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One of the earliest online learning games, now com-
monly known as the hedge setting [Freund and Schapire,
1997], goes as follows. On round t, a Learner chooses
a distribution wt over a set of n actions, an Adversary
reveals `t ∈ [0, 1]n, a vector of losses for each action,
and the Learner suffers wt · `t =

∑n
i=1 wt,i`t,i. Fre-

und and Schapire [1997] showed that a very simple strat-
egy of exponentially weighting the actions according to
their cumulative losses provides a near-optimal guaran-
tee. That is, by setting

wt,i ∝ exp

(
−η

t−1∑
s=1

`s,i

)
(1)

and using an analysis of the related Weighted Majority
algorithm [Littlestone and Warmuth, 1994]), it can be
shown that with an appropriately chosen “learning rate”
η, the loss of the Learner is at most

LossAlg =
T∑

t=1

wt · `t ≤ k +
√

2k lnn + lnn. (2)

Here k is a bound on the loss of the best expert, which
is assumed to be known in advance to the Learner for
tuning η. In other words, the performance of the Learner
will be not much worse than the performance of the best
action.

More recently, the same repeated game was analyzed
from a minimax perspective by [Abernethy et al., 2008b]
with the slight restriction that the losses must be bi-
nary. Somewhat surprisingly, the optimal strategy for
the Learner as well as its worst cast loss both have a
natural and elegant interpretation and can be efficiently
estimated by a randomized algorithm. Working with the
same repeated game, define the state to be the vector
s ∈ Nn, where si is the number of losses of expert i.
Given the assumption that the best expert suffers at most
k losses, we simply define any state s with si > k for
all i to be a “terminal node” of the game.

We can describe the optimal behavior of this game as
follows. Imagine a randomized adversary that on each
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round simply assigns a loss of 1 to a single expert, cho-
sen uniformly at random, and let this random sequence
of experts be i1, i2, i3, . . . ∈ [n]. If our current state
were s, this random process would take us along a ran-
dom sequence of states, S0 = s, S1 = S0 + ei1 , S2 =
S1 +ei2 , etc. Somewhat surprisingly, this seemingly ar-
bitrary adversarial strategy can be used to describe the
optimal learner’s strategy. Indeed, the minimax-optimal
weight the player assigns to expert j at state s is exactly
the probability that j is the last “surviving expert” when
losses are assigned according to the random process de-
scribed above. That is, the optimal weight for expert j
is

w∗
j (s) = Pr(∃ t s.t. St,i > k ∀ i 6= j and St,j = k).

In addition, we can express the worst case loss L(s) that
the optimal Learner will suffer starting from s as 1

n times
the expected number of rounds required to have all ex-
perts cross the k threshold. That is,

L(s) =
1
n

E(min{t : St,i > k ∀ i}).

Note that since the bound (2) is close to optimal [Freund
and Schapire, 1997, Vovk, 98], the exponential weights
(1) (when η is tuned based on k) must somehow approx-
imate the above optimal weights.

This minimax characterization of the prediction game
is useful, but unfortunately only applies in the
full-information setting discussed so far. There is a sec-
ond core problem, the so-called bandit setting, that is
the focus of our proposed open problem. In this setting
the Learner plays at round t an action i with probabil-
ity wt,i and then is only revealed the loss `t,i of action
i (The losses of the other actions at round t remain hid-
den). This problem, which was thoroughly studied in
the seminal work of Auer et al. [2002], can be solved as
well using an exponential weighting scheme. Of course,
since only a small part of the vector `t is revealed, the
weights are computed using an estimate of the vector
`t, with a cost for the resulting variance. The resulting
bound is of the form

LossAlg = k + O(
√

kn log n).
In addition, information-theoretic techniques are used to
give a lower bound of the form LossAlg − k = Ω(

√
kn),

and hence the algorithm is essentially tight.



This brings us to the proposed open problem. De-
spite the typical hardness of optimally solving general
multi-round games, many such online decision games
[Takimoto and Warmuth, 2000, Abernethy et al., 2008a,b,
2007] have been analyzed completely, with efficient so-
lutions in each case. Yet, to our knowledge, no such
minimax solution has been given for any decision game
in the bandit setting. This would be particularly enlight-
ening, as many bandit learning problems remain some-
what elusive. Several currently known bounds, for ex-
ample, are not known to be tight.

Ideally, the proposed game would have a simple char-
acterization as given in Abernethy et al. [2008b] for the
hedge setting. We conclude by highlighting a number of
important questions that must be addressed:

• What is a natural “sufficient statistic” of the state of
the game? In the full-information setting, the vec-
tor s recorded all relevant information, yet in the
bandit setting our observations are more complex;
indeed, they even depend on the previous choices
we made.

• What is a natural “stopping criterion” for the game?
In the hedge setting we used a bound k on the loss
of the best action, and it may be reasonable to keep
this restriction. Yet perhaps a bound on the time of
the game would give an easier analysis.

• In the hedge setting game, the optimal strategy can
be characterized using the notion of a “random play-
out”, where we imagine an adversary uniformly as-
signing losses to the experts. Does the minimax
strategy in the bandit setting admit a similar char-
acterization?
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