
Model-Based RL

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

The Dyna-Q Algorithm

model learning

planning

direct RL

8.2. INTEGRATING PLANNING, ACTING, AND LEARNING 189

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Do forever:

(a) S current (nonterminal) state

(b) A "-greedy(S,Q)

(c) Execute action A; observe resultant reward, R, and state, S0

(d) Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]
(e) Model(S,A) R,S0

(assuming deterministic environment)

(f) Repeat n times:

S random previously observed state

A random action previously taken in S
R, S0 Model(S,A)
Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]

Figure 8.4: Dyna-Q Algorithm. Model(s, a) denotes the contents of the model
(predicted next state and reward) for state–action pair s, a. Direct reinforce-
ment learning, model-learning, and planning are implemented by steps (d),
(e), and (f), respectively. If (e) and (f) were omitted, the remaining algorithm
would be one-step tabular Q-learning.

Example 8.1: Dyna Maze Consider the simple maze shown inset in
Figure 8.5. In each of the 47 states there are four actions, up, down, right, and
left, which take the agent deterministically to the corresponding neighboring
states, except when movement is blocked by an obstacle or the edge of the
maze, in which case the agent remains where it is. Reward is zero on all
transitions, except those into the goal state, on which it is +1. After reaching
the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.5 shows average learning curves from an ex-
periment in which Dyna-Q agents were applied to the maze task. The initial
action values were zero, the step-size parameter was ↵ = 0.1, and the explo-
ration parameter was " = 0.1. When selecting greedily among actions, ties
were broken randomly. The agents varied in the number of planning steps,
n, they performed per real step. For each n, the curves show the number of
steps taken by the agent in each episode, averaged over 30 repetitions of the
experiment. In each repetition, the initial seed for the random number gen-
erator was held constant across algorithms. Because of this, the first episode
was exactly the same (about 1700 steps) for all values of n, and its data are
not shown in the figure. After the first episode, performance improved for all
values of n, but much more rapidly for larger values. Recall that the n = 0
agent is a nonplanning agent, utilizing only direct reinforcement learning (one-
step tabular Q-learning). This was by far the slowest agent on this problem,
despite the fact that the parameter values (↵ and ") were optimized for it. The

Prioritized Dyna-Q

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

33

Trajectory Sampling

Trajectory sampling: perform updates along simulated trajectories
This samples from the on-policy distribution
Advantages when function approximation is used (Part II)
Focusing of computation:  
can cause vast uninteresting parts of the state space to be ignored:

Initial

states

Reachable under

 optimal control

Irrelevant states

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

34

Trajectory Sampling Experiment

one-step full tabular updates
uniform: cycled through all state-
action pairs
on-policy: backed up along
simulated trajectories
200 randomly generated
undiscounted episodic tasks
2 actions for each state, each with
b equally likely next states
0.1 prob of transition to terminal
state
expected reward on each transition
selected from mean 0 variance 1
Gaussian

146 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

b=10

b=3

b=1
on-policy

uniform
1000 STATES

0

1

2

3

Value of
start state

under
greedy
policy

0 5,000 10,000 15,000 20,000

Computation time, in full backups

0

1

2

3

Value of
start state

under
greedy
policy

0 50,000 100,000 150,000 200,000

Computation time, in full backups

b=1

10,000 STATES

uniform

on-policy

uniform

on-policy

on-policy

uniform

expected updates

expected updates

Figure 8.9: Relative e�ciency of updates distributed uniformly across the state space versus focused on sim-
ulated on-policy trajectories, each starting in the same state. Results are for randomly generated tasks of two
sizes and various branching factors, b.

helps by focusing on states that are near descendants of the start state. If there are many states and
a small branching factor, this e↵ect will be large and long-lasting. In the long run, focusing on the
on-policy distribution may hurt because the commonly occurring states all already have their correct
values. Sampling them is useless, whereas sampling other states may actually perform some useful
work. This presumably is why the exhaustive, unfocused approach does better in the long run, at least
for small problems. These results are not conclusive because they are only for problems generated in
a particular, random way, but they do suggest that sampling according to the on-policy distribution
can be a great advantage for large problems, in particular for problems in which a small subset of the
state–action space is visited under the on-policy distribution.

