
Sequential decision making
Control: 

Deep Q-Learning (DQN) 
and Eligibility Trace



Value function approximation (VFA) for 
control

St ✓ q̂(St, At,✓)

Ut

At



3

Monte Carlo:

TD:
Use Vt to estimate remaining return

n-step TD:
2 step return:

n-step return:

Recall: Different Targets

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

7.1. N -STEP TD PREDICTION 151
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t
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G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt+1(St+2),

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 +
· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods



Recall: Stochastic Gradient Descent 
(SGD)
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Linear case:

Different RL algorithms provide different targets! 
But share the “semi-gradient” aspect



(Semi-)gradient methods carry over to control  

update target, e.g., Ut = Gt Ut = Rt+1 + �q̂(St+1, At+1,✓t)(MC) (Sarsa)
Ut = Rt+1 + �

X

a

⇡(a|St+1)q̂(St+1, a,✓t)

(Expected Sarsa)
(DP)
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action-value prediction is

✓t+1
.
= ✓t + ↵

h
Ut � q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.1)

For example, the update for the one-step Sarsa method is

✓t+1
.
= ✓t + ↵

h
Rt+1 + �q̂(St+1, At+1, ✓t)� q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy,
this method converges in the same way that TD(0) does, with the same kind of error
bound (9.14).

To form control methods, we need to couple such action-value prediction methods
with techniques for policy improvement and action selection. Suitable techniques
applicable to continuous actions, or to actions from large discrete sets, are a topic of
ongoing research with as yet no clear resolution. On the other hand, if the action set
is discrete and not too large, then we can use the techniques already developed in
previous chapters. That is, for each possible action a available in the current state St,
we can compute q̂(St, a, ✓t) and then find the greedy action A⇤

t = argmaxa q̂(St, a, ✓t).
Policy improvement is then done (in the on-policy case treated in this chapter) by
changing the estimation policy to a soft approximation of the greedy policy such as
the "-greedy policy. Actions are selected according to this same policy. Pseudocode
for the complete algorithm is given in the box.

Example 10.1: Mountain–Car Task Consider the task of driving an underpow-
ered car up a steep mountain road, as suggested by the diagram in the upper left
of Figure 10.1. The di�culty is that gravity is stronger than the car’s engine, and
even at full throttle the car cannot accelerate up the steep slope. The only solution
is to first move away from the goal and up the opposite slope on the left. Then, by

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

S, A initial state and action of episode (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

If S0 is terminal:
✓  ✓ + ↵

⇥
R� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

Go to next episode
Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
✓  ✓ + ↵

⇥
R + �q̂(S0, A0, ✓)� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

S  S0

A A0

• Always learn the action-value function of the current policy  

• Always act near-greedily wrt the current action-value estimates 

• The learning rule is:

in the usual on-policy GPI way

Ut =
X

s0,r

p(s0, r|St, At)
h
r + �

X

a0

⇡(a0|s0)q̂(s0, a0,✓t)
i
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Recall: Double DQN

B A
rightwrong

0. . .

N(�0.1, 1)

0

Q-learning
Double
Q-learning

Episodes
1001 200 300

%
Wrong
actions

100%

75%

50%

25%

5%
0

optimal

Double Q-learning:

START

146 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

and � = 1).
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Figure 6.8: Comparison of Q-learning and Double Q-learning on a simple episodic MDP
(shown inset). Q-learning initially learns to take the left action much more often than the right
action, and always takes it significantly more often than the 5% minimum probability enforced
by "-greedy action selection with " = 0.1. In contrast, Double Q-learning is essentially
una↵ected by maximization bias. These data are averaged over 10,000 runs. The initial
action-value estimates were zero. Any ties in "-greedy action selection were broken randomly.

