RL: Policy Gradient

How do we decide what to do?

- Emotions/Intuition

$$
\begin{aligned}
& V_{t}(s) \quad Q_{t}(s, a) \\
& S_{t+1}=M\left(S_{t}, A_{t}, \theta\right)
\end{aligned}
$$

$$
A_{t}=\pi\left(S_{t}, \theta\right)
$$

Policy Approximation

We want to learn this directly!
 $\pi(a \mid s, \boldsymbol{\theta})<$

- Policy $=$ a function from state to action
- How does the agent select actions?
- In such a way that it can be affected by learning?
- In such a way as to assure exploration?
- Approximation: there are too many states and/or actions to represent all policies
- To handle large/continuous action spaces

Gradient-bandit algorithm

- Store action preferences $H_{t}(a)$ rather than action-value estimates $Q_{t}(a)$
- Instead of ε-greedy, pick actions by an exponential soft-max:

$$
\operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)
$$

- Also store the sample average of rewards as \bar{R}_{t}
- Then update:

$$
H_{t+1}(a)=H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbb{1}_{a=A_{t}}-\pi_{t}(a)\right)
$$

How can we learn $\pi(a \mid s, \boldsymbol{\theta})$?

How can we learn $\pi(a \mid s, \boldsymbol{\theta})$?

- Directly from Experience?
- From V and Q ?
- From a World-Model $\mathrm{M}(\mathrm{S}, \mathrm{A})=\mathrm{S}^{\prime}$?

How can we learn $\pi(a \mid s, \boldsymbol{\theta})$?

- Directly from Experience?
- REINFORCE
- From V and Q ?
- Actor Critic Algorithms
- Deterministic Policy Gradient (DPG)
- From a World-Model $\mathrm{M}(\mathrm{S}, \mathrm{A})=\mathrm{S}^{\prime}$?

Parametrizing π, how do we write π as a neural net?

- For discrete actions?
- For continuous actions?

Typical example - Deep Softmax Policies for discrete actions:

$$
\pi\left(A_{i} \mid S\right)=\frac{\exp \left(\phi\left(A_{i}, S\right)\right)}{\sum_{j} \exp \left(\phi\left(A_{j}, S\right)\right)}
$$

where ϕ is a neural network,
or any other function approximation parametrize by some weights.

Typical example - Gaussian Policies for continuous actions:

Typical example - Gaussian Policies for continuous actions:

$\mu(S), \sigma(S)=\phi(S)$
where ϕ is a neural network, or any other function approximation parametrize by some weights.

$$
\pi(A \mid S)=\mathcal{N}(\mu(S), \sigma(S))
$$

Typical example - Gaussian Policies for

 continuous actions:These are vectors if the action has more than 1 dim , Example: the torques for 4 different motors.
where ϕ is a neural network, or any other function approximation parametrize by some weights.

$$
\pi(A \mid S)=\mathcal{N}(\mu(S), \sigma(S))
$$

Typical example - Gaussian Policies for continuous actions:

$$
\mu(S), \sigma(S)=\phi(S)
$$

where ϕ is a neural network, or any other function approximation parametrize by some weights.

$$
\pi(A \mid S)=\mathcal{N}(\mu(S), \sigma(S))
$$

Act by sampling from the distribution:

$$
A=\mu(S)+\sigma(S) \epsilon, \quad \epsilon \sim \mathcal{N}(0,1)
$$

REINFORCE ALGORITHM

Only

X. M

Gradient-bandit algorithm

- Store action preferences $H_{t}(a)$ rather than action-value estimates $Q_{t}(a)$
- Instead of ε-greedy, pick actions by an exponential soft-max:

$$
\operatorname{Pr}\left\{A_{t}=a\right\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)
$$

- Also store the sample average of rewards as \bar{R}_{t}
- Then update:

$$
H_{t+1}(a)=H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\mathbb{1}_{a=A_{t}}-\pi_{t}(a)\right)
$$

Policy Gradient

- Idea: ascent the gradient of the objective $J(\boldsymbol{\theta})$

$$
\Delta \boldsymbol{\theta}=\alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

- Where $\nabla_{\boldsymbol{\theta}} J(\theta)$ is the policy gradient

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\left(\begin{array}{c}
\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{1}} \\
\vdots \\
\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{n}}
\end{array}\right)
$$

