinking 

• Reflexes/Habits

Vt(s) Qt(s, a)

St+1 = M(St, At, θ)

At = π(St, θ)



Policy Approximation

• Policy = a function from state to action

• How does the agent select actions?

• In such a way that it can be affected by learning?

• In such a way as to assure exploration?

•  Approximation: there are too many states and/or actions to represent all 
policies

• To handle large/continuous action spaces

⇡(a|s,✓)
We want to learn this directly!



 
Gradient-bandit algorithm

• Store action preferences 
rather than action-value estimates

• Instead of 𝜀-greedy, pick actions by an exponential soft-max:

• Also store the sample average of rewards as

• Then update:
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Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:
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where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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The calculations showing this require only beginning calculus, but take several
steps. If you are mathematically inclined, then you will enjoy the rest of this section
in which we go through these steps. (And if you are not, then you may skip the rest
of this section without preventing understanding of the rest of this book.) First we
take a closer look at the exact performance gradient:
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@
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q⇤(b) � Xt

� @⇡t(b)
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,

where Xt can be any scalar that does not depend on b. We can include it here because
the gradient sums to zero over all the actions,

P
b

@⇡t(b)
@Ht(a) = 0. As Ht(a) is changed,

some actions’ probabilities go up and some down, but the sum of the changes must
be zero because the sum of the probabilities must remain one.
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The equation is now in the form of an expectation, summing over all possible values
b of the random variable At, then multiplying by the probability of taking those
values. Thus:
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@Ht(a)
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,

where here we have chosen Xt = R̄t and substituted Rt for q⇤(At), which is permitted
because E[Rt] = q⇤(At) and because all the other factors are non-random. Shortly

we will establish that @⇡t(b)
@Ht(a) = ⇡t(b)

�
1a=b � ⇡t(a)

�
, where 1a=b is defined to be 1 if

a = b, else 0. Assuming that for now, we have
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Recall that our plan has been to write the performance gradient as an expectation of
something that we can sample on each step, as we have just done, and then update
on each step proportional to the sample. Substituting a sample of the expectation
above for the performance gradient in (2.11) yields:

Ht+1(a) = Ht(a) + ↵
�
Rt � R̄t

��
1a=At

� ⇡t(a)
�
, 8a,
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Exercise 2.4 The results shown in Figure 2.4 should be quite reliable because they
are averages over 2000 individual, randomly chosen 10-armed bandit tasks. Why,
then, are there oscillations and spikes in the early part of the curve for the optimistic
method? In other words, what might make this method perform particularly better
or worse, on average, on particular early steps?

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At

.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), Nt(a) denotes the number of times that
action a has been selected prior to time t (the denominator in (2.1)), and the number
c > 0 controls the degree of exploration. If Nt(a) = 0, then a is considered to be a
maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.
The quantity being max’ed over is thus a sort of upper bound on the possible true
value of action a, with the c parameter determining the confidence level. Each time
a is selected the uncertainty is presumably reduced; Nt(a) is incremented and, as it
appears in the denominator of the uncertainty term, the term is decreased. On the
other hand, each time an action other than a is selected t is increased; as it appears in
the numerator the uncertainty estimate is increased. The use of the natural logarithm
means that the increase gets smaller over time, but is unbounded; all actions will
eventually be selected, but as time goes by it will be a longer wait, and thus a lower
selection frequency, for actions with a lower value estimate or that have already been
selected more times.

Results with UCB on the 10-armed testbed are shown in Figure 2.5. UCB will
often perform well, as shown here, but is more di�cult than "-greedy to extend
beyond bandits to the more general reinforcement learning settings considered in the
rest of this book. One di�culty is in dealing with nonstationary problems; something
more complex than the methods presented in Section 2.4 would be needed. Another
di�culty is dealing with large state spaces, particularly function approximation as
developed in Part II of this book. In these more advanced settings there is currently
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Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:
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where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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How can we learn                   ?⇡(a|s,✓)



How can we learn                   ?
Directly from Experience?

From V and Q?

From a World-Model M(S, A) = S’ ?

⇡(a|s,✓)



How can we learn                   ?
Directly from Experience?