Are there algorithms that avoid maximization bias? To start, consider a bandit
case in which we have noisy estimates of the value of each of many actions, obtained
as sample averages of the rewards received on all the plays with each action. As we
discussed above, there will be a positive maximization bias if we use the maximum
of the estimates as an estimate of the maximum of the true values. One way to view
the problem is that it is due to using the same samples (plays) both to determine
the maximizing action and to estimate its value. Suppose we divided the plays in
two sets and used them to learn two independent estimates, call them Q1(a) and
Q2(a), each an estimate of the true value q(a), for all a 2 A. We could then use
one estimate, say Q1, to determine the maximizing action A⇤ = argmaxa Q1(a), and
the other, Q2, to provide the estimate of its value, Q2(A⇤) = Q2(argmaxa Q1(a)).
This estimate will then be unbiased in the sense that E[Q2(A⇤)] = q(A⇤). We can
also repeat the process with the role of the two estimates reversed to yield a second
unbiased estimate Q1(argmaxa Q2(a)). This is the idea of doubled learning. Note
that although we learn two estimates, only one estimate is updated on each play;
doubled learning doubles the memory requirements, but is no increase at all in the
amount of computation per step.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
h
Rt+1 +�Q2

�
St+1, argmax

a

Q1(St+1, a)
�
�Q1(St, At)

i
.
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Rainbow model, Hessel et al, 2017)
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Figure 10.3: One-step vs multi-step performance of semi-gradient Sarsa on the Mountain
Car task. Good step sizes were used: ↵ = 0.5/8 for n = 1 and ↵ = 0.3/8 for n = 8.

with G(n)
t

.
= Gt if t + n � T , as usual. The n-step update equation is

✓t+n

.
= ✓t+n�1+↵

h
G(n)

t
� q̂(St, At, ✓t+n�1)

i
rq̂(St, At, ✓t+n�1), 0  t < T. (10.4)

Complete pseudocode is given on the next page.

As we have seen before, performance is best if an intermediate level of bootstrap-
ping is used, corresponding to an n larger than 1. Figure 10.3 shows how this
algorithm tends to learn faster and obtain a better asymptotic performance at n=8
than at n = 1 on the Mountain Car task. Figure 10.4 shows the results of a more
detailed study of the e↵ect of the parameters ↵ and n on the rate of learning on this
task.

Exercise 10.2 Give pseudocode for semi-gradient one-step Expected Sarsa for con-
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Figure 10.4: E↵ect of the ↵ and n on early performance of n-step semi-gradient Sarsa and
tile-coding function approximation on the Mountain Car task. As usual, an intermediate
level of bootstrapping (n = 4) performed best. These results are for selected ↵ values, on a
log scale, and then connected by straight lines. The standard errors ranged from 0.5 (less
than the line width) for n = 1 to about 4 for n = 16 (why these results are more variable),
so the main e↵ects are all statistically significant.
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Recall n-step targets

For example, in the episodic case,  
with linear function approximation:

2-step target:

n-step target:
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state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt+1(St+2),

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 +
· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods

G(2)
t

.
= Rt+1 + �Rt+2 + �2✓>

t+1�t+2

G(n)
t

.
= Rt+1 + · · ·+ �n�1Rt+n + �n✓>

t+n�1�t+n

with



Any set of update targets can be 

For example, half a 2-step plus half a 4-
step

Called a compound backup

Draw each component

Label with the weights for that 

A compound backup
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⇤Exercise 7.3 In the lower part of Figure 7.2, notice that the plot for n = 3 is
di↵erent from the others, dropping to low performance at a much lower value of
↵ than similar methods. In fact, the same was observed for n = 5, n = 7, and
n = 9. Can you explain why this might have been so? In fact, we are not sure
ourselves. See http://www.cs.utexas.edu/~ikarpov/Classes/RL/RandomWalk/
for an attempt at a thorough answer by Igor Karpov.

7.2 The Forward View of TD(�)

Backups can be done not just toward any n-step return, but toward any average
of n-step returns. For example, a backup can be done toward a return that
is half of a two-step return and half of a four-step return: Gave

t = 1
2G

(2)
t +

1
2G

(4)
t . Any set of returns can be averaged in this way, even an infinite set,

as long as the weights on the component returns are positive and sum to
1. The overall return possesses an error reduction property similar to that of
individual n-step returns (7.2) and thus can be used to construct backups with
guaranteed convergence properties. Averaging produces a substantial new
range of algorithms. For example, one could average one-step and infinite-
step backups to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with
DP backups to get a simple combination of experience-based and model-based
methods (see Chapter 8).

