Sequential decision making
Control:
Deep Q-Learning (DQN)
and Eligibility Trace

Value function approximation (VFA) for
control

Sy = %) G(S:, A, 0)

Recall: Different Targets

@ Monte Carlo: G, = Rit1 +vRip2 + V*Resa + - +77 'Ry

e TD: Ggl) = Rip1 +7Vi(Si41)

@ Use V; to estimate remaining return

@ n-step TD:
@2 step return: G = Ry + YRz +7?Vi(Sit2)

@ n-step return: " = ey + 7R +97 4+ 49" Rin 7" Vil Sen)

G =G ift+n>T

Recall: Stochastic Gradient Descent
(SGD)

General SGD: 0+ 6 —aVs Error}
For VFA: — 0 — aV [Target, — (S, 0)]°
Chain rule: — 0 —2a[Target; — 0(St, 0)] Vo [Targety — 0(S¢, 0)]
Semi-gradient: <« 6+ «a[Target; — 9(S;,0)] Vo (Sy, 0)

Different RL algorithms provide ditferent targets!
But share the "semi-gradient™ aspect

(Semi-)gradient methods carry over to control
in the usual on-policy GPI way

* Always learn the action-value function of the current policy

« Always act near-greedily wrt the current action-value estimates

e The learning rule is:

0;11 =06+ a|U — ¢S, Ay, 91&)] Vq(St, At, 6)

(Semi-)gradient methods carry over to control

011 =0+« [Ut — q(St, Ay, Ht)] Va(Si, At, 04)

Episodic Semi-gradient Sarsa for Estimating § ~ ¢.

Input: a differentiable function §: 8 x A x R” — R

Initialize value-function weights 8 € R™ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
S, A + initial state and action of episode (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
If S" is terminal:
0+« 6+alR—q(S,A,0)]Vi(S, A,b)
Go to next episode
Choose A’ as a function of §(5',-,80) (e.g., e-greedy)
0« 0+alR+vq(S,A',0) — (S, A,0)]Vi(S, A,0)
S« 5
A+ A

DQN

(Mnih, Kavukcuoglu, Silver, et al,, Nature 2015)

e |earns to play video games from raw pixels, simply by playing
e Can learn Q function by Q-learning

Aw =« (Rt+1 + ymax Q(St+1,a; w) — Q(St, As; 'w)) VwQ(St, As; w)

32 4xA4 filters 256 hidden units Fully-connected linear
output layer

16 8x8 filters

4x84x84

1

, Fully-connected layer
Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Stack of 4 previous
frames

DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

e Learnsto play video games from raw pixels, simply by playing
e Can learn Q function by Q-learning

Aw =« (Rt+1 S ')’mf'XQ(St+1a a;w) — Q(S¢, As; w)) VwQ(St, Ag; w)

e Core components of DQN include:
o Target networks (Mnih et al. 2015)

Aw = o (Rt+1 + ngXQ(StH,a;w—) = Q(St,At;’w)) VwQ(St, Ay; w)

O Experience replay (Lin 1992): replay previous tuples (s, a, r, s)

Target Network Intuition

: _ (Slide credit: Vlad Mnih)
e Changing the value of one action

will change the value of other
Li(0;))=Esasrp| T+ max Q(s',ad’;0;) — Q(s,a;6;)

- o~
"

actions and similar states.

target

e The network can end up chasing its

own tail because of bootstrapping.
e Somewhat surprising fact - bigger
networks are less prone to this
because they alias less. % *

DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

e Many later improvements to DQN

Double Q-learning (van Hasselt 2010, van Hasselt et al. 2015)
Prioritized replay (Schaul et al. 2016)

Dueling networks (Wang et al. 2016)

Asynchronous learning (Mnih et al. 2016)

Adaptive normalization of values (van Hasselt et al. 2016)

Better exploration (Bellemare et al. 2016, Ostrovski et al,, 2017, Fortunato, Azar,
Piot et al. 2017)

Distributional losses (Bellemare et al. 2017)
Multi-step returns (Mnih et al. 2016, Hessel et al. 2017)
o ..Mmany more..

