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Abstract

A common approach for solving clustering prob-
lems is to design algorithms to approximately op-
timize various objective functions (e.g., k-means
or min-sum) defined in terms of some given pair-
wise distance or similarity information. However,
in many learning motivated clustering applications
(such as clustering proteins by function) there is
some unknown target clustering; in such cases the
pairwise information is merely based on heuristics
and the real goal is to achieve low error on the data.
In these settings, an arbitrary c-approximation al-
gorithm for some objective would work well only
if any c-approximation to that objective is close
to the target clustering. In recent work, Balcan
et. al [7] have shown how both for the k-means
and k-median objectives this property allows one
to produce clusterings of low error, even for val-
ues c such that getting a c-approximation to these
objective functions is provably NP-hard.

In this paper we analyze the min-sum objective
from this perspective. While [7] also considered
the min-sum problem, the results they derived for
this objective were substantially weaker. In this
work we derive new and more subtle structural prop-
erties for min-sum in this context and use these to
design efficient algorithms for producing accurate
clusterings, both in the transductive and in the in-
ductive case. We also analyze the correlation clus-
tering problem from this perspective, and point out
interesting differences between this objective and
k-median, k-means, or min-sum objectives.

1 Introduction
Problems of clustering data from pairwise distance or simi-
larity information are ubiquitous in science. A common ap-
proach for solving such problems is to view the data points
as nodes in a weighted graph (with the weights based on the
given pairwise information), and then to design algorithms
to optimize various objective functions such as k-means or
min-sum. For example, in the min-sum clustering approach
the goal is to produce a partition into a given number of

clusters k that minimizes the sum of the intracluster dis-
tances. Many of the optimization problems corresponding
to commonly analyzed objectives (including k-means, min-
sum, k-median, or correlation clustering) are NP-hard and
so the focus in the theory community has been in design-
ing approximation algorithms for these objectives.1 For ex-
ample the best known approximation algorithm for the k-
median problem is a (3 + ε)-approximation [6], while the
best approximation for the min-sum problem in general met-
ric spaces is a O(log1+δ n)-approximation. For many of
these problems the approximation guarantees do not match
the known hardness results, and significant effort is spent on
obtaining tighter approximation guarantees and hardness re-
sults [3, 6, 9, 11, 13, 15, 12, 17, 21, 25, 28].

Standard clustering settings used to motivate much of
this effort include problems such as clustering proteins by
function, images by subject, or documents by topic. In many
of these settings there is some unknown correct “target” clus-
tering and the implicit hope is that approximately optimizing
objective functions such as those mentioned above will in
fact produce a clustering of low error, i.e. a clustering which
agrees with the truth on most of the points. In other words,
implicit in taking the approximation-algorithms approach is
the hope that any c-approximation to our given objective will
be pointwise close to the true answer, and our motivation
for improving a c2-approximation to a c1-approximation (for
c1 < c2) is that perhaps this closeness property holds for c1

but not c2.
In recent work, Balcan et. al [7] have shown that if we

make this implicit assumption explicit, then one can get ac-
curate clusterings even in cases where getting a good approx-
imation to these objective functions is provably NP-hard. In
particular, say that a data set satisfies the (c, ε) property for
some objective function Φ if any c-approximation to Φ on
this data must be ε-close to the target clustering. [7] show
that for any c = 1 + α > 1, if data satisfies the (c, ε) prop-
erty for the k-median (or k-means) objectives, then one can
produce clusterings that are O(ε)-close to the target, even for
values c for which obtaining a c-approximation is NP-hard.
[7] also consider the min-sum objective, however the results
they present work only for values of c > 2 and under the

1A β-approximation algorithm for objective φ is an algorithm
that runs in polynomial time and returns a solution whose value is
within a multiplicative β factor of the optimal solution for the given
objective φ.



assumption that all the target clusters are large.

1.1 Our Results
In this work we solve the problem of getting accurate cluster-
ings for the min-sum objective under the (c, ε)-assumption,
improving on the results of Balcan et. al [7] for this objec-
tive in multiple respects. In particular, we show it is pos-
sible to deal with any constant c = 1 + α > 1 (and not
only c > 2). More importantly we are also able to deal with
the presence of small target clusters. To achieve this we de-
rive new and much more subtle structural properties implied
by the (c, ε)-assumption. In the case where k is small com-
pared to log n/ log log n we output a single clustering which
is O(ε/α)-close to the target, while in the general case our
algorithm outputs a small list of clusterings with the property
that the target clustering is close to one of those in the list.

We show that the algorithm we develop for the min-sum
objective is robust, which allows us to extend it to the in-
ductive model. In the inductive model S is merely a small
random subset of points from a much larger abstract instance
space X , and our goal is to produce a hypothesis h : X → Y
which implicitly represents a clustering of the whole space
X and which has low error on the whole X . An appealing
characteristic of the algorithm we obtain for the inductive
case is that the insertion of new points (which arrive online)
is extremely efficient: we only need O(k)-comparisons for
assigning a new point x to one of the clusters.

We further show that if we do require the clusters to be
large, we can reduce the approximation error from O(ε/α)
down to O(ε) – the best one can hope for. We thus affirma-
tively answer several open questions in [7].

We also analyze the correlation clustering problem in this
framework. In correlation clustering, the input is a graph
with edges labeled +1 or −1 and the goal is to find a par-
tition of the nodes that best matches the signs of the edges.
This clustering formulation was introduced by Bansal et. al
in [11] and it has been extensively studied in a series of
follow-up papers both in the theoretical computer science
and in the machine learning community [3, 13, 22]. In the
original paper Bansal et al. [11] considered two versions of
the correlation clustering problem, minimizing disagreements
and maximizing agreements.2 In this paper we focus on the
minimizing disagreements objective function. (The maxi-
mizing agreement version of correlation clustering is less
interesting in our framework since it admits a PTAS3.) We
show that this objective behaves much better than objectives
such as k-median, k-means, and min-sum in terms of error
rate. More specifically, we show that for this objective, the
(1 + α, ε) property implies a (2.5, O(ε/α)) property, so one
can use a state-of-the-art 2.5-approximation algorithm for

2In the former case, the goal is to minimize the number of −1
edges inside clusters plus the number of +1 edges between clus-
ters, while in the latter case the goal is to maximize the number of
+1 edges inside the cluster plus the number of −1 edges between.
These are equivalent at optimality but differ in their difficulty of
approximation.