8.7 Real-time Dynamic Programming

Real-time dynamic programming, or RTDP, is an on-policy trajectory-sampling version of DP’s value-
iteration algorithm. Because it is closely related to conventional sweep-based policy iteration, RTDP
illustrates in a particularly clear way some of the advantages that on-policy trajectory sampling can
provide. RTDP updates the values of states visited in actual or simulated trajectories by means of
expected tabular value-iteration updates as defined by (4.10). It is basically the algorithm that produced
the on-policy results shown in Figure 8.9.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

35

Heuristic Search

Used for action selection, not for changing a value function
(=heuristic evaluation function)
Backed-up values are computed, but typically discarded
Extension of the idea of a greedy policy — only deeper
Also suggests ways to select states to backup: smart
focusing:

Monte-Carlo Tree Search (e.g. AlphaZero):

Conclusion

Value
Function

Experience

Model

Policy

Interaction
with Environment

Mod
el

Le
arn

ing

Conclusion

Value
Function

Experience

Model

Policy

Interaction
with Environment

Mod
el

Le
arn

ing Direct Planning

Greedific
ation

Conclusion

Value
Function

Experience

Model

Policy

Interaction
with Environment

Mod
el

Le
arn

ing Direct Planning

Sim
ula

ted
 Exp

eri
en

ce

Greedific
ation

Direct RL

Conclusion

Value
Function

Experience

Model

Policy

Interaction
with Environment

Mod
el

Le
arn

ing Direct Planning

Sim
ula

ted
 Exp

eri
en

ce

?

Greedific
ation

Direct RL

Conclusion

Model-Based RL is most Useful:

When Trajectories are more
« expensive » than « thinking/
compute ».

When environment or reward can
change

Using Approximate Models: PlaNet (Hafner et al, 2019)

• Building on world models work by Ha and Schmidhuber (2017)

• Learn a model that tries to fit the observations (using a loss function)

17

https://arxiv.org/pdf/1811.04551.pdf

Only has a model M, no V,Q, or π

Using Approximate Models: PlaNet (Hafner et al, 2019)

• Building on world models work by Ha and Schmidhuber (2017)

• Learn a model that tries to fit the observations (using a loss function)

17

https://arxiv.org/pdf/1811.04551.pdf

Losses for NeuralNet Training

PlaNet Planning Process

• At planning time, only abstract states are generated

18

At planning time, only abstract states are generated

Planning using Cross-Entropy-Method Algo

Dreamer (Hafner et al, 2020)

19

https://arxiv.org/abs/1912.01603
Has model M, state value fct V, and policy π, but no Q.

Value Propagation in Dreamer

20

Policy

Model

Dreamer and Planet Results

Model-based methods achieve comparable results to model-free with much less data

21

Using Approximate Models: MuZero (Schrittwieser et al,
Nature, 2020)

• Rather than predict the entire environment, make sure predictions are
accurate for values, rewards and actions

• Values are trained with observed returns, actions to mimic the policy
obtained through search

22

https://arxiv.org/pdf/1911.08265.pdf

Execution in MuZero

• Model is rolled forward in Monte Carlo Tree Search-style

23

MuZero Results

606 | Nature | Vol 588 | 24/31 December 2020

Article

function Ev u γu o o a a≈ [+ + …| , …, , , …,]t
k

t k t k t t t k+ +1 + +2 1 +1 + and, for k
> 0, also the immediate reward r u≈t

k
t k+ , where u. is the true, observed

reward, π is the policy used to select real actions and γ is the discount
function of the environment.

Internally, at each time step t (subscripts t are suppressed for simplic-
ity), the model is represented by the combination of a representation
function, a dynamics function and a prediction function. The dynamics
function gθ, is a recurrent process, rk, sk = gθ(sk−1, ak), that computes, at
each hypothetical step k, an immediate reward rk and an internal state
sk. It mirrors the structure of an MDP model that computes the expected
reward and state transition for a given state and action21. However,
unlike traditional approaches to model-based RL11, this internal state
sk has no semantics of environment state attached to it—it is simply the
hidden state of the overall model and its sole purpose is to accurately
predict relevant, future quantities: policies, values and rewards. In this
paper, the dynamics function is represented deterministically; the
extension to stochastic transitions is left for future work. A prediction
function fθ computes the policy and value functions from the internal
state sk, pk, vk = fθ(sk), akin to the joint policy and value network of Alp-
haZero. A representation function hθ initializes the ‘root’ state s0 by
encoding past observations, s0 = hθ(o1, ..., ot); again, this has no special
semantics beyond its support for future predictions.

Given such a model, it is possible to search over hypothetical future
trajectories a1, ..., ak given past observations o1, ..., ot. For example, a
naive search could simply select the k-step action sequence that max-
imizes the value function. More generally, we may apply any MDP plan-
ning algorithm to the internal rewards and state space induced by the
dynamics function. Specifically, we use an MCTS algorithm similar to
AlphaZero’s search, generalized to allow for single-agent domains and
intermediate rewards (Methods). The MCTS algorithm may be viewed
as a search policy πt = P[at+1|o1, ..., ot] and search value function νt ≈ E
[ut+1 + γut+2 +...|o1, ..., ot] that both selects an action and predicts cumu-
lative reward given past observations o1, ..., ot. At each internal node,
it makes use of the policy, value function and reward estimate produced

by the current model parameters θ, and combines these values together
using lookahead search to produce an improved policy πt and improved
value function νt at the root of the search tree. The next action at+1 ≈ πt
is then chosen by the search policy.