- and α is a step-size parameter
- Stochastic policies help ensure $J(\boldsymbol{\theta})$ is smooth (typically/mostly)

Contextual Bandits Policy Gradient

- Consider a one-step case (a contextual bandit) such that $J(\theta)=\mathbb{E}_{\pi_{\theta}}[R(S, A)]$. (Expectation is over d (states) and π (actions)) (For now, d does not depend on π)
- We cannot sample R_{t+1} and then take a gradient: R_{t+1} is just a number and does not depend on $\boldsymbol{\theta}$!
- Instead, we use the identity:

$$
\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\pi_{\boldsymbol{\theta}}}[R(S, A)]=\mathbb{E}_{\pi_{\boldsymbol{\theta}}}\left[R(S, A) \nabla_{\boldsymbol{\theta}} \log \pi(A \mid S)\right] .
$$

(Proof on next slide)

- The right-hand side gives an expected gradient that can be sampled
- Also known as REINFORCE (Williams, 1992)

The score function trick

Let $r_{s a}=\mathbb{E}[R(S, A) \mid S=s, A=s]$

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\pi_{\boldsymbol{\theta}}}[R(S, A)] & =\nabla_{\boldsymbol{\theta}} \sum_{s} d(s) \sum_{a} \pi_{\boldsymbol{\theta}}(a \mid s) r_{s a} \\
& =\sum_{s} d(s) \sum_{a} r_{s a} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s) \\
& =\sum_{s} d(s) \sum_{a} r_{s a} \pi_{\boldsymbol{\theta}}(a \mid s) \frac{\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s)}{\pi_{\boldsymbol{\theta}}(a \mid s)} \\
& =\sum_{s} d(s) \sum_{a} \pi_{\boldsymbol{\theta}}(a \mid s) r_{s a} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(a \mid s) \\
& =\mathbb{E}_{d, \pi_{\boldsymbol{\theta}}}\left[R(S, A) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A \mid S)\right]
\end{aligned}
$$

Policy Gradient Theorem

- The policy gradient approach also applies to (multi-step) MDPs
- Replaces reward R with long-term return G_{t} or value $q_{\pi}(s, a)$
- There are actually two policy gradient theorems (Sutton et al., 2000): average return per episode \& average reward per step

Policy gradient theorem (episodic)

Theorem

For any differentiable policy $\pi_{\boldsymbol{\theta}}(s, a)$, let d_{0} be the starting distribution over states in which we begin an episode. Then, the policy gradient of $J(\boldsymbol{\theta})=\mathbb{E}\left[G_{0} \mid S_{0} \sim d_{0}\right]$ is

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\mathbb{E}_{\pi_{\boldsymbol{\theta}}}\left[\sum_{t=0}^{T} \gamma^{t} q_{\pi_{\boldsymbol{\theta}}}\left(S_{t}, A_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}\left(A_{t} \mid S_{t}\right) \mid S_{0} \sim d_{0}\right]
$$

where

$$
\begin{aligned}
q_{\pi}(s, a) & =\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma q_{\pi}\left(S_{t+1}, A_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Policy gradient theorem (episodic)

Theorem

For any differentiable policy $\pi_{\boldsymbol{\theta}}(s, a)$, let d_{0} be the starting distribution over states in which we begin an episode. Then, the policy gradient of $J(\boldsymbol{\ell})=\mathbb{E}\left[G_{0} \mid S_{0} \sim d_{0}\right]$ is

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\mathbb{E}_{\pi_{\boldsymbol{\theta}}}\left[\sum_{t=0}^{T} \gamma^{t} q_{\pi_{\boldsymbol{\theta}}}\left(S_{t}, A_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}\left(A_{t} \mid S_{t}\right) \mid S_{0} \sim d_{0}\right]
$$

where

$$
\begin{aligned}
q_{\pi}(s, a) & =\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma q_{\pi}\left(S_{t+1}, A_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Important "Trick" / Identity

$$
\sum_{a} b(s) \nabla_{\boldsymbol{\theta}} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} \sum_{a} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} 1=0 \quad \forall s \in \mathcal{S}
$$

Important "Trick" / Identity

$$
\sum_{a} b(s) \nabla_{\boldsymbol{\theta}} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} \sum_{a} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} 1=0 \quad \forall s \in \mathcal{S}
$$