3A PTAS (polynomial-time approximation scheme) is an algo-
rithm that for any given fixed ε runs in polynomial time and returns
an approximation within a 1 + ε factor. Running time may depend
exponentially (or worse) on 1/ε, however

minimizing disagreements in order to get an accurate cluster-
ing. This contrasts sharply with the previous results proven
in this context for objectives such as min-sum, k-median, or
k-means.

Our work shows how for a clustering objective such as
min-sum we can obtain results comparable to what one could
obtain by being able to approximate the objective to an ar-
bitrary small constant. In other words if what we really
want is to obtain a clustering of low error, then by mak-
ing implicit assumptions explicit we can obtain low error
clusterings even in cases where getting a c-approximation to
the min-sum objective is NP-hard. This points out how one
can get much better results than those obtained so far in the
approximation algorithms literature by wisely using all the
available information for the problem at hand.

1.2 Related Work
Work on approximation algorithms: We review in the
following state of the art results on approximation algorithms
for the two clustering objectives we discuss in this paper.

Min-sum k-clustering on general metric spaces admits a
PTAS for the case of constant k by Fernandez de la Vega
et al. [17] (see also [20]). For the case of arbitrary k there
is an O(δ−1 log1+δ n)-approximation algorithm that runs in
time nO(1/δ) due to Bartal et al. [9]. The problem has also
been studied in geometric spaces for constant k by Schul-
man [28] who gave an algorithm for (Rd, `22) that either out-
puts a (1 + ε)-approximation, or a solution that agrees with
the optimum clustering on (1− ε)-fraction of the points (but
could have much larger cost than optimum); the runtime is
O(nlog log n) in the worst case and linear for sublogarithmic
dimension d. More recently, Czumaj and Sohler have devel-
oped a (4 + ε)-approximation algorithm for the case when k
is small compared to log n/ log log n [15].

Correlation Clustering was introduced by Bansal et. al
in [11]. In the original paper Bansal et al. [11] have con-
sidered two versions of the correlation clustering problem,
minimizing disagreements and maximizing agreements, fo-
cusing mainly on the case when the graph G is complete.
They gave a polynomial time approximation scheme (PTAS)
for the maximizing agreements version on complete graphs,
while for the minimizing disagreements versions, they gave
an approximation algorithm with a constant performance ra-
tio. The constant was a rather large one, and it has subse-
quently improved to 4 in [13] and then to 2.5 in [3]. In the
case when the graph is not complete, the best known approx-
imation is O(log n) [13].

Other work on Clustering: Our work is most relevant for
settings where there is a target clustering and it is motivated
by results in [8] which have investigated the goal of approx-
imating a desired target clustering without making any prob-
abilistic assumptions. In addition to this, there has been
significant work in machine learning and theoretical com-
puter science on clustering or learning with mixture mod-
els [1, 5, 19, 18, 23, 29, 16]. That work, like ours, has an ex-
plicit notion of a correct ground-truth clustering of the data
points; however, it makes very specific probabilistic assump-
tions about the data.

There is a large body of other work which does not as-
sume the existence of a target clustering. For example there



has been work on axiomatizing clustering (in the sense of
postulating what natural axioms should a good clustering
algorithm or quality measure satisfy), both with possibil-
ity [2] and impossibility [24] results, on comparing cluster-
ings [26, 27], and on efficiently testing if a given data set
has a clustering satisfying certain properties [4]. The main
difference between this type of work and our work is that we
have an explicit notion of a correct ground-truth clustering of
the data points, and indeed the results we are trying to prove
are quite different.

Inductive Setting: In the inductive setting, where we imag-
ine our given data is only a small random sample of the en-
tire data set, our framework is close in spirit to recent work
done on sample-based clustering (e.g., [10, 14]) in the con-
text of clustering algorithms designed to optimize a certain
objective. Based on such a sample, these algorithms have to
output a clustering of the full domain set, that is evaluated
with respect to the underlying distribution.

2 Definitions and Preliminaries
The clustering problems in this paper fall into the follow-
ing general framework. We are given a set S of n points
which we want to cluster. We are also given a pairwise sim-
ilarity and/or dissimilarity information expressed through a
weighted graph (G, d) on S. A k-clustering C is a partition
of S into k sets C1, C2, . . . , Ck. In this paper, we always
assume that there is a true or target k-clustering CT for the
point set S.

A natural notion of distance between two k-clusterings
C = {C1, C2, . . . , Ck} and C′ = {C ′1, C ′2, . . . , C ′k} which
we use throughout the paper is the fraction of points on which
they disagree under the optimal matching of clusters in C to
clusters in C′; i.e., we define

dist(C, C′) = min
σ∈Sk

1
n

k∑

i=1

|Ci − C ′σ(i)|,

where Sk is the set of bijections σ : [k] → [k]. We say that
two clusterings C and C′ are ε-close if dist(C, C′) < ε and we
say that a clustering has error ε if it is ε-close to the target.
We can also define the distance dist(C, C′) between two clus-
terings C = {C1, C2, . . . , Ck1} and C′ = {C ′1, C ′2, . . . , C ′k2

}
with a different number of clusters k1 and k2 where k1 > k2

by simply extending the clustering C′ with a few empty clus-
ters and then using the notion of distance defined above. We
will now state a useful fact about the distance between two
clusterings which we use throughout the paper and which is
a simple consequence of the definition:

Fact 1 Given two clusterings C and C′, if we produce a list L
of disjoint subsets S1, S2, . . ., such that for each i, all points
in Si are in the same cluster in one of C or C′ and they are
all in different clusters in the other, then C and C′ must have
distance at least 1

n

∑
i(|Si| − 1).

In many cases we will use Fact 1 on sets {Si} of size 2.
We consider two commonly used clustering algorithms

which seek to minimize some objective function or “score”.

Min-sum clustering The first one is the min-sum clustering
problem [17, 9]. Here d :

(
S
2

) → R≥0 is a distance function

and the goal is to find a clustering that minimizes

ΦΣ :=
k∑

i=1

∑

x,y∈Ci

d(x, y).

In this paper we focus on the case where d satisfies the trian-
gle inequality, and we also discuss a few extensions of this
condition.