All parameters of the model are trained jointly to accurately match
the policy, value function and reward prediction, for every hypo-
thetical step k, to three corresponding targets observed after k actual
time steps have elapsed. Similarly to AlphaZero, the first objective is
to minimize the error between the actions predicted by the policy
pt

k and by the search policy πt+k. Also like AlphaZero, value targets
are generated by playing out the game or MDP using the search
policy. However, unlike AlphaZero, we allow for long episodes with
discounting and intermediate rewards by computing an n-step return
zt that bootstraps n steps into the future from the search value,
zt = ut+1 + γut+2 + ... + γn−1ut+n + γnνt+n. Final outcomes {lose, draw, win} in
board games are treated as rewards ut � {−1, 0, +1} occurring at the
final step of the episode. Specifically, the second objective is to min-
imize the error between the value function vt

k and the value target,
zt+k. The third objective is to minimize the error between the predicted
immediate reward r t

k and the observed immediate reward ut+k. Finally,
an L2 regularization term is also added, scaled by a constant c, leading
to the overall loss

∑ ∑ ∑l θ l π p l z v l u r c θ() = (,) + (,) + (,) + || || , (1)t
k

K

t k t
k

k

K

t k t
k

k

K

t k t
k

=0

p
+

=0

v
+

=1

r
+

2

where lp, lv and lr are loss functions for policy, value and reward, respec-
tively. Supplementary Fig. 2 summarizes the equations governing
how the MuZero algorithm plans, acts and learns. We note that for
chess, Go and shogi, the same squared error loss as AlphaZero is used
for rewards and values. A cross-entropy loss was found to be more
stable than a squared error when encountering rewards and values
of variable scale in Atari. Cross-entropy was used for the policy loss
in both cases.

Chess Shogi Go Atari

5,000

4,000

3,000

2,000

1,000

0
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps
0 0.2 0.4 0.6 0.8 1.0

Millions of training steps

El
o

5,000

4,000

3,000

2,000

1,000

0

R
ew

ar
d

Fig. 2 | Evaluation of MuZero throughout training in chess, shogi, Go and
Atari. The x axis shows millions of training steps. For chess, shogi and Go, the y
axis shows Elo rating, established by playing games against AlphaZero using
800 simulations per move for both players. MuZero’s Elo is indicated by the
blue line and AlphaZero’s Elo is indicated by the horizontal orange line. For
Atari, mean (full line) and median (dashed line) human normalized scores

across all 57 games are shown on the y axis. The scores for R2D219 (the previous
state of the art in this domain, based on model-free RL) are indicated by the
horizontal orange lines. Performance in Atari was evaluated using 50
simulations every fourth time step, and then repeating the chosen action four
times, as in previous work39. Supplementary Fig. 1 studies the repeatability of
training in Atari.

MuZero outperforms R2D2 (best model-free agent at the time)

24

How do we decide what to do?

• Emotions/Intuition :

• Thinking

• Reflexes/Habits

Vt(s) Qt(s, a)

St+1 = M(St, At, θ)

At = π(St, θ)

Why approximate policies
rather than values?

• In many problems, the policy is simpler to
approximate than the value function

• In many problems, the optimal policy is
stochastic

• e.g., bluffing, POMDPs

• To enable smoother change in policies

• To avoid a search on every step (the max)

• To better relate to biology

Policy Approximation

• Policy = a function from state to action

• How does the agent select actions?

• In such a way that it can be affected by learning?

• In such a way as to assure exploration?

• Approximation: there are too many states and/or actions to represent all
policies

• To handle large/continuous action spaces

⇡(a|s,✓)
We want to learn this directly!

Gradient-bandit algorithm

• Store action preferences
rather than action-value estimates

• Instead of 𝜀-greedy, pick actions by an exponential soft-max:

• Also store the sample average of rewards as

• Then update:

38 CHAPTER 2. MULTI-ARM BANDITS

�-greedy � = 0.1

UCB c = 2

Average
reward

Steps

Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described

38 CHAPTER 2. MULTI-ARM BANDITS

�-greedy � = 0.1

UCB c = 2

Average
reward

Steps

Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described

40 CHAPTER 2. MULTI-ARM BANDITS

The calculations showing this require only beginning calculus, but take several
steps. If you are mathematically inclined, then you will enjoy the rest of this section
in which we go through these steps. (And if you are not, then you may skip the rest
of this section without preventing understanding of the rest of this book.) First we
take a closer look at the exact performance gradient:

@E[Rt]

@Ht(a)
=

@

@Ht(a)

"
X

b

⇡t(b)q⇤(b)

#

=
X

b

q⇤(b)
@⇡t(b)

@Ht(a)

=
X

b

�
q⇤(b) � Xt

� @⇡t(b)

@Ht(a)
,

where Xt can be any scalar that does not depend on b. We can include it here because
the gradient sums to zero over all the actions,

P
b

@⇡t(b)
@Ht(a) = 0. As Ht(a) is changed,

some actions’ probabilities go up and some down, but the sum of the changes must
be zero because the sum of the probabilities must remain one.