Or written in a different way:

$$
\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))=\sum_{s, a} b(s) p(s) \pi(a \mid s, \theta) \nabla_{\theta} \log (\pi(a \mid s, \theta)\right.
$$

Important "Trick" / Identity

$$
\sum_{a} b(s) \nabla_{\boldsymbol{\theta}} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} \sum_{a} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} 1=0 \quad \forall s \in \mathcal{S}
$$

Or written in a different way:

$$
\begin{aligned}
\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))\right. & =\sum_{s, a} b(s) p(s) \pi(a \mid s, \theta) \nabla_{\theta} \log (\pi(a \mid s, \theta) \\
& =\sum_{s, a} b(s) p(s) \pi(a \mid s, \theta) \frac{\nabla_{\theta} \pi(a \mid s, \theta)}{\pi(a \mid s, \theta)}
\end{aligned}
$$

Important "Trick" / Identity

$$
\sum_{a} b(s) \nabla_{\boldsymbol{\theta}} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} \sum_{a} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} 1=0 \quad \forall s \in \mathcal{S}
$$

Or written in a different way:

$$
\begin{aligned}
\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))\right. & =\sum_{s, a} b(s) p(s) \pi(a \mid s, \theta) \nabla_{\theta} \log (\pi(a \mid s, \theta) \\
& =\sum_{s, a} b(s) p(s) \pi(a \mid s, \theta) \frac{\nabla_{\theta} \pi(a \mid s, \theta)}{\pi(a \mid s, \theta)} \\
& =\sum_{s, a} b(s) p(s) \nabla_{\theta} \pi(a \mid s, \theta)
\end{aligned}
$$

Important "Trick" / Identity

$$
\sum_{a} b(s) \nabla_{\boldsymbol{\theta}} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} \sum_{a} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} 1=0 \quad \forall s \in \mathcal{S}
$$

Or written in a different way:

$$
\begin{aligned}
\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))\right. & =\sum_{s, a} b(s) p(s) \pi(a \mid s, \theta) \nabla_{\theta} \log (\pi(a \mid s, \theta) \\
& =\sum_{s, a} b(s) p(s) \pi(a \mid s, \theta) \frac{\nabla_{\theta} \pi(a \mid s, \theta)}{\pi(a \mid s, \theta)} \\
& =\sum_{s, a} b(s) p(s) \nabla_{\theta} \pi(a \mid s, \theta) \\
& =0
\end{aligned}
$$

Policy gradient theorem (episodic)

Theorem

For any differentiable policy $\pi_{\boldsymbol{\theta}}(s, a)$, let d_{0} be the starting distribution over states in which we begin an episode. Then, the policy gradient of $J(\boldsymbol{\theta})=\mathbb{E}\left[G_{0} \mid S_{0} \sim d_{0}\right]$ is

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\mathbb{E}_{\pi_{\boldsymbol{\theta}}}\left[\sum_{t=0}^{T} \gamma^{t} q_{\pi_{\boldsymbol{\theta}}}\left(S_{t}, A_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}\left(A_{t} \mid S_{t}\right) \mid S_{0} \sim d_{0}\right]
$$

where

$$
\begin{aligned}
q_{\pi}(s, a) & =\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma q_{\pi}\left(S_{t+1}, A_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Episodic policy gradient theorem - proof $(1 / 3)$

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\nabla_{\theta} J_{\theta}(\pi)=\nabla_{\theta} \mathbb{E}[G(\tau)]=\nabla_{\theta} \sum_{\tau} G(\tau) p(\tau)
$$

Episodic policy gradient theorem - proof $(1 / 3)$

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\begin{aligned}
\nabla_{\theta} J_{\theta}(\pi)=\nabla_{\theta} \mathbb{E}[G(\tau)] & =\nabla_{\theta} \sum_{\tau} G(\tau) p(\tau) \\
& =\sum_{\tau} G(\tau) \nabla_{\theta} p(\tau)
\end{aligned}
$$

Episodic policy gradient theorem - proof (1/3)