A backup that averages simpler component backups in this way is called
a complex backup. The backup diagram for a complex backup consists of the
backup diagrams for each of the component backups with a horizontal line
above them and the weighting fractions below. For example, the complex
backup mentioned above, mixing half of a two-step backup and half of a four-
step backup, has the diagram:

1

2

1

2

Ut =
1

2
G(2)

t +
1

2
G(4)

t



The λ-return is a compound update target

The λ-return a target that  
averages all n-step targets 

each weighted by 
λn-1
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Relation to TD(0) and MC
The λ-return can be rewritten as:

If λ = 1, you get the MC target:

If λ = 0, you get the TD(0) target:

Until termination After termination
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Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G�
t = (1 � �)

1X

n=1

�n�1G(n)
t .

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to Gt. If we want, we can
separate these terms from the main sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, Gt. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) inG�

t = (1� �)
T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X

n=1

1n�1G(n)
t + 1T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0n�1G(n)
t + 0T�t�1Gt = G(1)

t (3)

R S A(s)
Ea[a]

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
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�
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The off-line λ-return “algorithm”

Wait until the end of the episode (offline)
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Figure 12.2: Weighting given in the �-return to each of the n-step returns.

want, we can separate these post-termination terms from the main sum, yielding

G�

t = (1 � �)
T�t�1X

n=1

�n�1G(n)
t

+ �T�t�1Gt, (12.3)

as indicated in the figures. This equation makes it clearer what happens when
� = 1. In this case the main sum goes to zero, and the remaining term reduces to
the conventional return, Gt. Thus, for � = 1, backing up according to the �-return
is a Monte Carlo algorithm. On the other hand, if � = 0, then the �-return reduces

to G(1)
t

, the one-step return. Thus, for � = 0, backing up according to the �-return
is a one-step TD method.

Exercise 12.1 The parameter � characterizes how fast the exponential weighting
in Figure 12.2 falls o↵, and thus how far into the future the �-return algorithm looks
in determining its backup. But a rate factor such as � is sometimes an awkward way
of characterizing the speed of the decay. For some purposes it is better to specify a
time constant, or half-life. What is the equation relating � and the half-life, ⌧�, the
time by which the weighting sequence will have fallen to half of its initial value?

We are now ready to define our first learning algorithm based on the �-return:
the o↵-line �-return algorithm. As an o↵-line algorithm, it makes no changes to the
weight vector during the episode. Then, at the end of the episode, a whole sequence
of o↵-line updates are made according to our usual semi-gradient rule, using the
�-return as the target:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t), t = 0, . . . , T � 1. (12.4)

The �-return gives us an alternative way of moving smoothly between Monte
Carlo and one-step TD methods that can be compared with the n-step TD way of
Chapter 7. There we assessed e↵ectiveness on a 19-state random walk task (Example
7.1). Figure 12.3 shows the performance of the o↵-line �-return algorithm on this task
alongside that of the n-step methods (repeated from Figure 7.2). The experiment was
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action-value prediction is

✓t+1
.
= ✓t + ↵

h
Ut � q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.1)

For example, the update for the one-step Sarsa method is

✓t+1
.
= ✓t + ↵

h
Rt+1 + �q̂(St+1, At+1, ✓t)� q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy,
this method converges in the same way that TD(0) does, with the same kind of error
bound (9.14).

To form control methods, we need to couple such action-value prediction methods
with techniques for policy improvement and action selection. Suitable techniques
applicable to continuous actions, or to actions from large discrete sets, are a topic of
ongoing research with as yet no clear resolution. On the other hand, if the action set
is discrete and not too large, then we can use the techniques already developed in
previous chapters. That is, for each possible action a available in the current state St,
we can compute q̂(St, a, ✓t) and then find the greedy action A⇤

t = argmaxa q̂(St, a, ✓t).
Policy improvement is then done (in the on-policy case treated in this chapter) by
changing the estimation policy to a soft approximation of the greedy policy such as
the "-greedy policy. Actions are selected according to this same policy. Pseudocode
for the complete algorithm is given in the box.

