Model-Based RL

The Dyna-Q Algorithm

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in \mathcal{A}(s)$ Do forever: (a) $S \leftarrow \text{current (nonterminal) state}$ (b) $A \leftarrow \varepsilon$ -greedy(S, Q)(c) Execute action A; observe resultant reward, R, and state, S'(d) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)] \longleftarrow \text{direct RL}$ (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment) \leftarrow model learning (f) Repeat n times: $S \leftarrow$ random previously observed state $A \leftarrow$ random action previously taken in S planning $R, S' \leftarrow Model(S, A)$ $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

Prioritized Dyna-Q

Prioritized sweeping for a deterministic environment

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Loop forever:

- (a) $S \leftarrow \text{current}$ (nonterminal) state
- (b) $A \leftarrow policy(S, Q)$
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Model(S, A) \leftarrow R, S'$
- (e) $P \leftarrow |R + \gamma \max_a Q(S', a) Q(S, A)|.$
- (f) if $P > \theta$, then insert S, A into PQueue with priority P
- (g) Loop repeat n times, while PQueue is not empty:

$$\begin{split} & \bar{S}, A \leftarrow first(PQueue) \\ & R, S' \leftarrow Model(S, A) \\ & Q(S, A) \leftarrow Q(S, A) + \alpha \big[R + \gamma \max_a Q(S', a) - Q(S, A) \big] \\ & \text{Loop for all } \bar{S}, \bar{A} \text{ predicted to lead to } S: \\ & \bar{R} \leftarrow \text{predicted reward for } \bar{S}, \bar{A}, S \\ & P \leftarrow |\bar{R} + \gamma \max_a Q(S, a) - Q(\bar{S}, \bar{A})|. \\ & \text{if } P > \theta \text{ then insert } \bar{S}, \bar{A} \text{ into } PQueue \text{ with priority } P \end{split}$$

Trajectory Sampling

- Trajectory sampling: perform updates along simulated trajectories
- This samples from the on-policy distribution
- Advantages when function approximation is used (Part II)
- Focusing of computation: can cause vast uninteresting parts of the state space to be ignored:

Trajectory Sampling Experiment

- one-step full tabular updates
- uniform: cycled through all stateaction pairs
- on-policy: backed up along simulated trajectories
- 200 randomly generated undiscounted episodic tasks
- 2 actions for each state, each with b equally likely next states
- 0.1 prob of transition to terminal state
- expected reward on each transition selected from mean 0 variance 1 Gaussian

Heuristic Search

- Used for action selection, not for changing a value function (=heuristic evaluation function)
- Backed-up values are computed, but typically discarded
- Extension of the idea of a greedy policy only deeper
- Also suggests ways to select states to backup: smart focusing:

Monte-Carlo Tree Search (e.g. AlphaZero):

Value

Function

- Model-Based RL is most Useful:
 - When Trajectories are more « expensive » than « thinking/ compute ».
 - When environment or reward can change

Using Approximate Models: PlaNet (Hafner et al, 2019)

Only has a model M, no V,Q, or $\boldsymbol{\pi}$

- Building on world models work by Ha and Schmidhuber (2017)
- Learn a model that tries to fit the observations (using a loss function)

https://arxiv.org/pdf/1811.04551.pdf

Using Approximate Models: PlaNet (Hafner et al, 2019)

https://arxiv.org/pdf/1811.04551.pdf

PlaNet Planning Process

Current state belief

Reward model

 $q(s_t \mid o_{\leq t}, a_{\leq t})$

 $p(r_t \mid s_t)$

 $p(s_t \mid s_{t-1}, a_{t-1})$ Transition model

At planning time, only abstract states are generated

Planning using Cross-Entropy-Method Algo

Dreamer (Hafner et al, 2020)

(a) Learn dynamics from experience

(b) Learn behavior in imagination

(c) Act in the environment

Has model M, state value fct V, and policy π , but no Q.