Correlation clustering The second clustering setup we an-
alyze is correlation clustering introduced in [11]. In this set-
ting the graph G is fully connected with edges (x, y) labeled
d(x, y) = +1 (similar) or d(x, y) = −1 (different). The
goal is to find a partition of the vertices into clusters that
agrees as much as possible with the edge labels. In par-
ticular, the Min-Disagreement correlation clustering objec-
tive (Min-Disagreement CC) asks to find a clustering C =
{C1, C2, . . . , Ck′} to minimize the objective function – the
number of disagreements (the number of −1 edges inside
clusters plus the number of +1 edges between clusters):

ΦCC := #{x, y ∈ Ci : d(x, y) = −}
+ #{x ∈ Ci, y ∈ Cj , i 6= j : d(x, y) = +}.

Note that in the correlation clustering setting, the target num-
ber of clusters is not specified as part of the input.

Given a function Φ (such as k-median or min-sum) and
instance (S, d), let

OPTΦ = min
C

Φ(C),

where the minimum is over all k-clusterings of (S, d).

The (c, ε)-property The following notion originally intro-
duced in [7] is central to our discussion:

Definition 2 Given an objective function Φ (such as k-median
or min-sum), and c = 1+α > 1, ε > 0, we say that instance
(S, d) satisfies the (c, ε)-property for Φ if all clusterings C
with Φ(C) ≤ c · OPTΦ are ε-close to the target clustering
CT for (S, d).

Note that for any c > 1, the (c, ε)-property does not re-
quire that the target clustering CT exactly coincide with the
optimal clustering C∗ under objective Φ. However, it does
imply the following simple facts:

Fact 3 If (S, d) satisfies the (c, ε)-property for Φ, then:

(a) The target clustering CT , and the optimal clustering C∗
are ε-close.

(b) The distance between k-clusterings is a metric, and hence
a (c, ε) property with respect to the target clustering CT

implies a (c, 2ε) property with respect to the optimal
clustering C∗.

Thus, we can act as if the optimal clustering is indeed
the target up to a constant factor loss in the error rate. For
simplicity, we will assume throughout the paper (except in
Section 4) that CT is indeed the optimal clustering C∗.



3 The Min-sum Clustering Problem
Recall that the min-sum k-clustering problem asks to find a
k-clustering C = {C1, C2, . . . , Ck} to minimize the objec-
tive function:

Φ(C) = 2
k∑

i=1

∑

x,y∈Ci

d(x, y).

We focus here on the case where d :
(
S
2

) → R≥0 is a
distance function satisfying the triangle inequality. As shown
in [7] we have the following:

Theorem 4 [7] For any 1 ≤ c1 < c2, any ε, δ > 0, there
exists a family of metric spaces G and target clusterings that
satisfy the (c1, ε) property for the min-sum objective and yet
do not satisfy even the (c2, 1/2− δ) property for that objec-
tive.

So, in the min-sum objective case it is not the case that if
the data satisfies the (c1, ε) property, then then we can use c2

approximation algorithm in order to get a clustering of small
error rate, for some c2 > c1. [7] also shows the following:

Theorem 5 For the min-sum objective the problem of find-
ing a c-approximation can be reduced to the problem of find-
ing a c-approximation under the (c, ε) assumption. There-
fore, the problem of finding a c-approximation under the
(c, ε) assumption is as hard as the problem of finding a c-
approximation in general.

Theorem 5 means that, generally speaking, the (c, ε) as-
sumption does not make optimizing min-sum easier.

General overview of our construction. The general idea
for our construction is to obtain various structural properties
for instances that satisfy the (c, ε) assumption, and then to
use these properties to give an efficient algorithm for achiev-
ing low error clusterings. These structural properties are es-
sential since as mentioned above the general min-sum clus-
tering problem is APX-hard.

The structural properties stem from the fact that under the
the (c, ε) assumption the optimal solution is fairly “stable”:
changing it a little increases the cost substantially. The first
key property (Lemma 6) we prove using this stability is that
most pairs of clusters are quite expensive to merge. Using
a vertex-cover argument on a specially designed graph on
clusters, we show that we can remove few (O(εn)) points
such that no two clusters among the remaining points are
cheap to merge.

Next we show that for most of the remaining points x we
can draw a ball Bx of an appropriate radius that essentially
covers the cluster C∗(x). Such balls Bx and By usually do
not overlap when C∗(x) 6= C∗(y) (Lemma 9) since such
an overlap would mean that x and y are sufficiently close to
merge C∗(x) with C∗(y) cheaply, leading to a contradiction.
We designate a class of “good” points for which the above is
true. All but O(εn/α) points are good.

We introduce subsets B̃x ⊂ Bx to make sure that the
ball around each x (whether good or bad) contains only good
points from at most one cluster. At the same time, B̃x cen-
tered around a good point x still covers the bulk of the cluster

C∗(x). The algorithm then uses a greedy covering using the
{B̃x}x∈S to perform the actual clustering. The analysis of
the clustering produced is done using a careful charging ar-
gument. It shows that the final clustering is O(εn/α) close
to the optimal.

While the analysis is quite involved, the clustering algo-
rithm itself is simple, robust, and efficient. This simplicity
and robustness allows us to extend it to the inductive setting.

3.1 Properties of Min-Sum Clustering
We start by deriving a few structural properties implied by
the (1 + α, ε)-property for min-sum. We emphasize that all
the constructions in this subsection are for the analysis pur-
pose; our algorithmic results are described in Section 3.2.

Recall that C∗ denotes the optimal clustering. For x ∈
C∗i , define w(x) =

∑
y∈C∗i

d(x, y) and let

w = avgxw(x) =
OPT

n
.

We start by creating a badness graph G = (V, E) on the
set of clusters, connecting pairs of clusters that are not too
expensive to merge. Formally, V is the set {C∗1 , . . . , C∗k} and
for any two clusters, C∗i and C∗j we add an edge e between
them if the additional cost incurred for merging them is at
most

(|C∗i |+ |C∗j |)
wα

2ε
.

Lemma 6 Assume that the min-sum instance (S, d) satisfies
the (1 + α, ε)-property with respect to the target clustering.
Then we can remove < 3εn points such that the remaining
set of clusters form an independent set in G.

Proof: We start by showing that if the min-sum instance
(S, d) satisfies the (1+α, ε)-property with respect to the tar-
get clustering, then there cannot be a collection of disjoint
cluster pairs (C∗i1 , C

∗
j1

), (C∗i2 , C
∗
j2

), . . . , (C∗ir
, C∗jr

) such that
C∗il

and C∗jl
are connected in G and

∑

l

(|C∗il
|+ |C∗jl

|) ≥ 3εn.

