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Abstract

We give improved constants for data dependent and
variance sensitive confidence bounds, called em-
pirical Bernstein bounds, and extend these inequal-
ities to hold uniformly over classes of functions
whose growth function is polynomial in the sam-
ple sizen. The bounds lead us to considersam-
ple variance penalization, a novel learning method
which takes into account the empirical variance of
the loss function. We give conditions under which
sample variance penalization is effective. In par-
ticular, we present a bound on the excess risk in-
curred by the method. Using this, we argue that
there are situations in which the excess risk of our
method is of order1/n, while the excess risk of
empirical risk minimization is of order1/

√
n. We

show some experimental results, which confirm the
theory. Finally, we discuss the potential applica-
tion of our results to sample compression schemes.

1 Introduction

The method of empirical risk minimization (ERM) is so in-
tuitive, that some of the less plausible alternatives have re-
ceived little attention by the machine learning community.In
this work we present sample variance penalization (SVP), a
method which is motivated by some variance-sensitive, data-
dependent confidence bounds, which we develop in the pa-
per. We describe circumstances under which SVP works bet-
ter than ERM and provide some preliminary experimental
results which confirm the theory.

In order to explain the underlying ideas and highlight the
differences between SVP and ERM, we begin with a discus-
sion of the confidence bounds most frequently used in learn-
ing theory.

Theorem 1 (Hoeffding’s inequality) Let Z, Z1, . . . , Zn be
i.i.d. random variables with values in[0, 1] and letδ > 0.
Then with probability at least1− δ in (Z1, . . . , Zn) we have

EZ − 1

n

n
∑

i=1

Zi ≤
√

ln 1/δ

2n
.

∗This work was partially supported by EPSRC Grants
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It is customary to call this result Hoeffding’s inequality.
It appears in a stronger, more general form in Hoeffding’s
1963 milestone paper [4]. Proofs can be found in [4] or
[8]. We cited Hoeffding’s inequality in form of a confidence-
dependent bound on the deviation, which is more convenient
for our discussion than a deviation-dependent bound on the
confidence. ReplacingZ by 1−Z shows that the confidence
interval is symmetric aboutEZ.

Suppose some underlying observation is modeled by a
random variableX , distributed in some spaceX according
to some lawµ. In learning theory Hoeffding’s inequality is
often applied whenZ measures the loss incurred by some
hypothesish whenX is observed, that is,

Z = ℓh (X) .

The expectationEX∼µℓh (X) is called the risk associated
with hypothesish and distributionµ. Since the risk depends
only on the functionℓh and onµ we can write the risk as

P (ℓh, µ) ,

whereP is the expectation functional. If an i.i.d. vector
X = (X1, . . . , Xn) has been observed, then Hoeffding’s in-
equality allows us to estimate the risk, for fixed hypothesis,
by the empirical risk

Pn (ℓh,X) =
1

n

∑

i

ℓh (Xi)

within a confidence interval of length2
√

(ln 1/δ) / (2n).
Let us call the setF of functionsℓh for all different hy-

pothesesh thehypothesis spaceand its membershypothe-
ses, ignoring the distinction between a hypothesish and the
induced loss functionℓh. The bound in Hoeffding’s inequal-
ity can easily be adjusted to hold uniformly over any finite
hypothesis spaceF to give the following well known result
[1].

Corollary 2 Let X be a random variable with values in a
setX with distributionµ, and letF be a finite class of hy-
pothesesf : X → [0, 1] andδ > 0. Then with probability at
least1 − δ in X = (X1, . . . , Xn) ∼ µn

P (f, µ) − Pn (f,X) ≤
√

ln (|F| /δ)

2n
, ∀f ∈ F ,

where|F| is the cardinality ofF .



This result can be further extended to hold uniformly
over hypothesis spaces whose complexity can be controlled
with different covering numbers which then appear in place
of the cardinality|F| above. A large body of literature exists
on the subject of such uniform bounds to justify hypothesis
selection by empirical risk minimization, see [1] and refer-
ences therein. Given a sampleX and a hypothesis spaceF ,
empirical risk minimization selects the hypothesis

ERM (X) = argmin
f∈F

Pn (f,X) .