REINFORCE

From V and Q?

Actor Critic Algorithms

Deterministic Policy Gradient (DPG)

From a World-Model M(S, A) = S’ ?

⇡(a|s,✓)



Parametrizing π, how do we write π as a 
neural net?

For discrete actions?

For continuous actions?



Typical example - Deep Softmax Policies 
for discrete actions:

π(Ai |S) =
exp(ϕ(Ai, S))

∑j exp(ϕ(Aj, S))

where φ is a neural network,
 or any other function approximation parametrize by some
weights. 



action

action
prob.

density

Typical example - Gaussian Policies for 
continuous actions:



Typical example - Gaussian Policies for 
continuous actions:

π(A |S) = 𝒩 (μ(S), σ(S))

μ(S), σ(S) = ϕ(S) where φ is a neural network,
or any other function approximation
parametrize by some weights. 



Typical example - Gaussian Policies for 
continuous actions:

π(A |S) = 𝒩 (μ(S), σ(S))

μ(S), σ(S) = ϕ(S) where φ is a neural network,
or any other function approximation
parametrize by some weights. 

These are vectors if the action
has more than 1 dim, 
Example: the torques for 
4 different motors.



Typical example - Gaussian Policies for 
continuous actions:

π(A |S) = 𝒩 (μ(S), σ(S))

μ(S), σ(S) = ϕ(S) where φ is a neural network,
or any other function approximation
parametrize by some weights. 

Act by sampling from the distribution:

A = μ(S) + σ(S)ϵ, ϵ ∼ 𝒩(0,1)



REINFORCE ALGORITHM

πOnly 

V,  Q,  M❌ .  ❌ .  ❌



 
Gradient-bandit algorithm

• Store action preferences 
rather than action-value estimates

• Instead of 𝜀-greedy, pick actions by an exponential soft-max:

• Also store the sample average of rewards as

• Then update:
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2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:
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where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:
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where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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The calculations showing this require only beginning calculus, but take several
steps. If you are mathematically inclined, then you will enjoy the rest of this section
in which we go through these steps. (And if you are not, then you may skip the rest
of this section without preventing understanding of the rest of this book.) First we
take a closer look at the exact performance gradient:
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where Xt can be any scalar that does not depend on b. We can include it here because
the gradient sums to zero over all the actions,

P
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@Ht(a) = 0. As Ht(a) is changed,

some actions’ probabilities go up and some down, but the sum of the changes must
be zero because the sum of the probabilities must remain one.
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The equation is now in the form of an expectation, summing over all possible values
b of the random variable At, then multiplying by the probability of taking those
values. Thus:
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where here we have chosen Xt = R̄t and substituted Rt for q⇤(At), which is permitted
because E[Rt] = q⇤(At) and because all the other factors are non-random. Shortly

we will establish that @⇡t(b)
@Ht(a) = ⇡t(b)

�
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Recall that our plan has been to write the performance gradient as an expectation of
something that we can sample on each step, as we have just done, and then update
on each step proportional to the sample. Substituting a sample of the expectation
above for the performance gradient in (2.11) yields:

Ht+1(a) = Ht(a) + ↵
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1a=At
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, 8a,
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Exercise 2.4 The results shown in Figure 2.4 should be quite reliable because they
are averages over 2000 individual, randomly chosen 10-armed bandit tasks. Why,
then, are there oscillations and spikes in the early part of the curve for the optimistic
method? In other words, what might make this method perform particularly better
or worse, on average, on particular early steps?

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At

.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), Nt(a) denotes the number of times that
action a has been selected prior to time t (the denominator in (2.1)), and the number
c > 0 controls the degree of exploration. If Nt(a) = 0, then a is considered to be a
maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.
The quantity being max’ed over is thus a sort of upper bound on the possible true
value of action a, with the c parameter determining the confidence level. Each time
a is selected the uncertainty is presumably reduced; Nt(a) is incremented and, as it
appears in the denominator of the uncertainty term, the term is decreased. On the
other hand, each time an action other than a is selected t is increased; as it appears in
the numerator the uncertainty estimate is increased. The use of the natural logarithm
means that the increase gets smaller over time, but is unbounded; all actions will
eventually be selected, but as time goes by it will be a longer wait, and thus a lower
selection frequency, for actions with a lower value estimate or that have already been
selected more times.