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\begin{aligned}
\nabla_{\theta} J_{\theta}(\pi)=\nabla_{\theta} \mathbb{E}[G(\tau)] & =\nabla_{\theta} \sum_{\tau} G(\tau) p(\tau) \\
& =\sum_{\tau} G(\tau) \nabla_{\theta} p(\tau) \\
& =\sum_{\tau} G(\tau) p(\tau) \frac{\nabla_{\theta} p(\tau)}{p(\tau)}
\end{aligned}
$$

Episodic policy gradient theorem - proof (1/3)

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\begin{aligned}
\nabla_{\theta} J_{\theta}(\pi)=\nabla_{\theta} \mathbb{E}[G(\tau)] & =\nabla_{\theta} \sum_{\tau} G(\tau) p(\tau) \\
& =\sum_{\tau} G(\tau) \nabla_{\theta} p(\tau) \\
& =\sum_{\tau} G(\tau) p(\tau) \frac{\nabla_{\theta} p(\tau)}{p(\tau)} \\
& =\sum_{\tau} p(\tau) G(\tau) \nabla_{\theta} \log (p(\tau))
\end{aligned}
$$

Episodic policy gradient theorem - proof (1/3)

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\begin{aligned}
\nabla_{\theta} J_{\theta}(\pi)=\nabla_{\theta} \mathbb{E}[G(\tau)] & =\nabla_{\theta} \sum_{\tau} G(\tau) p(\tau) \\
& =\sum_{\tau} G(\tau) \nabla_{\theta} p(\tau) \\
& =\sum_{\tau} G(\tau) p(\tau) \frac{\nabla_{\theta} p(\tau)}{p(\tau)} \\
& =\sum_{\tau} p(\tau) G(\tau) \nabla_{\theta} \log (p(\tau)) \\
& =\mathbb{E}\left[G(\tau) \nabla_{\theta} \log (p(\tau))\right]
\end{aligned}
$$

Episodic policy gradient theorem - proof $(1 / 3)$

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\nabla_{\boldsymbol{\theta}} \mathbb{E}[G(\tau)]=\mathbb{E}\left[G(\tau) \nabla_{\boldsymbol{\theta}} \log p(\tau)\right]
$$

Episodic policy gradient theorem - proof $(2 / 3)$

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\nabla_{\boldsymbol{\theta}} \mathbb{E}[G(\tau)]=\mathbb{E}\left[G(\tau) \nabla_{\boldsymbol{\theta}} \log p(\tau)\right]
$$

$\nabla_{\boldsymbol{\theta}} \log p(\tau)=$

Episodic policy gradient theorem - proof $(2 / 3)$

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\nabla_{\boldsymbol{\theta}} \mathbb{E}[G(\tau)]=\mathbb{E}\left[G(\tau) \nabla_{\boldsymbol{\theta}} \log p(\tau)\right]
$$

$$
\nabla_{\boldsymbol{\theta}} \log p(\tau)=\nabla_{\boldsymbol{\theta}} \log \left[p\left(S_{0}\right) \pi\left(A_{0} \mid S_{0}\right) p\left(S_{1} \mid S_{0}, A_{0}\right) \pi\left(A_{1} \mid S_{1}\right) \cdots\right]
$$

Episodic policy gradient theorem - proof $(2 / 3)$

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\nabla_{\boldsymbol{\theta}} \mathbb{E}[G(\tau)]=\mathbb{E}\left[G(\tau) \nabla_{\boldsymbol{\theta}} \log p(\tau)\right]
$$

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \log p(\tau) & =\nabla_{\boldsymbol{\theta}} \log \left[p\left(S_{0}\right) \pi\left(A_{0} \mid S_{0}\right) p\left(S_{1} \mid S_{0}, A_{0}\right) \pi\left(A_{1} \mid S_{1}\right) \cdots\right] \\
& =\nabla_{\boldsymbol{\theta}}\left[\log p\left(S_{0}\right)+\log \pi\left(A_{0} \mid S_{0}\right)+\log p\left(S_{1} \mid S_{0}, A_{0}\right)+\log \pi\left(A_{1} \mid S_{1}\right)+\cdots\right]
\end{aligned}
$$

Episodic policy gradient theorem - proof $(2 / 3)$

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\nabla_{\boldsymbol{\theta}} \mathbb{E}[G(\tau)]=\mathbb{E}\left[G(\tau) \nabla_{\boldsymbol{\theta}} \log p(\tau)\right]
$$