@E[Rt]

@Ht(a)
=

X

b

⇡t(b)
�
q⇤(b) � Xt

� @⇡t(b)

@Ht(a)
/⇡t(b)

The equation is now in the form of an expectation, summing over all possible values
b of the random variable At, then multiplying by the probability of taking those
values. Thus:

@E[Rt]

@Ht(a)
= E

�
q⇤(At) � Xt

�@⇡t(At)

@Ht(a)
/⇡t(At)

�

= E
�

Rt � R̄t

�@⇡t(At)

@Ht(a)
/⇡t(At)

�
,

where here we have chosen Xt = R̄t and substituted Rt for q⇤(At), which is permitted
because E[Rt] = q⇤(At) and because all the other factors are non-random. Shortly

we will establish that @⇡t(b)
@Ht(a) = ⇡t(b)

�
1a=b � ⇡t(a)

�
, where 1a=b is defined to be 1 if

a = b, else 0. Assuming that for now, we have

@E[Rt]

@Ht(a)
= E

⇥�
Rt � R̄t

�
⇡t(At)

�
1a=At

� ⇡t(a)
�
/⇡t(At)

⇤

= E
⇥�

Rt � R̄t

��
1a=At

� ⇡t(a)
�⇤

.

Recall that our plan has been to write the performance gradient as an expectation of
something that we can sample on each step, as we have just done, and then update
on each step proportional to the sample. Substituting a sample of the expectation
above for the performance gradient in (2.11) yields:

Ht+1(a) = Ht(a) + ↵
�
Rt � R̄t

��
1a=At

� ⇡t(a)
�
, 8a,

2.6. UPPER-CONFIDENCE-BOUND ACTION SELECTION 37

Exercise 2.4 The results shown in Figure 2.4 should be quite reliable because they
are averages over 2000 individual, randomly chosen 10-armed bandit tasks. Why,
then, are there oscillations and spikes in the early part of the curve for the optimistic
method? In other words, what might make this method perform particularly better
or worse, on average, on particular early steps?

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At

.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), Nt(a) denotes the number of times that
action a has been selected prior to time t (the denominator in (2.1)), and the number
c > 0 controls the degree of exploration. If Nt(a) = 0, then a is considered to be a
maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.
The quantity being max’ed over is thus a sort of upper bound on the possible true
value of action a, with the c parameter determining the confidence level. Each time
a is selected the uncertainty is presumably reduced; Nt(a) is incremented and, as it
appears in the denominator of the uncertainty term, the term is decreased. On the
other hand, each time an action other than a is selected t is increased; as it appears in
the numerator the uncertainty estimate is increased. The use of the natural logarithm
means that the increase gets smaller over time, but is unbounded; all actions will
eventually be selected, but as time goes by it will be a longer wait, and thus a lower
selection frequency, for actions with a lower value estimate or that have already been
selected more times.

Results with UCB on the 10-armed testbed are shown in Figure 2.5. UCB will
often perform well, as shown here, but is more di�cult than "-greedy to extend
beyond bandits to the more general reinforcement learning settings considered in the
rest of this book. One di�culty is in dealing with nonstationary problems; something
more complex than the methods presented in Section 2.4 would be needed. Another
di�culty is dealing with large state spaces, particularly function approximation as
developed in Part II of this book. In these more advanced settings there is currently

38 CHAPTER 2. MULTI-ARM BANDITS

�-greedy � = 0.1

UCB c = 2

Average
reward

Steps

Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described

1 or 0, depending on whether
the predicate (subscript) is true

�

t

�@⇡t(At)

@Ht(a)
/⇡t(At)

�

How can we learn ?⇡(a|s,✓)

How can we learn ?
Directly from Experience?

From V and Q?

From a World-Model M(S, A) = S’ ?

⇡(a|s,✓)

How can we learn ?
Directly from Experience?

REINFORCE

From V and Q?

Actor Critic Algorithms

Deterministic Policy Gradient (DPG)

From a World-Model M(S, A) = S’ ?

⇡(a|s,✓)

