Model-Based RL

How do we decide what to do?

» Emotions/Intuition @ ‘/;5 (8) Qt (37 CL)

- Thinking Sp1 = M(S,, AL, 0)

EEEEEEEE
RRRRRRRR

A = (S, 0)

* Reflexes/Habits _’q./

Chapter 8: Planning and Learning

Objectives of this chapter:

@ To think more generally about uses of environment models
@ Integration of (unifying) planning, learning, and execution
@ “Model-based reinforcement learning”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Paths to a policy

M(S, A)
Model
learning,se=—
y
Environmental , Simulation Direct
Experience planning

interaction

Direct RL

methods Value

. V(S), Q(A,
‘unction (S), QA S)

Model-based RL

Paths to a policy

M(S, A)
Model)
learning,se=—
Uik s . : Direct
Environmental Simulation)
planning

interaction

Value
‘unction

V(S), Q(A, S)

Why Going Beyond Model-Free RL?

e Models provide “understanding” of the world (cf physics, causality...)

e Even if some parts of the problem change, others stay the same, which
can help with faster learning

Eg. Reward may change but the layout and dynamics of thee world may
be thee same

e Models can be used to “dream” up new experiences, and use them to
update the value / policy

What should the model predict?

e Clearly we need the reward: easy problem, solved by regression
e \What about the prediction of the next state?

1. Distribution model. construct a distribution over next states / features

)\

OO

2. Sample model: have the ability to generate sampled next states /
features

O

3. Expectation model: predict the expected next state / feature

|

O

DP with Distribution models

@ In Chapter 4, we assumed access to a model of the world

e These models describe all possibilities and their
probabilities
e We call them Distribution models
—e.g,p(s’,rls,a)foralls,a,s’, r
@ In Dynamic Programing we sweep the states:

e 1n each state we consider all the possible rewards and next state
values

e the model describes the next states and rewards and their
associated probabilities

e using these values to update the value function

@ In Policy Iteration, we then improve the policy using the
computed value function

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

Sample Models

@ Model: anything the agent can use to predict how the
environment will respond to its actions

@ Sample model, a.k.a. a simulation model
e produces sample experiences for given s, a
— sampled according to the probabilities
e allows reset, exploring starts
e often much easier to come by

@ Both types of models can be used mimic or simulate
experience: to produce hypothetical experience

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Planning

@ Planning: any computational process that uses a model to
create or improve a policy

model planning

» policy

@ We take the following (unusual) view:

e update value functions using both real and simulated
experience

e all state-space planning methods involve computing
value functions, either explicitly or implicitly

e they all apply updates from simulated experience

_ simulated updates
experience

model » values » policy

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Planning Cont.

@ Classical DP methods are state-space planning methods
@ Heuristic search methods are state-space planning methods

@ A planning method based on Q-learning:

Random-sample one-step tabular Q-planning

Do forever:
1. Select a state, S € §, and an action, A € A(s), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S":
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]

Environment program
Experiment program
Agent program

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Paths to a policy

Direct

Environmental _ .
planning

interaction

Direct RL o
methods] Value
vanction

Pyna

Learning, Planning, and Acting

@ Two uses of real experience:

. . value/policy

e model learning: to improve

the model .

acting

® fhrect RL: to directly | planning direct

improve the value function RL

and policy

@ Improving value function and/or model experience

policy via a model is sometimes
called indirect RL. Here, we _/
call it planning. model

learning

The Dyna Architecture

VA

/ \
P/olicy/value funct\ions

planning update

direct RL simulated

update experience
P /" real I
_experience h
model seare |
learning contro

Model

Agent

[Environ ment]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

The Dyna-Q Algorithm

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Do forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Execute action A; observe resultant reward, R, and state, S’
(d) O(S, A) « Q(S, A) + a[R + v max, Q(S', a) — Q(S, A)] «—— direct RL
(e) Model(S,A) < R, S’ (assuming deterministic environment)<«— model learning
(f) Repeat n times:
S < random previously observed state
A < random action previously taken in S «— planning
R,S" «+ Model(S, A)
Q(S, A) < Q(S,A) + a[R + ymax, Q(S',a) — Q(S, A)]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