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \log p(\tau) & =\nabla_{\boldsymbol{\theta}} \log \left[p\left(S_{0}\right) \pi\left(A_{0} \mid S_{0}\right) p\left(S_{1} \mid S_{0}, A_{0}\right) \pi\left(A_{1} \mid S_{1}\right) \cdots\right] \\
& =\nabla_{\boldsymbol{\theta}}\left[\log p\left(S_{0}\right)+\log \pi\left(A_{0} \mid S_{0}\right)+\log p\left(S_{1} \mid S_{0}, A_{0}\right)+\log \pi\left(A_{1} \mid S_{1}\right)+\cdots\right] \\
& =\nabla_{\boldsymbol{\theta}}\left[\log \pi\left(A_{0} \mid S_{0}\right)+\log \pi\left(A_{1} \mid S_{1}\right)+\cdots\right]
\end{aligned}
$$

Episodic policy gradient theorem - proof $(2 / 3)$

- Consider trajectory $\tau=S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{1}, S_{2}, \ldots$ with return $G(\tau)=\sum_{i} \gamma^{i} R_{i}$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\nabla_{\boldsymbol{\theta}} \mathbb{E}[G(\tau)]=\mathbb{E}\left[G(\tau) \nabla_{\boldsymbol{\theta}} \log p(\tau)\right]
$$

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \log p(\tau) & =\nabla_{\boldsymbol{\theta}} \log \left[p\left(S_{0}\right) \pi\left(A_{0} \mid S_{0}\right) p\left(S_{1} \mid S_{0}, A_{0}\right) \pi\left(A_{1} \mid S_{1}\right) \cdots\right] \\
& =\nabla_{\boldsymbol{\theta}}\left[\log p\left(S_{0}\right)+\log \pi\left(A_{0} \mid S_{0}\right)+\log p\left(S_{1} \mid S_{0}, A_{0}\right)+\log \pi\left(A_{1} \mid S_{1}\right)+\cdots\right] \\
& =\nabla_{\boldsymbol{\theta}}\left[\log \pi\left(A_{0} \mid S_{0}\right)+\log \pi\left(A_{1} \mid S_{1}\right)+\cdots\right]
\end{aligned}
$$

So:

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[G(\tau) \nabla_{\boldsymbol{\theta}} \sum_{t=0}^{T} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Episodic policy gradient theorem - proof $(3 / 3)$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[G(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Episodic policy gradient theorem - proof $(3 / 3)$

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) & =\mathbb{E}_{\pi}\left[G(\tau) \sum_{t=0}^{\boldsymbol{T}} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{\boldsymbol{T}} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
\end{aligned}
$$

Episodic policy gradient theorem - proof $(3 / 3)$

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) & =\mathbb{E}_{\boldsymbol{\pi}}\left[G(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\sum_{k=0}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
\end{aligned}
$$

Episodic policy gradient theorem $-\operatorname{proof}(3 / 3)$

$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[G(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]$

$$
\begin{aligned}
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\sum_{k=0}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\sum_{k=t}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
\end{aligned}
$$

Episodic policy gradient theorem - proof $(3 / 3)$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[G(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
\begin{aligned}
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\sum_{k=0}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\sum_{k=t}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
\end{aligned}
$$

Important "Trick" / Identity

$$
\sum_{a} b(s) \nabla_{\boldsymbol{\theta}} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} \sum_{a} \pi(a \mid s, \boldsymbol{\theta})=b(s) \nabla_{\boldsymbol{\theta}} 1=0 \quad \forall s \in \mathcal{S}
$$

Episodic policy gradient theorem $-\operatorname{proof}(3 / 3)$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[G(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\sum_{k=0}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\sum_{k=t}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Episodic policy gradient theorem $-\operatorname{proof}(3 / 3)$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[G(\tau) \sum_{t=0}^{\boldsymbol{T}} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\sum_{k=0}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\sum_{k=t}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\gamma^{t} \sum_{k=t}^{T} \gamma^{k-t} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

Episodic policy gradient theorem - proof $(3 / 3)$

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[G(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

$$
\begin{aligned}
& =\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\sum_{k=0}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\sum_{k=t}^{T} \gamma^{k} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\pi}\left[\sum_{t=0}^{T}\left(\gamma^{t} \sum_{k=t}^{T} \gamma^{k-t} R_{k+1}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \\
& =\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right] \quad=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T} \gamma^{t} q_{\pi}\left(S_{t}, A_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
\end{aligned}
$$