Let C∗il
and C∗jl

be two clusters such that the additional
cost incurred for merging them is at most (|C∗il

|+ |C∗jl
|)wα

2ε .
Assume w.l.o.g. that |C∗il

| ≤ |C∗jl
|. We show now that for

any set size s there exists a subset As of C∗jl
of size s which

we can move from C∗jl
to C∗il

at an additional cost in the
min-sum objective of at most |As|wα

ε . First note that
∑

x∈C∗jl

∑

y∈C∗il

d(x, y) ≤ |C∗jl
|αw

ε
.

Let α(x) =
∑

y∈C∗il

d(x, y). So
∑

x∈C∗jl

α(x)

|C∗jl
| ≤ αw

ε
.

Hence, for any set size s = εln we can select a subset As of
of C∗jl

(namely the first s elements with the smallest values
of α(x)) such that ∑

x∈As
α(x)

|As| ≤ αw

ε
.



This implies that for any set size s there exists a subset As of
C∗jl

which we can move from C∗jl
to C∗il

at an additional cost
in the min-sum objective of at most |As|wα

ε , as desired.
Assume that there exists r and a collection of disjoint

pairs (C∗i1 , C
∗
j1

), (C∗i2 , C
∗
j2

), . . . , (C∗ir
, C∗jr

) such that |C∗il
| ≤

|C∗jl
|, C∗il

and C∗jl
are connected in G, and

∑

l

(|C∗il
|+ |C∗jl

|) ≥ 3εn.

Let Al ⊆ C∗jl
of size

εln = min(εn−
∑

s<l

εsn, max(|C∗il
|, |C∗jl

|/2)).

Since

max(|C∗il
|, |C∗jl

|/2) ≥ 1
3
(|C∗il

|+ |C∗jl
|)

and ∑

l

(|C∗il
|+ |C∗jl

|) ≥ 3εn

we have that ∑

l

|Al| =
∑

l

εln = εn.

Let C′ be the clustering obtained by moving Al from
C∗jl

to C∗il
for l = 1, . . . , r. Each movement of a set Al

from C∗jl
to C∗il

increases the distance between C and C′
by εl. To prove this we use Fact 1 and do a case analy-
sis. If εln = |C∗il

|, then we match up each point xi in C∗il

with point yi in Al and we define the set Si as {xi, yi}. If
εln = |C∗jl

|/2 then we split C∗jl
into two sets C∗1jl

and C∗2jl

of equal size and match up a each point in xi in C∗1il
with

a point yi in C∗2il
and then define the set Si as {xi, yi}. If

εln < max(|C∗il
|, |C∗jl

|/2), then we apply either of the con-
structions above. In all cases we produce a list of disjoint
subsets S1, S2, . . ., such that for each i, all points in Si are
in the same cluster in one of C or C′ and they are all in dif-
ferent clusters in the other. Using Fact 1 we obtain that by
moving the set Al from C∗jl

to C∗il
we increase the distance

between C and C′ by 1
n

∑
i(|Si| − 1) = εl. Overall we get

dist(C, C′) = ε =
∑

l εl. We also have

Φ(C′) = Φ(C) +
∑

l

(αw/ε) · (εln)

≤ Φ(C) + αwn

≤ Φ(C) + αOPT.

We thus obtain that C′ which is ε-far from the target and
whose min-sum cost is within a 1 + α factor of OPT, con-
tradicting the (1 + α, ε)-property.

To finish the argument let L be the output of the greedy
vertex cover on the graph G. Specifically, let L be the list of
clusters constructed as follows: pick an arbitrary edge e in G,
add both vertices incident to edge e in the list L, delete any
edge sharing a vertex with e, and repeating until the graph
is out of edges. Note that L is a vertex cover in G; this is
because taking both of the vertices incident to a given each
edge in the list L and we only delete edges incident to one

of these vertices, and eventually delete all the edges. Since
L is a vertex cover in G, we have that for any pair (C ′, C ′′)
which forms an edge in G, either C ′ ∈ L or C ′′ ∈ L, so
the remaining set of clusters C \ L is an independent set of
G. Since L is a collection of disjoint edges we also have (ac-
cording to what we have proved above)

∑
C∈L |C| ≤ 3εn.

This concludes the proof.

If C∗i ∈ L in the above proof, let H1
i = C∗i . Else let

H1
i = ∅. By Lemma 6 we have that

∑k
i=1 |H1

i | ≤ 3εn
and that the cost of merging two clusters that have not been
removed is low. This last condition implies the following:

Lemma 7 For any two x ∈ C∗i \H1
i , y ∈ C∗j \H1

j , w(x) ≤
αw
15ε , w(y) ≤ αw

15ε , we have

d(x, y) ≥ αw

3ε
· 1
min

(|C∗i |, |C∗jl
|) .

Proof: Assume there exist x ∈ C∗i , y ∈ C∗j , w(x) ≤ αw
15ε ,

w(y) ≤ αw
15ε , s.t.

d(x, y) ≤ αw

3ε
· 1
min

(|C∗i |, |C∗j |
) .

Note the additional cost incurred in the minsum objective by
merging C∗i and C∗j is at most

≤
∑

x′∈C∗i

∑

y′∈C∗j

d(x′, y′)

≤
∑

x′∈C∗i

∑

y′∈C∗j

(d(x′, x) + d(x, y) + d(y, y′)).

Therefore the additional cost incurred in the minsum objec-
tive by merging C∗i and C∗j is at most

≤ |C∗j |w(x) + |C∗i |w(y) +
αw

3ε
· |C∗i | · |C∗j |
min

(|C∗i |, |C∗jl
|)

= |C∗j |w(x) + |C∗i |w(y) +
αw

3ε
·max (|C∗i |, |C∗j |)

≤ (|C∗j |+ |C∗i |)
(αw

15ε
+

αw

3ε

)

< (|C∗i |+ |C∗j |)
wα

2ε
,

which contradicts Lemma 6 and the definition of H1
i .

For all x, let us now define τx and Bx that will be used
in Algorithm 1. To obtain τx, we start τ = 0 and gradually
increase it until |B(x, τ)| ≥ 1

20
αw
ετ ; once this happens we set

τx = τ and Bx = B(x, τx). We can now show the following.

Lemma 8 For any point x such that w(x) ≤ αw
15ε we have

τx ≤ αw
6ε|C∗i | .