https://arxiv.org/abs/1912.01603

Value Propagation in Dreamer

encode images

imagine ahead

predict rewards

predict values

â	\hat{v}_2 \hat{r}_2 \hat{a}_2	$\hat{v}_3 \hat{r}_3$
	?	· 🟆 🛞
		' VI
	0+-	

Algorithm 1: Dreamer

Ir	itialize dataset D with S random seed episodes.	Model components		
Initialize neural network parameters θ , ϕ , ψ randomly.		Representation	$p_{\theta}(s_t \mid s_{t-1}, a_{t-1}, o_t)$	
W	hile not converged do	Model	$q_{\theta}(s_t \mid s_{t-1}, a_{t-1})$	
	for update step $c = 1C$ do	Reward	$q_{\theta}(r_t \mid s_t)$	
	// Dynamics learning	Policy	$q_{\phi}(a_t \mid s_t)$	
	Draw B data sequences $\{(a_t, o_t, r_t)\}_{t=k}^{k+L} \sim \mathcal{D}.$	Value	$v_{\psi}(s_t)$	
	Compute model states $s_t \sim p_{\theta}(s_t \mid s_{t-1}, a_{t-1}, o_t)$. Update θ using representation learning. // Behavior learning Imagine trajectories $\{(s_{\tau}, a_{\tau})\}_{\tau=t}^{t+H}$ from each s_t . Predict rewards $E(q_{\theta}(r_{\tau} \mid s_{\tau}))$ and values $v_{\psi}(s_{\tau})$. Compute value estimates $V_{\lambda}(s_{\tau})$ via Equation 6. Update $\phi \leftarrow \phi + \alpha \nabla_{\phi} \sum_{\tau=t}^{t+H} V_{\lambda}(s_{\tau})$. Update $\psi \leftarrow \psi - \alpha \nabla_{\psi} \sum_{\tau=t}^{t+H} \frac{1}{2} \ v_{\psi}(s_{\tau}) - V_{\lambda}(s_{\tau})\ ^2$.	Hyper paramet Seed episodes Collect interval Batch size Sequence length Imagination hori Learning rate	ers S C B izon H α	
	// Environment interaction			
$o_1 \leftarrow env.reset()$				
	for time step $t = 11$ do			
	Compute $s_t \sim p_{\theta}(s_t \mid s_{t-1}, a_{t-1}, b_t)$ from instory. Compute $a_t \sim q_{\phi}(a_t \mid s_t)$ with the action model.			
	Add exploration noise to action.			
	$r_t, o_{t+1} \leftarrow \text{env.step}(a_t)$.			
	Add experience to dataset $\mathcal{D} \leftarrow \mathcal{D} \cup \{(o_t, a_t, r_t)_{t=1}^T\}$.			

Dreamer and Planet Results

Model-based methods achieve comparable results to model-free with much less data

Using Approximate Models: MuZero (Schrittwieser et al, Nature, 2020)

- Rather than predict the entire environment, make sure predictions are accurate for values, rewards and actions
- Values are trained with observed returns, actions to mimic the policy obtained through search

https://arxiv.org/pdf/1911.08265.pdf

Execution in MuZero

• Model is rolled forward in Monte Carlo Tree Search-style

MuZero Results

MuZero outperforms R2D2 (best model-free agent at the time)

$$v_t^k \approx \mathbb{E}[u_{t+k+1} + \gamma u_{t+k+2} + \dots | o_1, \dots, o_t, a_{t+1}, \dots, a_{t+k}]$$

$$r_t^k \approx u_{t+k}$$

How do we decide what to do?

• Thinking

 $S_{t+1} = M(S_t, A_t, \theta)$ $A_t = \pi(S_t, \theta)$

• Reflexes/Habits

Why approximate policies rather than values?

- In many problems, the policy is simpler to approximate than the value function
- In many problems, the optimal policy is stochastic
 - e.g., bluffing, POMDPs
- To enable smoother change in policies
- To avoid a search on every step (the max)
- To better relate to biology

Policy Approximation

We want to learn this directly!

- Policy = a function from state to action
 - How does the agent select actions?
 - In such a way that it can be affected by learning?
 - In such a way as to assure exploration?
- Approximation: there are too many states and/or actions to represent all policies
 - To handle large/continuous action spaces

Gradient-bandit algorithm

- Store action preferences $H_t(a)$ rather than action-value estimates $Q_t(a)$
- Instead of ε -greedy, pick actions by an exponential soft-max:

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}} \doteq \pi_t(a)$$

- Also store the sample average of rewards as \bar{R}_t
- Then update:

$$H_{t+1}(a) = H_t(a) + \alpha \left(R_t - \bar{R}_t\right) \left(\mathbf{1}_{a=A_t} - \pi_t(a)\right)$$

I or 0, depending on whether the predicate (subscript) is true

 $\frac{\partial \pi_t(A_t)}{\partial H_t(a)} / \pi_t(A_t)$

How can we learn $\pi(a|s, \theta)$?

How can we learn $\pi(a|s, \theta)$?

• Directly from Experience?

• From V and Q?

• From a World-Model M(S, A) = S'?

How can we learn $\pi(a|s, \theta)$?

- Directly from Experience?
 - REINFORCE
- From V and Q?
 - Actor Critic Algorithms
 - Deterministic Policy Gradient (DPG)
- From a World-Model M(S, A) = S'?