O O ORBOIEORIE)

050

Prioritized Experience Replay

“Prioritized Experience Replay”, Schaul et al. (2016)

e |dea: Replay transitions in proportion to TD error:

normalized max score

I+ ymax Q(s',a'07) — Q(5,0:0)|

140% - ' 140% 4
120%4 - 120% 4
o
100% S 100%
w
c
809% S 80%
£
©
60% - Y 60%
®
40% - g 40% 4
=
20% 4 20% 4
0% . - -— 0% -
0 50 100 150 200 0 50 100 150 200
training step (1e6) training step (1e6)

== uniform == rank-based == proportional - uniform DQN

Recall: Double DOQN

100%
—~ N(-0.1,1)
."/ \\ 0 o
| \\‘\ .
75%t | \\ D wrong right |:|
"‘ \ START
% | \
Wrong 50%! \\
actions \ “\Q-learning
\ Double N\
25% Q-learning \\%
5°/°-_____________————————————;——'—';_'_';';';Optimal
0 . . .
100 200 300

Double Q-learning:

Episodes

Q1(St, Ar) = Q1(St, Ar) + [Rt+1 +7Q2(St11, argmax Q1 (St 41, a)) —Q1(St, Ar)

Value estimates

Double DON

Wizard of Wor
~ 100
)
—
8 10
w
a0 DQN
o 1
2
= Double DQN
0 50 100 150 200
Wizard of Wor
4000 Double DQN
0 3000
S 2000
wn
1000
DQN
0
0 50 100 150 200

Training steps (in millions)

cf. van Hasselt et al, 2015)

Asterix
80
40 DQN
20
Double DQN
0 50 100 150 200
Asterix

Double DQN

DQN

0 50 100 150 200
Training steps (in millions)

Which DQN improvements

joritized DDQN

|
o
(=
o
=]
Q
5 B
E &
S

il
o
S

Millions of frames

Rainbow model, Hessel et al, 2017)

Deep n-step SARSA

Episodic semi-gradient n-step Sarsa for estimating ¢ =~ q. or g»

Input: a differentiable action-value function parameterization §: 8 x A x R —» R
Input: a policy 7 (if estimating ¢,)

Algorithm parameters: step size o > 0, small € > 0, a positive integer n

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

All store and access operations (S, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store S # terminal
Select and store an action Ay ~ m(-|Sy) or e-greedy wrt ¢(Sp, -, w)

T +
Loop fort =0,1,2,...:
| Ift <T, then:

| Take action Ay

| Observe and store the next reward as R;,; and the next state as S;;
| If Sy41 is terminal, then:

| T—t+1

| else:

| Select and store A,y ~ 7(:|Sy;1) or e-greedy wrt §(S;iq,-, W)
| 7 t—n+1 (7isthe time whose estimate is being updated)

| If7>0:

|

|

|

G TG TR,
If r+n<T, then G+ G+ Y"§(Sr4n, Arin, W) (Grirtn)
W w+a[G—§(Sr, A, w)| V§(S-, A-, w)

Untiltr=T-1

n-step semi-gradient Sarsa is better for
n>1

Orin = Orin-1+a |G = (St, Ar, Orrn1)| Va(Sy, At Orin-1), 0t <T

300

280

1000 [Mountain Car

Steps per episode 260

averaged over
first 50 episodes
and 100 runs 240 |

Mountain Car “°r

Steps per episode
log scale

¢ x number of tilings (8
averaged over 100 runs 200 - gs (8)

100 -

0 500
Episode

Eligibility traces are

@ Another way of interpolating between MC
and TD methods

@ A way of implementing compound A-return
targets

@ A basic mechanistic idea — a short-term,
fading memory

@ Anew style of algorithm development/
analysis

Recall n-step targets

@ For example, in the episodic case,
with linear function approximation:

@ 2-step target:

G?) = Rypr + YRupo + V20, 1 Piso

@ n-step target:G\™ = Ry + - + 7" " Ripn +7"0, 1, 1¢rin

with ¢ =G ift+n>T

Any set of update targets can be

@ For example, half a 2-step plus half a 4-
step

A compound backup

1 (o | R

@ Called a compound backup
@ Draw each component

@ Label with the weights for that

The A-return is a compound update target

@ The A-return a target that

averages all n-step targets (If
O
1-A

@ each weighted by
An-1

G} =(1=2)) A" 'Grtin

n=1

Grpn = Rep1+vRej2+-- '+’)'"_1Rt+n +4"0(St4n,Wegn-1), 0<t<T—n,

TD())

T 7
1
T 7
-
(1-XA)A T
O

d =1

Relation to TD(0) and MC

@ The A-return can be rewritten as:

T—t—1

G = (1-0Y G+ AT,
n=1

~ %{_J

Until termination After termination

e If A =1, you get the MC target:
G = (1- 1)T§:—11n—1G§“) + 177t7lq, = @

n=1

e If A =0, you get the TD(0) target:

T—t—1 21
G = (1-0)) oG + o7l = Gy

n=1

The off-line A-return “algorithm”

@ Wait until the end of the episode (offline)

0r11 = 0, + |G - G(St, At, 0) | V(Sp, At, 0;), t=0,....T—1

The A-return alg performs similarly to

n-step TD methods

Off-line A-return algorithm (from Chapter 7)

0.55

05k /AN

RMS error
at the end
of the episode o4t
over the first
10 episodes o035t

045

03}

025 C 'l ')\=.8 ' A J ' ' '} A '} J
0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

Intermediate A is best (just like intermediate n is best)
A-return slightly better than n-step

The forward view looks forward from the state
being updated to future states and rewards

il

The backward view looks back
to the recently visited states (marked by eligibility
traces)

@ Shout the TD error backwards

@ The traces fade with temporal distance
by YA

Eligibility traces (mechanism)

@ The forward view was for theory

@ The backward view is for mechanism same shape as 0

/

€ © R™ > 0
@ New memory vector called eligibility trace

@ On each step, decay each component by
yA and increment the trace for the
current state by 1

® Accumulating trace

€o = 0,
e = VU(5:,0:) + v e 26

The Semi-gradient TD(A) algorithm

9t—|—1 = 975 + ozétet
0t = Riy1 +y0(St4+1,0¢) — 0(S:,0:)

€0 = 07
e = V0(5:,0:) + e

27

Online TD(2)

Semi-gradient TD()) for estimating ¥ ~ v,

Input: the policy = to be evaluated

Input: a differentiable function ¢ : $* x R? — R such that ©(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]

Initialize value-function weights w arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
z <+ 0 (a d-dimensional vector)
Loop for each step of episode:
| Choose A ~ 7(:|S)
| Take action A, observe R, S’
| 2z yAz+ Vi(S,w)
| 6 R+~9(S"\w) — 9(S,w)
| W Wt adz
| S« 9

until S’ is terminal

TD(2) performs similarly to offline A-

Tabular 19-state random walk task

TD()) Off-line A-return algorithm

(from the previous section)

055+,
AN
05k i "

RMS error = sk
at the end
of the episode o4}
over the first
10 episodes ©935[

03}

025 Ly 1 1 ' I] I 1 1 ' I]
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1

Can we do better? Can we update online?

29

Conclusions

» Value-function approximation by stochastic gradient descent
enables RL to be applied to arbitrarily large state spaces

« Most algorithms just carry over the targets from the tabular case
« With bootstrapping (TD), we don'’t get true gradient descent methods

* this complicates the analysis

e but the linear, on-policy case is still guaranteed convergent

e and learning is still much faster

