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Consider a sequence of examples (xt, yt) for t = 1, . . . , T
where xt ∈ Rn and yt ∈ [K], where the goal of a Learner
is to predict the class yt from the input xt. In the more com-
mon full-information setting, the Learner observes the true
class yt after making her prediction ŷt. In the present open
problem, however, we will consider the so-called bandit set-
ting: after predicting ŷt, the Learner is only told “correct” or
“incorrect”, her feedback being a single bit 1[ŷt 6= yt].

We assume that the Learner’s hypothesis class is the set
of K-tuples of vectors W = 〈w1, . . . ,wK〉 where wi ∈ Rn

(we can think of W as the K × n hypothesis matrix). Given
an instance xt, such a hypothesis will produce a K-tuple of
“scores” 〈w1 ·xt, . . . ,wK ·xt〉, and the Learner’s prediction
will be the class with the largest score:

ŷt = arg max
k∈[K]

wk · xt.

While ideally we would like to minimize the 0-1 loss suf-
fered by the Learner, for computational and other reasons it
is preferable to consider convex loss functions. A natural
choice used in Kakade et al. [2008] is the multi-class hinge
loss:

`(W, (xt, yt)) = max
k∈[K]\{yt}

[1−wyt · xt + wk · xt]+,

where W := 〈w1, . . . ,wk〉. Other suitable loss functions
`(·, ·) may also be used. The ultimate goal of the Learner is
to minimize regret,

Regret :=
T∑

t=1

`(Wt, (xt, yt))−min
W∗

T∑
t=1

`(W ∗, (xt, yt)).

The comparator is typically restricted to a ball (in some norm)
of a fixed diameter D, and the regret will depend on D (sim-
ilar to a margin bound). We note that such a regret bound
should hold for any sequence of examples; indeed, they may
even be adversarially chosen.

In Kakade et al. [2008], the authors present an algorithm
known as The Banditron, which modifies a full-information
algorithm, the Multiclass Perceptron [Fink et al., 2006, Cram-
mer and Singer, 2003], for the bandit setting. While the algo-
rithm has many desirable properties, foremost among these
is its efficiency, it is shown to have a regret bound on the
order1 O(T 2/3), which is known to be suboptimal.
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1It is noted in Kakade et al. [2008], however, that in some “low-
noise” cases this bound can be improved to O(

√
T ).

Open Problem: Does there exist an efficient multiclass
learning algorithm for the bandit setting that achieves ex-
pected regret on the order of O(

√
T )? The regret bound

can be shown with respect to a different, yet reasonable, loss
function.

The Banditron uses a common trick for constructing ban-
dit algorithms: with probability ε, randomly sample a class
k and use this to construct an unbiased estimate of the true
loss function, and with probability (1− ε) predict according
to the current hypothesis. This method, while appealing due
to its simplicity, is doomed to lead to O(T 2/3) in many on-
line learning problems. This is discussed in Dani and Hayes
[2006] and a similar lower bound is shown in Cesa-Bianchi
et al. [2006].

Given the latter observation, one might conjecture that
T 2/3-regret is is the best possible for any algorithm. But
indeed this is false: we can utilize the Exp4 algorithm of
Auer et al. [2003] to obtain an O(

√
T log T ) regret for the

0 − 1 loss. This reduction consists of discretizing the space
of possible hypothesis matrices W and treating each point as
an “expert”. The discretization will lead to O(Tn/2) many
points, yet the Exp4 regret bound depends only logarithmi-
cally on the number of such experts. The downside of this
approach, of course, is its lack of efficiency.

There have been a few results that have broken the
√

T
regret boundary for bandit problems in the adversarial set-
ting. First, Auer et al. [2003] exhibited an efficient algo-
rithm for the so-called multi-armed bandit problem. Later,
Dani et al. [2008] showed the first O(

√
T ) bandit algorithm

that worked in a much more general setting in which the de-
cision/hypothesis set is convex and the loss functions are lin-
ear, known as online linear optimization, although the al-
gorithm is not efficient in all cases. An efficient algorithm
was later found in Abernethy et al. [2008]. These algorithms
share a number of important components:

• A randomized sampling scheme which simultaneously
explores and exploits

• The sampling scheme is coupled with a carefully con-
structed unbiased estimate of the true loss function

• The learning algorithm is specifically designed to han-
dle high-variance loss function estimates. This is re-
quired because, as the algorithm becomes increasingly
certain about its decisions, it will need to spend less



time exploring, leading to estimates with high variance.
(The results of Abernethy et al. [2008] emphasize the
use of heavier regularization in “regions” of the hypoth-
esis space where the variance grows.)

One would like to generalize these recent results to the
multiclass problem, but it is not immediately clear how this
can be achieved. Given a current hypothesis matrix W =
〈w1, . . . ,wk〉 and an instance xt, what is a natural sampling
scheme on the K classes that performs “simultaneous ex-
plore/exploit”?

We briefly present an approach that we attempted, un-
successfully, and which may provide some insights to the
curious reader. Given W = 〈w1, . . . ,wk〉 and an instance
xt, we can define a distribution over the classes [K] as

P (k) = pk(W,xt) :=
exp(αwk · xt)∑

j∈[K] exp(αwj · xt)

where α is some parameter. A natural loss function is the log
loss,

`(W, (x, y)) :=
−1
α

log

(
exp(αwy · x)∑

j∈[K] exp(αwj · x)

)

= −wy · x +
1
α

log
∑

j∈[K]

eαwj ·x

From this sampling scheme, we may now construct an un-
biased estimate of the gradient of the true loss function. If
we sample I ∈ [K] according to the proposed distribution
p(W,xt), then the gradient estimate with respect to wk, i.e.
the kth row of W , can be defined as

∇̂k` =

{
0, if k 6= I

xt

(
1− 1[k=yt]

pk(W,xt)

)
if k = I.

This gradient estimate can be used to perform a parameter
update, as is commonly done in online learning, and a regret
bound can be achieved. Unfortunately, the above estimate
scales with the inverse of pk(W,x), which will need to be
O(T−1/2) in some cases to ensure low regret. One would
like to control this, but it is not clear how this can be done
with currently known techniques, and it is here where we
believe a significant difficulty lies.
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