Proof: Since w(x) =
∑

y∈C∗i
d(x, y) ≤ αw

15ε , we have that at
least |C∗i |/2 points in a τ = αw

6ε|C∗i | neighborhood of x. This
implies

|B(τ, x)| · τ >
αw

12ε
>

αw

20ε
,

so τx ≤ τ as desired.



Lemma 9 For any two points x ∈ C∗i \H1
i , y ∈ C∗j \H1

j ,
such that w(x) ≤ αw

15ε , w(y) ≤ αw
15ε , we have Bx ∩ By = ∅.

Proof: By Lemmas 7 and 8 we have

τx + τy ≤ αw

6ε

(
1
|C∗i |

+
1
|C∗j |

)

≤ αw

3ε
· 1
min

(|C∗i |, |C∗j |
)
)

< d(x, y),

which together with Lemma 8 implies the desired result.

Let us denote by H2
i =

{
x ∈ C∗i \H1

i : w(x) > αw
15ε

}
and H2 = ∪iH

2
i . Since E[w(x)] = w, by Markov inequal-

ity, we have

|H2| ≤ 15ε

α
n.

3.2 Algorithm for Min-Sum Clustering
In this section, we show that if our data satisfies the (1 +

α, ε)-property for the min-sum objective, then we can find
a clustering that is O(ε/α)-close to the target CT . We start
by considering the case where we know the value of OPT
or w = OPT/n and we then show how to get rid of this
assumption in Theorem 10.

For the case of known w we show in the following that
Algorithm 1 can be used to produces a clustering that is
O(ε/α)-close to the target. In this algorithm we define crit-
ical thresholds τ0, τ1, τ2, . . . as: τ0 = 0 and τi is the ith
smallest distinct distance d(x, y) for x, y ∈ S. We can show
the following.

Algorithm 1 Min-Sum Algorithm
Input: (S, d), w, ε ≤ 1, α > 0, k.

For all x do:

• Let the initial threshold τ = τ0.
• Construct the ball B(x, τ) by including all points

within distance τ of x.
• If |B(x, τ)| ≥ 1

20
αw
ετ

then let τx = τ and Bx = B(x, τx)
else increase τ to the next critical threshold

For all x, let B̃x := {y : x ∈ By, y ∈ Bx}; set L = ∅.

For i = 1 . . . k do

• Let Co
i be the largest B̃x.

• Add Co
i to L.

• For all x′ 6= x, set B̃x′ = B̃x′ \ Co
i .

Output: Clustering L.

Note that in the Bx construction phase one can alterna-
tively sort the points by their distance from x and add them
to B(x, τ) one-by-one instead of using critical thresholds.

Theorem 10 If the min-sum instance (S, d) satisfies the (1+
α, ε)-property and we are given the value of w, then Algo-
rithm 1 produces a clustering that is O(ε/α)-close to the
target.

Proof: We first note that the sets Bx in Algorithm 1 are well
defined since for small τ the condition |B(x, τ)| ≥ 1

20
αw
ετ

is obviously false and for very large τ the condition is obvi-
ously true because |B(x, τ)| ≥ 1.

For all i, let c∗i be a point in C∗i that minimizes
∑

x∈C∗i
d(x, c∗i ).

By triangle inequality, all x ∈ C∗i satisfy

w(x) ≥ |C∗i |d(x, c∗i )− w(c∗i ).

Moreover, if x ∈ C∗i and d(x, c∗i ) ≥ αw
60ε|C∗i | then

w(x) ≥ αw

60ε
− w(c∗) ≥ αw

60ε
− w(x),

which implies w(x) ≥ αw
120ε .

Let

Gi =
{

x ∈ C∗i \ (H1
i ∪H2

i ), d(x, c∗i ) <
αw

60ε|C∗i |
}

,

and let G = ∪iGi. Let

H3
i =

{
x ∈ C∗i : d(x, c∗i ) ≥

αw

60ε|C∗i |
}

and H3 = ∪iH
3
i . Thus Gi = C∗i \ (H1

i ∪ H1
i ∪ H1

i ) and
G = S \ (H1 ∪H2 ∪H3). By Markov inequality we have

|H3| ≤ 120(ε/α)n.

We say that the points of G are “good” and the points of
H := H1 ∪H2 ∪H3 = S \G are “bad”. As we have seen
so far there are not too many bad points: |H| = O( ε

αn) – a
fact that we will use later.

Let
Bi =

⋃

x∈Gi

Bx \ C∗i .

Clearly, for all x ∈ Gi we have

Bx ⊆ C∗i ∪Bi. (1)

From Lemma 9 we know that if x ∈ Gi and y ∈ Gj for i 6= j
then Bx ∩ By = ∅. This implies that Bi ∩ Bj = ∅ for i 6= j
as well as that if x ∈ Gi then Bx intersects only Gi no other
Gj . Let

B̃x = {y : x ∈ By, y ∈ Bx}.
We now show that for all points x, B̃x intersects at most
one set Gi and no other Gj for j 6= i. For x ∈ Gi, since
B̃x ⊂ Bx, we get the desired claim. For z ∈ S \ ∪iGi we
might have Bz intersect two different Gi and Gj . However
from Lemma 9 we have that for any two x ∈ Gi and y ∈ Gj

there is no z such that z ∈ Bx and z ∈ By . This implies that
there is no z such that we have both x ∈ B̃z and y ∈ B̃z , so
for z ∈ S \ ∪iGi, B̃zcan intersect only one Gi.

From above we also have:

| ∪i Bi| ≤ |H1|+ |H2|+ |H3| = O
( ε

α
n
)

.

We now claim that for any i there exists an x such that

|B̃x ∩Gi| ≥ |Gi| − 2(|Bi|+ |C∗i \Gi|). (2)

We first prove that for all x ∈ Gi we have |Bx| ≥ |Gi|. If
τx > αw

30ε|C∗i | , then Bx ⊇ Gi. Else, if τx < αw
30ε|C∗i | then

|Bx| ≥ 1
20

αw

ε

30|C∗i |ε
αw

= 1.5|C∗i | > |Gi|.