Results with UCB on the 10-armed testbed are shown in Figure 2.5. UCB will
often perform well, as shown here, but is more di�cult than "-greedy to extend
beyond bandits to the more general reinforcement learning settings considered in the
rest of this book. One di�culty is in dealing with nonstationary problems; something
more complex than the methods presented in Section 2.4 would be needed. Another
di�culty is dealing with large state spaces, particularly function approximation as
developed in Part II of this book. In these more advanced settings there is currently
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Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:
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where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described

1 or 0, depending on whether 
the predicate (subscript) is true

�

t

�@⇡t(At)

@Ht(a)
/⇡t(At)

�



Policy Gradient

I Idea: ascent the gradient of the objective J(✓)

�✓ = ↵r✓J(✓)

I Where r✓J(✓) is the policy gradient

r✓J(✓) =
©≠≠≠
´

@J(✓)
@✓1
...

@J(✓)
@✓n

™ÆÆÆ
¨

I and ↵ is a step-size parameter
I Stochastic policies help ensure J(✓) is smooth

(typically/mostly)
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Contextual Bandits Policy Gradient

I Consider a one-step case (a contextual bandit) such that J(✓) = E⇡✓ [R(S, A)].
(Expectation is over d (states) and ⇡ (actions))
(For now, d does not depend on ⇡)

I We cannot sample Rt+1 and then take a gradient:
Rt+1 is just a number and does not depend on ✓!

I Instead, we use the identity:

r✓E⇡✓ [R(S, A)] = E⇡✓ [R(S, A)r✓ log ⇡(A|S)] .

(Proof on next slide)
I The right-hand side gives an expected gradient that can be sampled
I Also known as REINFORCE (Williams, 1992)



The score function trick

Let rsa = E [R(S, A) | S = s, A = s]

r✓E⇡✓ [R(S, A)] = r✓

’
s

d(s)
’
a

⇡✓(a|s) rsa

=
’
s

d(s)
’
a

rsa r✓⇡✓(a|s)

=
’
s

d(s)
’
a

rsa ⇡✓(a|s)
r✓⇡✓(a|s)
⇡✓(a|s)

=
’
s

d(s)
’
a

⇡✓(a|s) rsa r✓ log ⇡✓(a|s)

= Ed,⇡✓ [R(S, A) r✓ log ⇡✓(A|S)]



Policy Gradient Theorem
Policy Gradient Theorem

I The policy gradient approach also applies to (multi-step) MDPs
I Replaces reward R with long-term return Gt or value q⇡(s, a)
I There are actually two policy gradient theorems (Sutton et al., 2000):

average return per episode & average reward per step



Policy gradient theorem (episodic)

Theorem
For any differentiable policy ⇡✓(s, a), let d0 be the starting distribution over states in which we
begin an episode. Then, the policy gradient of J(✓) = E [G0 | S0 ⇠ d0] is

r✓J(✓) = E⇡✓

"
T’
t=0

�tq⇡✓ (St, At )r✓ log ⇡✓(At |St ) | S0 ⇠ d0

#

where

q⇡(s, a) = E⇡[Gt | St = s, At = a]
= E⇡[Rt+1 + �q⇡(St+1, At+1) | St = s, At = a]



Policy gradient theorem (episodic)

Theorem
For any differentiable policy ⇡✓(s, a), let d0 be the starting distribution over states in which we
begin an episode. Then, the policy gradient of J(✓) = E [G0 | S0 ⇠ d0] is

r✓J(✓) = E⇡✓

"
T’
t=0

�tq⇡✓ (St, At )r✓ log ⇡✓(At |St ) | S0 ⇠ d0

#

where

q⇡(s, a) = E⇡[Gt | St = s, At = a]
= E⇡[Rt+1 + �q⇡(St+1, At+1) | St = s, At = a]

Notice this is the return and not the reward, 
G not r!