Example 10.1: Mountain–Car Task Consider the task of driving an underpow-
ered car up a steep mountain road, as suggested by the diagram in the upper left
of Figure 10.1. The di�culty is that gravity is stronger than the car’s engine, and
even at full throttle the car cannot accelerate up the steep slope. The only solution
is to first move away from the goal and up the opposite slope on the left. Then, by

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

S, A initial state and action of episode (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

If S0 is terminal:
✓  ✓ + ↵

⇥
R� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

Go to next episode
Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
✓  ✓ + ↵

⇥
R + �q̂(S0, A0, ✓)� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

S  S0

A A0
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Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the o✏ine �-
return algorithm alongside that of the n-step TD methods. In both case, intermediate values
of the bootstrapping parameter (� or n) performed best. The results with the o↵-line �-return
algorithm are slighly better at the best values of ↵ and �, and at high ↵.

just as described earlier except that for the �-return algorithm we varied � instead of
n. The performance measure used is the estimated root-mean-squared error between
the correct and estimated values of each state measured at the end of the episode,
averaged over the first 10 episodes and the 19 states. Note that overall performance
of the o↵-line �-return algorithms is comparable to that of the n-step algorithms. In
both cases we get best performance with an intermediate value of the bootstrapping
parameter, n for n-step methods and � for the o✏ine �-return algorithm.

The approach that we have been taking so far is what we call the theoretical, or
forward, view of a learning algorithm. For each state visited, we look forward in time
to all the future rewards and decide how best to combine them. We might imagine
ourselves riding the stream of states, looking forward from each state to determine
its update, as suggested by Figure 12.4. After looking forward from and updating
one state, we move on to the next and never have to work with the preceding state
again. Future states, on the other hand, are viewed and processed repeatedly, once
from each vantage point preceding them.
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Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.

Intermediate λ is best (just like intermediate n is best)
λ-return slightly better than n-step



The forward view looks forward from the state 
being updated to future states and rewards
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Figure 7.5: The forward or theoretical view. We decide how to update each
state by looking forward to future rewards and states.
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Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it
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Semi-gradient TD(�) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
e 0 (An n-dimensional vector)
Repeat (for each step of episode):
. Choose A ⇠ ⇡(·|S)
. Take action A, observe R, S0

. e ��e +rv̂(S,✓)

. �  R + �v̂(S0,✓)� v̂(S,✓)

. ✓  ✓ + ↵�e

. S  S0

until S0 is terminal

riding along the stream of states, computing TD errors, and shouting them back to
the previously visited states, as suggested by Figure 12.5. Where the TD error and
traces come together, we get the update given by (12.7).

To better understand the backward view, consider what happens at various values
of �. If � = 0, then by (12.5) the trace at t is exactly the value gradient corresponding
to St. Thus the TD(�) update (12.7) reduces to the one-step semi-gradient TD
update treated in Chapter 9 (and, in the tabular case, to the simple TD rule (6.2)).
This is why that algorithm was called TD(0). In terms of Figure 12.5, TD(0) is
the case in which only the one state preceding the current one is changed by the
TD error. For larger values of �, but still � < 1, more of the preceding states
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Figure 12.5: The backward or mechanistic view. Each update depends on the current TD
error combined with eligibility traces of past events.
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is better to specify a time constant, or half-life. What is the equation relating
� and the half-life, ⌧�, the time by which the weighting sequence will have
fallen to half of its initial value?

7.3 The Backward View of TD(�)

In the previous section we presented the forward or theoretical view of the tab-
ular TD(�) algorithm as a way of mixing backups that parametrically shifts
from a TD method to a Monte Carlo method. In this section we instead define
TD(�) mechanistically, and in the next section we show that this mechanism
correctly implements the forward view. The mechanistic, or backward , view
of TD(�) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is
acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximat-
ing the forward view and, in the o↵-line case, for achieving it exactly.

In the backward view of TD(�), there is an additional memory variable
associated with each state, its eligibility trace. The eligibility trace for state
s at time t is a random variable denoted Zt(s) 2 R+. On each step, the
eligibility traces for all states decay by ��, and the eligibility trace for the one
state visited on the step is incremented by 1:

Zt(s) =

⇢
��Zt�1(s) if s 6=St;
��Zt�1(s) + 1 if s=St,

(7.5)

for all nonterminal states s, where � is the discount rate and � is the parameter
introduced in the previous section. Henceforth we refer to � as the trace-decay
parameter. This kind of eligibility trace is called an accumulating trace because
it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

accumulating eligibility trace

times of visits to a state

At any time, the traces record which states have recently been visited,
where “recently” is defined in terms of ��. The traces are said to indicate the
degree to which each state is eligible for undergoing learning changes should
a reinforcing event occur. The reinforcing events we are concerned with are
the moment-by-moment one-step TD errors. For example, the TD error for

et 2 Rn � 0
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12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning.
It was the first algorithm for which a formal relationship was shown between a more
theoretical forward view and a more computational congenial backward view using
eligibility traces. Here we will show empirically that it approximates the o↵-line
�-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates
the weight vector on every step of an episode rather than only at the end, and thus
its estimates may be better sooner. Second, its computations are equally distributed
in time rather that all at the end of the episode. And third, it can be applied to
continuing problems rather than just episodic problems. In this section we present
the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector et 2 Rn with the
same number of components as the weight vector ✓t. Whereas the weight vector is a
long-term memory, accumulating over the lifetime of the system, the eligibility trace
is a short-term memory, typically lasting less time than the length of an episode.
Eligibility traces assist in the learning process; their only consequence is that they
a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the
episode, is incremented on each time step by the value gradient, and then fades away
by ��:

e0
.
= 0,

et

.
= rv̂(St,✓t) + ��et�1,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous
section. The eligibility trace keeps track of which components of the weight vector
have contributed, positively or negatively, to recent state valuations, where “recent”
is defined in terms ��. The trace is said to indicate the eligibility of each component
of the weight vector for undergoing learning changes should a reinforcing event occur.
The reinforcing events we are concerned with are the moment-by-moment one-step
TD errors. The TD error for state-value prediction is

�t

.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD
error and the vector eligibility trace:

✓t+1
.
= ✓t + ↵�tet, (12.7)

On the next page, complete pseudocode for TD(�) is given in the box, and a picture
of its operation is suggested by Figure 12.5.

TD(�) is oriented backward in time. At each moment we look at the current TD
error and assign it backward to each prior state according to how much that state
contributed to the current eligibility trace at that time. We might imagine ourselves

same shape as 𝜽
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are changed, but each more temporally distant state is changed less because the
corresponding eligibility trace is smaller, as suggested by the figure. We say that the
earlier states are given less credit for the TD error.

If � = 1, then the credit given to earlier states falls only by � per step. This
turns out to be just the right thing to do to achieve Monte Carlo behavior. For
example, remember that the TD error, �t, includes an undiscounted term of Rt+1.
In passing this back k steps it needs to be discounted, like any reward in a return,
by �k, which is just what the falling eligibility trace achieves. If � = 1 and � = 1,
then the eligibility traces do not decay at all with time. In this case the method
behaves like a Monte Carlo method for an undiscounted, episodic task. If � = 1, the
algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than
those presented earlier and that significantly increases their range of applicability.
Whereas the earlier Monte Carlo methods were limited to episodic tasks, TD(1)
can be applied to discounted continuing tasks as well. Moreover, TD(1) can be
performed incrementally and on-line. One disadvantage of Monte Carlo methods is
that they learn nothing from an episode until it is over. For example, if a Monte
Carlo control method takes an action that produces a very poor reward but does not
end the episode, then the agent’s tendency to repeat the action will be undiminished
during the episode. On-line TD(1), on the other hand, learns in an n-step TD way
from the incomplete ongoing episode, where the n steps are all the way up to the
current step. If something unusually good or bad happens during an episode, control
methods based on TD(1) can learn immediately and alter their behavior on that
same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see
how well TD(�) does in approximating the o↵-line �-return algorithm. The results
for both algorithms are shown in Figure 12.6. For each � value, if ↵ is selected

Off-line λ-return algorithm
(from the previous section)

↵
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at the end 
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Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD(�) alongside
that of the o↵-line �-return algorithm. The two algorithms performed virtually identically
at low (less than optimal) ↵ values, but TD(�) was worse at high ↵ values.Can we do better? Can we update online?

Tabular 19-state random walk task



Conclusions
• Value-function approximation by stochastic gradient descent 

enables RL to be applied to arbitrarily large state spaces 

• Most algorithms just carry over the targets from the tabular case 

• With bootstrapping (TD), we don’t get true gradient descent methods 

• this complicates the analysis 

• but the linear, on-policy case is still guaranteed convergent 

• and learning is still much faster