So for every x ∈ Gi, we have by (1),

|Bx ∩Gi| ≥ |Gi| − |Bi| − |C∗i \Gi|.
This implies that there exists an x∗ such that

|{x ∈ Gi : x∗ ∈ Bx}| ≥ |Gi| − |Bi| − |C∗i \Gi|.
So,

|{x ∈ Gi : x∗ ∈ Bx} ∩ Bx∗ | ≥ |Gi| − 2|Bi| − 2|C∗i \Gi|.
Since

{x ∈ Gi : x∗ ∈ Bx} ∩Bx∗ ⊆ B̃∗x,

we get relation (2), as desired.
To finish the argument we need to argue that greedy cov-

ering on B̃x works well. Let us think of each cluster Gi

as initially “unmarked”, and then marking it the first time we
ever choose a group that intersects it. We now consider a few
cases. If the jth Co

j intersects an unmarked Gi, we will as-
sign σ(j) = i. Note that if this group misses αi points from
Gi, then since we were greedy, according to relation (2), we
must have picked at least αi − 2(|Bi|+ |C∗i \Gi|) elements
from H in this group. Overall, we must have

∑

i

(αi − 2(|Bi|+ |C∗i \Gi|)) ≤ |H|,

which together with
∑

i

|Bi| ≤ |H| and
∑

i

|C∗i \Gi| ≤ |H|

implies
∑

i αi ≤ 5|H|. Thus total error incurred in this way
w.r.t. the good set G is given by the number of points missed
from Gi, so it is at most

∑
i αi ≤ 5|H|. The other case is

when the jth group Co
j intersects a marked Gi. In this case

we assign σ(j) to any arbitrary cluster C∗′i not marked by
the end of the process. The error incurred from these cases
is at most |H|+ ∑

i αi ≤ 6|H|, since this is an upper bound
on the number of points left that aren’t in unmarked clusters.
Finally, we need to also consider the error with respect to the
bad set H . Adding all these up, we obtain that the total error
is bounded by 5|H|+ 6|H|+ |H| = 12|H| = O(ε/αn).

In the case of unknown w, we show the following:

Theorem 11 If k ≤ log n/log log n and if the min-sum in-
stance (S, d) satisfies the (1 + α, ε)-property even if we are
not given w, we can use Algorithm 1 as a subroutine to pro-
duce a clustering that is O(ε/α)-close to the target. For the
case of general k, we can use Algorithm 1 as a subroutine to
produce a list of log log n clusterings such that one of them
is O(ε/α)-close to the target.

Proof: It is not difficult to verify that the argument in The-
orem 10 holds (with only a constant factor loss in the final
guarantee on the error rate), even if we use a constant fac-
tor approximation for w instead of using the exact value of
w in Algorithm 1. If k ≤ log n/log log n, then we can use
the results in [15] for finding a constant factor approxima-
tion for w, and thus we are able produce a clustering that is
O(ε/α)-close to the target.

For the case of general k, we use the fact that there exists
an O(δ−1 log1+δ n)-approximation algorithm in time nO(1/δ)

for the case of arbitrary k [9]. The main idea is to use the al-
gorithm in [9] with δ = 1 to find a lower bound l an upper
bound L for w that are within a multiplicative O(log2 n) fac-
tor of each other. We then try all the values of l, 2 · l, . . . , 2i ·
l, . . . and run Algorithm 1 for each of them. One of the val-
ues 2i · l will be a 2-approximation for w and an argument
similar to the one in Theorem 10 shows that in that case we
get a clustering which is O(ε/α)-close to the target.

Note: All our arguments above can be extended (with an
appropriate loss in the final accuracy guarantees) to the case
where the given dissimilarity function d satisfies only the fol-
lowing d(x, y) ≤ γ(d(x, z) + d(z, y)) for some γ > 1 .

Theorem 12 If the min-sum instance (S, d) satisfies the (1+
α, ε)-property , then so long as then so long as the smallest
correct cluster has size greater than 100εn/α2 we can effi-
ciently find a clustering that is O(ε)-close to the target.

Proof Sketch: Assume that we are given the value of w. We
first use the construction in Theorem 10 to produce a cluster-
ing C ′1, . . . , C

′
k with the property that the target clustering is

O(ε/α)-close to the target. For each cluster C ′i we compute
the center c̃i be a point in C

′
i that minimizes

∑
x∈C

′
i
d(x, c̃i).

We then define the set

Ci
s =

{
x ∈ Ci, d(x, c̃i) <

αw

60ε|C ′
i |

}
.

The fact that the clusters are À εn/α2 means that each Ci
s

captures at least a (1− O(α))-fraction of the corresponding
C∗i .

We now construct a new clustering C ′′1 , . . . , C ′′k as fol-
lows: for each point x and each cluster C ′j , we compute the
weight ws(x, j) as

∑
y∈Ci

s
d(x, y). We finally insert x into

the cluster C ′′i with i = argminjws(x, j). The main steps
in the correctness proof are the following. We first show
that (up to re-indexing of the clusters) Ci

s ⊂ Gi and that∣∣∪iC
i
s

∣∣ = n − O((ε/α)n). We then use these facts together
fact that each Ci

s is a (1 − O(α))-approximation to C∗i in
order to show that all but O(εn) points will make the right
choice.

In the case where we do not know w, we use the tech-
nique in [7] of trying increasing values of w: we then stop
the first time when we output k clusters that cover at least
n−O((ε/α)n of the points in S. ¥

3.3 Inductive Setting
In this section we consider an inductive model in which the
set S is merely a small random subset of points of size n
from a much larger abstract instance space X , |X| = N ,
N À n and the clustering we output clustering is repre-
sented implicitly through a hypothesis h : X → Y . In the
case where k ≤ log n/log log n we produce a clustering of
error at most O(ε/α). In the case where k > log n/log log n
we produce a list of hypotheses, {h1, . . . , h??} such that at
least one of them has error at most ε/α.

We can adapt the algorithm in Theorem 10 to the in-
ductive setting as shown in Algorithm 2. The main idea is
to show that our algorithm from the transductive setting is



pretty robust, and it can survive eliminating small clusters,
making B̃ and the set size estimates fuzzy. Specifically, in
the case of known w we can show the following:

Theorem 13 Assume that the min-sum instance (X, d) sat-
isfies the (1 + α, ε)-property and that we are given the value
of w. If we draw a sample S of size n = O

(
k2

ε2 ln
(

kN
δ

))
then we can use Algorithm 2 to produce a clustering which
is O(ε/α)-close to the target with probability > 1− δ.

Moreover, inserting a new element only takes O(k) time.

Proof Sketch: The proof works in two phases. In the first
stage we redo the analysis of Theorem 10 to show that Algo-
rithm 2 works as well as Algorithm 1 (up to a loss of multi-
plicative constants) in producing the approximate clustering.
The difference is that Algorithm 2 is “fuzzier” than Algo-
rithm 1 in several respects – the comparisons need not be
exact, and set-size estimates are only needed within a con-
stant precision.