Important "Trick" / Identity
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13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of
the action value to an arbitrary baseline b(s):

r⌘(✓) =
X

s

d⇡(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary
with a; the equation remains true, because the the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0 8s 2 S.

However, after we convert the policy gradient theorem to an expectation and an
update rule, using the same steps as in the previous section, then the baseline can
have a significant e↵ect on the variance of the update rule.

The update rule that we end up with is a new version of REINFORCE that includes
a general baseline:

✓t+1 , ✓t + ↵
⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.9)

As the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.

Here it would be nice to repeat experiments as in the previous section, or other
experiments, showing a nice improvement with the baseline.

Here it would also be nice to discuss the choice of the step-size parameters, ↵ and
�. The step size for values is relatively easy; we have rules of thumb. For action
values though it is much less clear. It depends on the range of variation of the
rewards, and on the policy parameterization.



𝔼 (b(s)∇θ log(π(a |s, θ)) = ∑
s,a

b(s)p(s)π(a |s, θ)∇θ log(π(a |s, θ)
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REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.

Here it would be nice to repeat experiments as in the previous section, or other
experiments, showing a nice improvement with the baseline.

Here it would also be nice to discuss the choice of the step-size parameters, ↵ and
�. The step size for values is relatively easy; we have rules of thumb. For action
values though it is much less clear. It depends on the range of variation of the
rewards, and on the policy parameterization.

Or written in a different way:



𝔼 (b(s)∇θ log(π(a |s, θ)) = ∑
s,a

b(s)p(s)π(a |s, θ)∇θ log(π(a |s, θ)

= ∑
s,a

b(s)p(s)π(a |s, θ)
∇θπ(a |s, θ)

π(a |s, θ)
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update rule, using the same steps as in the previous section, then the baseline can
have a significant e↵ect on the variance of the update rule.
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As the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.

Here it would be nice to repeat experiments as in the previous section, or other
experiments, showing a nice improvement with the baseline.

Here it would also be nice to discuss the choice of the step-size parameters, ↵ and
�. The step size for values is relatively easy; we have rules of thumb. For action
values though it is much less clear. It depends on the range of variation of the
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𝔼 (b(s)∇θ log(π(a |s, θ)) = ∑
s,a

b(s)p(s)π(a |s, θ)∇θ log(π(a |s, θ)

= ∑
s,a

b(s)p(s)π(a |s, θ)
∇θπ(a |s, θ)

π(a |s, θ)

= ∑
s,a

b(s)p(s)∇θπ(a |s, θ)
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The policy gradient theorem (13.5) can be generalized to include a comparison of
the action value to an arbitrary baseline b(s):
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⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary
with a; the equation remains true, because the the subtracted quantity is zero:
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However, after we convert the policy gradient theorem to an expectation and an
update rule, using the same steps as in the previous section, then the baseline can
have a significant e↵ect on the variance of the update rule.

The update rule that we end up with is a new version of REINFORCE that includes
a general baseline:

✓t+1 , ✓t + ↵
⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.9)

As the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.

Here it would be nice to repeat experiments as in the previous section, or other
experiments, showing a nice improvement with the baseline.

Here it would also be nice to discuss the choice of the step-size parameters, ↵ and
�. The step size for values is relatively easy; we have rules of thumb. For action
values though it is much less clear. It depends on the range of variation of the
rewards, and on the policy parameterization.

𝔼 (b(s)∇θ log(π(a |s, θ)) = ∑
s,a

b(s)p(s)π(a |s, θ)∇θ log(π(a |s, θ)

= ∑
s,a

b(s)p(s)π(a |s, θ)
∇θπ(a |s, θ)

π(a |s, θ)

= ∑
s,a

b(s)p(s)∇θπ(a |s, θ)

= 0

Or written in a different way:



Policy gradient theorem (episodic)

Theorem
For any differentiable policy ⇡✓(s, a), let d0 be the starting distribution over states in which we
begin an episode. Then, the policy gradient of J(✓) = E [G0 | S0 ⇠ d0] is

r✓J(✓) = E⇡✓

"
T’
t=0

�tq⇡✓ (St, At )r✓ log ⇡✓(At |St ) | S0 ⇠ d0

#

where

q⇡(s, a) = E⇡[Gt | St = s, At = a]
= E⇡[Rt+1 + �q⇡(St+1, At+1) | St = s, At = a]