A simple maze: problem description

@ 4/ states, 4 actions, deterministic dynamics

@ Obstacles and walls

@ Rewards are 0 except +1 for transition into goal state
@ v =0.95, discounted episodic task

@ Agent parameters:
e 0=0.1,e=0.1

e Initial action-values were all zero

@ Let’s compare one-step tabular Q-learning and Dyna-Q
with different values of n

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Dyna-(Q on a Simple Maze

actions

rewards = 0 until goal, when =1

WITHOUT PLANNING (n=0)

WITH PLANNING (n=50)

G

—

—-

t =

t

\
-

\

[=

t
!

-

i
{
i
}

G
!
}
}
}

800
S
600 .
Steps 0 planning steps
per 400- (direct RL only)
Bpisode 5 planning steps
50 planning steps
200
144
| | T T T
2 10 20 30 40
Episodes

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

50

14

Prioritized Sweeping

@ Which states or state-action pairs should be generated
during planning?

@ Work backwards from states whose values have just
changed:

e Maintain a queue of state-action pairs whose values
would change a lot if backed up, prioritized by the size
of the change

e When a new backup occurs, insert predecessors
according to their priorities

e Always perform backups from first in queue
@ Moore & Atkeson 1993; Peng & Williams 1993
@ improved by McMahan & Gordon 2005; Van Seijen 2013

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 76

Prioritized Dyna-Q

Prioritized sweeping for a deterministic environment

Initialize Q(s,a), Model(s,a), for all s,a, and PQueue to empty
Loop forever:
(a) S < current (nonterminal) state
(b) A « policy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Model(S,A) + R, S’
(e) P « |R+ ymax, Q(S’,;a) — Q(S, A)|.
(f) if P > 0, then insert S, A into PQueue with priority P
(g) Loop repeat n times, while PQueue is not empty:
S, A « first(PQueue)
R,S’ + Model(S, A)
Q(S,A) < Q(S,A) + a[R + ymax, Q(S5’,a) — Q(S, A)]
Loop for all S, A predicted to lead to S:
R + predicted reward for S, A, S
P + |R + ymax, Q(S,a) — Q(S, A)|.
if P > 6 then insert S, A into PQueue with priority P

Large maze and random search control

Random Dyna

10000
8000 —
= Largest—1st Dyna
S 8 6000
o
-
2{ 4000 -
Q
et
} n Focused Dyna
| 2000-
I
53
10 100 1000 10000 100000 1000000

No. Backups

(Peng and Williams, 1993)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 75

Prioritized Sweeping vs. Dyna-Q

Backups
until
optimal
solution

Both use n=5 backups per
environmental interaction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

ez

/ Prioritized
/ sweeping

| | | | | | | |
47 94 186 376 752 1504 3008 6016

Gridworld size (#states)
78

Special case: Linear Expectation Models

start state vector

predicted

transition model F, = |0
next-state vector

reward model ba predicted reward

® states are represented by feature vectors
s — @5 St — Oy c R"

® the model is a set of matrix-vector pairs

M = {Fa7 ba}aEActions expected transition
matrix

E{¢pii1|dr = ¢,a; = a} = Fud
E{’f‘t+1‘¢t = ¢,a4 = CL} = bz(ﬁ

expected reward
vector

26

Linear Dyna

e Use a linear model and a linear parametrization of the value function

e Note that the features ¢ could be non-linear (eg coming from a convnet)
but they must be fixed

e In this case, value iteration using an expectation model is the same as
using a full model

27

Trajectory Sampling

@ Trajectory sampling: perform updates along simulated trajectories
@ This samples from the on-policy distribution
@ Advantages when function approximation is used (Part II)

@ Focusing of computation:
can cause vast uninteresting parts of the state space to be ignored:

Initial

states

Reachable under Irrelevant states

optimal control

Trajectory Sampling Experiment

one-step full tabular updates
. 1000 STATES
uniform: cycled through all state- —
action pairs start state |
. under on-policy
on-policy: backed up along Ty |

uniform

simulated trajectories

on-policy

200 randomly generated 0
undiscounted episodic tasks Computation time, in expected updates

on-polic
o

uniform

2 actions for each state, each with
b equally likely next states

0.1 prob of transition to terminal 10,000 STATES

State Value of
start state

S
1

under

expected reward on each transition greedy

. olic
selected from mean O variance 1 Potey
Gaussian

0 SO,IOOO 1002000 1 502000 200:000
Computation time, in expected updates

Heuristic Search

@ Used for action selection, not for changing a value function
(=heuristic evaluation function)

@ Backed-up values are computed, but typically discarded
@ Extension of the 1dea of a greedy policy — only deeper

@ Also suggests ways to select states to backup: smart
focusing:

0 Y AN /R
R 9

Conclusion

Interaction
with Environment> Experience Vu | Ue

Function

Conclusion

wittireléc:\i/ci)::)n ment o
d Experience

Conclusion

wittireléc:\i/ci)::)n ment o
d Experience

Conclusion

wittireléc:\i/ci)::)n ment o
d Experience

Conclusion

@ Model-Based RL 1s most Useful:

@ When Trajectories are more
« expensive » than « thinking/
compute ».

@ When environment or reward can
change

Using Approximate Models: PlaNet (Hafner et al, 2019)

> 1
-

a L a a

[#

<z
[LI ’ m L]

SZ

rT
S

o, 3, o, 5, o, 5, o, 3,

e Building on world models work by Ha and Schmidhuber (2017)

e Learn a model that tries to fit the observations (using a loss function)

17

PlaNet Planning Process

@ O o
: ‘ }
e e
1-®—1-0—1-0
o @] o
: 2 2
|| | ||

\ L T T T
o1-¢—1-0—1-0—I-@

B B

Q O .‘

A A ')
L T o, -
1-@— I*.—I*Q

e At planning time, only abstract states are generated

18

Model True Model True

Dreamer (Hafner et al, 2020)

encode images ‘ & ‘ ‘

compute states

| AN AN AN
predict rewards ‘ ‘ ‘ ‘ ‘ ‘

I] 1 I i]
‘ reconstruction .] . Lo . I o
Suil B 2@0 Eoal B 092 Eoal
0O O 0
1
Input Images Future Qutcomes

25 30 35 40 45

Value Propagation in Dreamer

A encode images

o . .
: imagine ahead
e 9

predict rewards

predict values

Dreamer and Planet Results

Model-based
28 hours of interaction

{ B Dreamer (823) Model-free { DAPG (786)
B PlaNet (332) 23 days of interaction B A3C (243)

Reward

na
na

U ML 1 UL M,

QW =T QS M DY B T BT S HED TE QQG S0 RS BT DY B QG

— — - Q) - — — — = (V] — —

SE 2532 S5 L 2T AT A5 S a3 R2 RS2 55 g 23 25 2L wa 22 23
=2 U=E = 23 5 el 39X ¢ o~ = =1 &= o ek o

ES F5 T0 3% £ 3% 22 BF 3T ET B EEZE ER 3T 2T Fa E¥ E E .S

R =" 8§42 3§ 2786 T3 §iiiFez & §9% 2 2;

o = 1 5 = Mo wwnn E b"—"‘ v

= =4 = & - — Z

Model-based methods achieve comparable results to model-free with much less data

Using Approximate Models: MuZero (Schrittwieser et al,

Nature, 2020)

1 1

p;,V 0 p AY;
A A
f f
4\
h

©
T

e Rather than predict the entire environment, make sure predictions are

accurate for values, rewards and actions

e Values are trained with observed returns, actions to mimic the policy

obtained through search

22

Execution in MuZero

e Model is rolled forward in Monte Carlo Tree Search-style

23

MuZero Results

Shogi Go
2 HESETHEHHE
s g
| % | % | % || %% | %%
| AL
EEIESEAE RS
5,000 —_—
4,000
3,000
2,000 -
1,000
0O 02 04 06 08 1.0 0O 02 04 06 08 10 0O 02 04 06 08 1.0 0O 02 04 06 08 1.0
Millions of training steps Millions of training steps Millions of training steps Millions of training steps

MuZero outperforms R2D2 (best model-free agent at the time)

24