In the second phase we observe that Algorithm 2 can
be executed in the inductive setting with high probability.
In particular, set sizes can be estimated within the required
precision from few samples, and for each sufficiently large
cluster there is a suitable center xi in the cluster such that
|B̃S

xi
| > (1 − γ) · |B̃max

x |. This implies that the result of
the execution of Algorithm 2 on the sample is actually the
projection of a valid execution of the algorithm on the entire
input to the sample. Thus by the correctness of the algorithm
in the transductive setting we obtain its correctness in the
inductive mode.

Finally, the correctness of the testing phase follows from
the structural properties of the clustering we proved in The-
orem 10. ¥

Theorem 13 also works if we are given a constant factor
approximation rather than an exact value for w.

We now state our main result for the case of unknown w.
In the following, we denote by D the diameter of the metric
space, i.e, D = maxx,y d(x, y). Using results from [14, 15]
on estimating the value of the optimal min-sum based on the
sample, we obtain the following theorem.

Theorem 14 Assume that the minsum instance (X, d) sat-
isfies the (1 + α, ε)-property and that we are not given thew
value of w. If we draw a sample S of size satisfying both n =
O

(
k2

ε2 ln
(

kN
δ

))
and n = Õ

(
D(k + ln(1/δ))(log n + Dk2)

)
,

and if k ≤ log n/log log n then we can use Algorithm 2 as
a subroutine to produce a clustering that is O(ε/α)-close to
the target. For the case of general k, we can use Algorithm 2
as a subroutine to produce a list of log log n clusterings such
that one of them is O(ε/α)-close to the target.

4 The Correlation Clustering Problem
The correlation clustering setup introduced in [11] is as fol-
lows. We are given a fully-connected graph G with edges
labeled +1 (similar) or −1 (different), and the goal is to find
a partition of the vertices into clusters that agrees as much as
possible with the edge labels.4

4Note that the problem is not trivial since we might have in-
consistences. In particular, it is possible to have x, y, z such that

Algorithm 2 Fuzzy Min-Sum Algorithm
Input: (S, d), w, ε ≤ 1, α > 0, k, n, N.

Training phase

Set w′ = wn/N , I = ∅, N = ∅, γ = ε/k.

For all x do:

• Let the initial threshold τ = τ0.
• Construct the ball BS(x, τ) by including all points

within distance τ of x.
• If 1

17
αw′
ετ ≥ |BS(x, τ)| ≥ 1

18
αw′
ετ and

|BS(x, τ)| ≥ εn
2k

then let τS
x = τ and BS

x = BS(x, τS
x ); add x to I

else increase τ to the next critical threshold

For all x, let
{
y : x ∈ BS

y , |BS
y | ≥ εn

k

} ⊆ B̃S
x ⊆{

y : x ∈ BS
y , |BS

y | ≥ εn
8k

}
. Set L = ∅.

For i = 1 . . . k do

• Let Co
i be a cluster B̃S

xi
of size of at least (1 − γ)

of the largest |B̃S
x | with xi ∈ I .

• Add Co
i to L.

• For x′ 6= x, set B̃S
x′ = B̃S

x′ \ Co
i .

Testing Phase: . When a new point z arrives, assign it to the
cluster Co

i which minimizes d(z, xi).

In particular, the Min-Disagreement correlation cluster-
ing objective (Min-Disagreement CC) asks to find a clus-
tering C = {C1, C2, . . . , Ck} the minimizes the number of
disagreements: the number of −1 edges inside clusters plus
the number of +1 edges between clusters. In this cluster-
ing formulation one does not need to specify the number of
clusters k as a separate parameter, as in measures such as k-
median or min-sum clustering. Instead, in correlation clus-
tering, the optimal number of clusters can take any value be-
tween 1 and n, depending on the edge labels. The currently
best approximation algorithm for minimizing disagreements
is a 2.5 approximation [3] and the problem is known to be
APX-hard [13].

We can show that the (c, ε) assumption does not make
optimizing Min-Disagreement CC objective easier.

Theorem 15 For the Min-Disagreement CC objective the
problem of finding a c-approximation can be reduced to the
problem of finding a c-approximation under the (c, ε) as-
sumption. Therefore, the problem of finding a c-approximation
under the (c, ε) assumption is as hard as the problem of find-
ing a c-approximation in general.

We show now that if our input satisfies the (1 + α, ε)-
property for the Min-Disagreement CC objective, then the
data satisfies the (2.5, (49/α+1)ε) property as well. Specif-
ically:

the edge (x, y)is labeled +1, the edge (y, z) is labeled +1 and the
(x, z) is labeled −1.



Theorem 16 For the Min-Disagreement CC objective, if the
instance (S, d) satisfies the (1+α, ε)-property with respect to
the target clustering CT , then the instance (S, d) also satis-
fies the (2.5, (49/α+1)ε) property with respect to the target
clustering CT .

Interpretation: This means that under the (1+α, ε)-property
we can use a state of the art 2.5 approximation algorithm for
minimizing disagreements in order to get a (49/α + 1)ε ac-
curate clustering.
Proof: We prove the contrapositive. We show that if the
instance that does not satisfy the (2.5, (49/α+1)ε) property
with respect to the target clustering, then the instance does
not satisfy the (1 + α, ε) property with respect to the target
clustering. Recall that C∗ is the optimal Min-Disagreement
CC clustering.

Assume that the instance (S, d) that does not satisfy the
(2.5, (49/α + 1)ε) with respect to the target clustering. This
means that there exists a clustering C′ = {C ′1, C ′2, . . . , C ′k′}
such that cost(C′) ≤ 2.5OPT and dist(CT , C′) ≥ (49/α +
1)ε; since dist(C∗, CT ) ≤ ε we have dist(C∗, C′) ≥ 49ε

α . For
x ∈ S we denote by C∗(x) its cluster in C∗ and by C′(x) its
cluster in C′. We will call a point uninteresting if it does not
change too many neighbors between the two clusterings C′
and C∗; formally, x is uninteresting if

|C∗(x)4 C′(x)| < |C∗(x) ∩ C′(x)|.
We show in the following that there are at least 49 εn