Episodic policy gradient theorem — proof (1/3)
= ∑

i

γ iRi

∇θ Jθ(π) = ∇θ𝔼 [G(τ)] = ∇θ ∑
τ

G(τ)p(τ)



Episodic policy gradient theorem — proof (1/3)
= ∑
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γ iRi

∇θ Jθ(π) = ∇θ𝔼 [G(τ)] = ∇θ ∑
τ

G(τ)p(τ)

= ∑
τ

G(τ)∇θ p(τ)



Episodic policy gradient theorem — proof (1/3)
= ∑
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γ iRi

∇θ Jθ(π) = ∇θ𝔼 [G(τ)] = ∇θ ∑
τ

G(τ)p(τ)

= ∑
τ

G(τ)∇θ p(τ)

= ∑
τ

G(τ)p(τ)
∇θ p(τ)

p(τ)



Episodic policy gradient theorem — proof (1/3)
= ∑

i

γ iRi

∇θ Jθ(π) = ∇θ𝔼 [G(τ)] = ∇θ ∑
τ

G(τ)p(τ)

= ∑
τ

G(τ)∇θ p(τ)

= ∑
τ

G(τ)p(τ)
∇θ p(τ)

p(τ)

= ∑
τ

p(τ)G(τ)∇θ log(p(τ))



Episodic policy gradient theorem — proof (1/3)
= ∑

i

γ iRi

∇θ Jθ(π) = ∇θ𝔼 [G(τ)] = ∇θ ∑
τ

G(τ)p(τ)

= ∑
τ

G(τ)∇θ p(τ)

= ∑
τ

G(τ)p(τ)
∇θ p(τ)

p(τ)

= 𝔼 [G(τ)∇θ log(p(τ))]

= ∑
τ

p(τ)G(τ)∇θ log(p(τ))



Episodic policy gradient theorem — proof (1/3)
= ∑

i

γ iRi



Episodic policy gradient theorem — proof (2/3)
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Episodic policy gradient theorem — proof (3/3)
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However, after we convert the policy gradient theorem to an expectation and an
update rule, using the same steps as in the previous section, then the baseline can
have a significant e↵ect on the variance of the update rule.

The update rule that we end up with is a new version of REINFORCE that includes
a general baseline:
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⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.9)

As the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.

Here it would be nice to repeat experiments as in the previous section, or other
experiments, showing a nice improvement with the baseline.

Here it would also be nice to discuss the choice of the step-size parameters, ↵ and
�. The step size for values is relatively easy; we have rules of thumb. For action
values though it is much less clear. It depends on the range of variation of the
rewards, and on the policy parameterization.
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Episodic policy gradients algorithm

r✓J✓(⇡) = E⇡[
T’
t=0

�tq⇡(St, At )r✓ log ⇡(At |St )]

I We can sample this, given a whole episode
I Typically, people pull out the sum, and split up this into separate gradients, e.g.,

�✓ t = �
tGtr✓ log ⇡(At |St )

such that E⇡[
Õ

t �✓ t ] = r✓J✓(⇡)
I Typically, people ignore the �t term, use �✓ t = Gtr✓ log ⇡(At |St )
I This is actually okay-ish — we just partially pretend on each step that we could have

started an episode in that state instead
(alternatively, view it as a slightly biased gradient)

. Or if we use γ=1, this is also ok.



REINFORCE (Monte-Carlo)
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Improvements to REINFORCE

Can we use our "trick" 
to improve REINFORCE? 

𝔼 (b(s)∇θ log(π(a |s, θ)) = 0

∇θ Jθ(π) = 𝔼 [
T

∑
t=0

γt (Gt − Ḡ)∇θ log(π)]
∇θ Jθ(π) = 𝔼 [

T

∑
t=0

γt (qπ(St, At) − vπ(St))∇θ log(π)]



REINFORCE with baseline:
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Actor-Critic Algorithms

ACTOR: policy π

CRITIC: value fct V (or Q)