Episodic policy gradients algorithm

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} \gamma^{t} q_{\pi}\left(S_{t}, A_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- We can sample this, given a whole episode
- Typically, people pull out the sum, and split up this into separate gradients, e.g.,

$$
\Delta \boldsymbol{\theta}_{t}=\gamma^{t} G_{t} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)
$$

such that $\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t} \Delta \boldsymbol{\theta}_{t}\right]=\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\boldsymbol{\pi})$

- Typically, people ignore the γ^{t} term, use $\Delta \boldsymbol{\theta}_{t}=G_{t} \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)$
- This is actually okay-ish — we just partially pretend on each step that we could have started an episode in that state instead. Or if we use $\gamma=1$, this is also ok. (alternatively, view it as a slightly biased gradient)

REINFORCE (Monte-Carlo)

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{\boldsymbol{T}}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_{*}

Input: a differentiable policy parameterization $\pi(a \mid s, \boldsymbol{\theta})$
Algorithm parameter: step size $\alpha>0$
Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d^{\prime}}$ (e.g., to $\mathbf{0}$)
Loop forever (for each episode):
Generate an episode $S_{0}, A_{0}, R_{1}, \ldots, S_{T-1}, A_{T-1}, R_{T}$, following $\pi(\cdot \mid, \boldsymbol{\theta})$
Loop for each step of the episode $t=0,1, \ldots, T-1$:

$$
\begin{align*}
& G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k} \tag{t}\\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha \gamma^{t} G \nabla \ln \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)
\end{align*}
$$

Example: REINFORCE

Example: REINFORCE

Improvements to REINFORCE

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- Can we use our "trick" $\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))=0\right.$ to improve REINFORCE?

Improvements to REINFORCE

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- Can we use our "trick" $\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))=0\right.$ to improve REINFORCE?

$$
\nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t}\left(G_{t}-\bar{G}\right) \nabla_{\theta} \log (\pi)\right]
$$

Improvements to REINFORCE

$$
\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi)=\mathbb{E}_{\boldsymbol{\pi}}\left[\sum_{t=0}^{T}\left(\gamma^{t} G_{t}\right) \nabla_{\boldsymbol{\theta}} \log \pi\left(A_{t} \mid S_{t}\right)\right]
$$

- Can we use our "trick" $\mathbb{E}\left(b(s) \nabla_{\theta} \log (\pi(a \mid s, \theta))=0\right.$ to improve REINFORCE?

$$
\begin{aligned}
& \nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t}\left(G_{t}-\bar{G}\right) \nabla_{\theta} \log (\pi)\right] \\
& \nabla_{\theta} J_{\theta}(\pi)=\mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t}\left(q_{\pi}\left(S_{t}, A_{t}\right)-v_{\pi}\left(S_{t}\right)\right) \nabla_{\theta} \log (\pi)\right]
\end{aligned}
$$

REINFORCE with baseline:

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_{*}$

Input: a differentiable policy parameterization $\pi(a \mid s, \boldsymbol{\theta})$
Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$
Algorithm parameters: step sizes $\alpha^{\boldsymbol{\theta}}>0, \alpha^{\mathbf{w}}>0$ Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d^{\prime}}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to $\mathbf{0}$)

Loop forever (for each episode):
Generate an episode $S_{0}, A_{0}, R_{1}, \ldots, S_{T-1}, A_{T-1}, R_{T}$, following $\pi(\cdot \mid \cdot, \boldsymbol{\theta})$ Loop for each step of the episode $t=0,1, \ldots, T-1$:

$$
\begin{align*}
& G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k} \tag{t}\\
& \delta \leftarrow G-\hat{v}\left(S_{t}, \mathbf{w}\right) \\
& \mathbf{w} \leftarrow \mathbf{w}+\alpha^{\mathbf{w}} \delta \nabla \hat{v}\left(S_{t}, \mathbf{w}\right) \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha^{\boldsymbol{\theta}} \gamma^{t} \delta \nabla \ln \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)
\end{align*}
$$

REINFORCE with baseline:

Actor-Critic Algorithms

- ACTOR: policy π
- CRITIC: value fct V (or Q)