α
interesting points. In order to do this we exhibit a partial
matching of the clusters in C∗ and C′; specifically, we con-
nect two clusters C∗i and C ′j if |C∗i 4 C ′j | < |C∗i ∩ C ′j | and
we let π(i) = j. We prove now that this is a partial match-
ing of the clusters in C∗ and C′. Assume by contradiction
that this is not the case; i.e. assume that there exist i, j, k
such that C∗i ∩ C∗k = ∅ and |C∗i 4 C ′j | < |C∗i ∩ C ′j | and
|C∗k 4 C ′j | < |C∗k ∩ C ′j |, which implies

|C∗i 4 C ′j |+ |C∗k 4 C ′j | < |C∗i ∩ C ′j |+ |C∗k ∩ C ′j |. (3)

However since C∗i ∩ C∗k = ∅ we have both

|C∗i ∩ C ′j |+ |C∗k ∩ C ′j | ≤ |C ′j |
and

|C∗i 4 C ′j |+ |C∗k 4 C ′j | ≥ |C ′j |,
which implies

|C∗i ∩ C ′j |+ |C∗k ∩ C ′j | ≤ |C∗i 4 C ′j |+ |C∗k 4 C ′j |,
thus contradicting (3). This proves that π is a partial match-
ing of the clusters in C∗ and C′. Let σ be an arbitrary permu-
tation of the whole set S that matches all uninteresting points
according to π; i.e., σ is defined as σ(i) = j such that if x
is uninteresting and C(x) = C∗i , then C ′(x) = C ′π(i) = C ′j .
By definition we have

distσ(C∗, C′) ≥ dist(C∗, C′) ≥ 49
εn

α
,

which implies that there exists a set I with at least 49εn/α
interesting points.

We now compute the cost of isolating an interesting point
x. Let us denote by w(x) the contribution of x to the Min-
Disagreement CC in C∗ and by w′(x) the contribution of x
to the Min-Disagreement CC in C′. We clearly have

w(x) + w′(x) ≥ |C∗(x)4 C′(x)| ≥ |C∗(x) ∩ C′(x)|,
which implies:

2(w(x) + w′(x)) ≥ max(|C∗(x)|, |C′(x)|).
So, for an interesting point x we get that

|{y : R(x, y) = +}| ≤ |C∗(x)|+ w(x) ≤ 3(w(x) + w′(x)).

So, the cost of isolating an interesting point x is at most
3(w(x) + w′(x)).

Since cost(C′) ≤ 2.5OPT, cost(C∗) = OPT and |I| ≥
49 εn

α we have:

1
|I|

∑

x∈I

(w(x) + w′(x)) ≤ 3.5OPT
|I| ≤ 3.5OPTα

49εn
.

This implies that for any set size s ≤ |I| there exist a set
A ⊆ I of size s such that

1
|A|

∑

x∈A

(w(x) + w′(x)) ≤ 3.5OPTα

49εn
.

Note also that for any interesting point x we have

w(x) + w′(x) ≥ 1,

therefore

49εn/α ≤ |I| ≤
∑

x∈I

(w(x) + w′(x)) ≤ 3.5OPT,

which implies

OPT ≥ 14εn/α (4)

Let A ⊆ I of size s = 4εn such that
1
|A|

∑

x∈A

(w(x) + w′(x)) ≤ 3.5OPTα

49εn
.

Let As ⊆ A be the set of singleton points in the target clus-
tering, i.e, x ∈ As if C(x) = {x}, and let Ans = A \ As.
We produce a new clustering C′′ from C∗ by isolating the
points in Ans and by pairing up the points in As and merg-
ing any two points in the same pair. By Fact 1 have get
dist(C∗, C′′) ≥ 2ε, so dist(CT , C′′) ≥ ε. Also as shown
above, the cost of isolating all the points in Ans is at most
(10.5αOPT/(49εn))|A| ≤ α(42/49) · OPT; also the to-
tal cost of merging the singleton interesting pairs is at most
|As|/2 ≤ 2εn which by (4) is at most α(7/49) ·OPT. This
implies that the cost of isolating all the points in Ans plus
the cost of merging the singleton interesting pairs is at most
αOPT. So the Min-Disagreement CC cost of C′′ is within
a 1 + α factor of OPT, and yet C′′ which is ε-far from
the target. Thus our clustering instance does not satisfy the
(1+α, ε) property with respect to the target clustering, which
is a contradiction. This completes the proof.

Note: The other correlation clustering objective is of maxi-
mizing agreements, the number of +1 edges inside clusters
plus the number of−1 edges between clusters. For maximiz-
ing agreements there exists a PTAS [11], so this objective is
not interesting in our framework.



4.1 The Non Complete Graph Case
In the case where the graph G is not fully-connected, we do
not get the strong result as in Theorem 16. On the contrary,
we can show the following:

Theorem 17 For any α, β < 1/6, there exists a family of
graphs G and target clusterings that satisfy the (1 + α, 0)
property for the the Min-Disagreement CC objective and yet
do not satisfy even the (1 + α + β, 1/2) property for that
objective.

Proof: Consider a set of n points such that the target cluster-
ing consists of one cluster C1 with n/2 points and one cluster
C2 with n/2 points. we set both C1 and C2 to be fully con-
nected with all the edges inside C1 and C2 labeled +. Also
we designate a single vertex in C1 which is connected with
n/3 vertices in C2 with edges all labeled as +, and a vertex
in C2 connected with (n/3) · (1 + α + β) edges in C1, all
labeled as −. It’s easy to verify that the instance satisfies the
(1 + α, 0) property; we have OPT = n

3 and any other so-
lution has cost greater than n/3(1 + α + β). However the
solution does not even satisfy the (1 + α + β, 1/2) property.
The clustering with all the points in one big cluster has cost
1 + α + β and yet, it’s distance from the target is 1/2.

5 Conclusions and Open Questions
In this work we get around inherent inapproximability results
for the min-sum objective in the case where good approxi-
mation to the min-sum objective indeed implies an accurate
clustering. We derive strong structural properties from this
assumption, and use them to give an efficient algorithm that
produce accurate clusterings.

In the minimizing disagreements setting for correlation
clustering we show that the same assumption allows us to
find an accurate clustering using existing approximation al-
gorithms. One concrete open question remaining is dealing
with a non-complete graph in the context correlation cluster-
ing for the minimizing disagreements objective.

More generally, it would be interesting to further explore
and analyze in this framework other natural classes of com-
monly used clustering objective functions. It would also be
interesting to consider an agnostic version of model, where
the (c, ε) property is satisfied only after some small number
of outliers or ill-behaved data points have been removed.
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