A drawback of Hoeffding’s inequality is that the con-
fidence interval is independent of the hypothesis in ques-
tion, and always of order

√

1/n, leaving us with a uniformly
blurred view of the hypothesis class. But for hypotheses of
small variance better estimates are possible, such as the fol-
lowing, which can be derived from what is usually called
Bennett’s inequality (see e.g. Hoeffding’s paper [4]).

Theorem 3 (Bennett’s inequality) Under the conditions of
Theorem 1 we have with probability at least1 − δ that

EZ − 1

n

n
∑

i=1

Zi ≤
√

2VZ ln 1/δ

n
+

ln 1/δ

3n
,

whereVZ is the varianceVZ = E (Z − EZ)
2.

The bound is symmetric aboutEZ and for largen the
confidence interval is now close to2

√
VZ times the confi-

dence interval in Hoeffding’s inequality. A version of this
bound which is uniform over finite hypothesis spaces, anal-
ogous to Corollary 2, is easily obtained, involving now for
each hypothesish the varianceVh (X). If h1 andh2 are two
hypotheses then2

√

Vh1 (X) and 2
√

Vh2 (X) are always
less than or equal to1 but they can also be much smaller, or
one of them can be substantially smaller than the other one.
For hypotheses of zero variance the diameter of the confi-
dence interval decays asO (1/n).

Bennett’s inequality therefore provides us with estimates
of lower accuracy for hypotheses of large variance, and higher
accuracy for hypotheses of small variance. Given many hy-
potheses of equal and nearly minimal empirical risk it seems
intuitively safer to select the one whose true risk can be most
accurately estimated (a point to which we shall return). But
unfortunately the right hand side of Bennett’s inequality de-
pends on the unobservable variance, so our view of the hy-
pothesis class remains uniformly blurred.

1.1 Main results and SVP algorithm

We are now ready to describe the main results of the paper,
which provide the motivation for the SVP algorithm.

Our first result provides a purely data-dependent bound
with similar properties as Bennett’s inequality.

Theorem 4 Under the conditions of Theorem 1 we have with
probability at least1−δ in the i.i.d. vectorZ = (Z1, . . . , Zn)
that

EZ − 1

n

n
∑

i=1

Zi ≤
√

2Vn (Z) ln 2/δ

n
+

7 ln 2/δ

3 (n − 1)
,

whereVn (Z) is the sample variance

Vn (Z) =
1

n (n − 1)

∑

1≤i<j≤n

(Zi − Zj)
2
.

We next extend Theorem 4 over a finite function class.

Corollary 5 Let X be a random variable with values in a
setX with distributionµ, and letF be a finite class of hy-
pothesesf : X → [0, 1]. For δ > 0, n ≥ 2 we have with
probability at least1 − δ in X = (X1, . . . , Xn) ∼ µn that

P (f, µ) − Pn (f,X) ≤
√

2Vn (f,X) ln (|F| /δ)

n
+

+
7 ln (|F| /δ)

3 (n − 1)
, ∀f ∈ F ,

whereVn (f,X) = Vn (f (X1) , . . . , f (Xn)).

Theorem 4 makes the diameter of the confidence interval
observable. The corollary is obtained from a union bound
over F , analogous to Corollary 2, and provides us with a
view of the loss class which is blurred for hypotheses of large
sample variance, and more in focus for hypotheses of small
sample variance.

We note that an analogous result to Theorem 4 is given
by Audibert et al. [2]. Our technique of proof is new and the
bound we derive has a slightly better constant. Theorem 4
itself resembles Bernstein’s or Bennett’s inequality, in confi-
dence bound form, but in terms of observable quantities. For
this reason it has been called anempirical Bernstein bound
in [9]. In [2] Audibert et al. apply their result to the analysis
of algorithms for the multi-armed bandit problem and in [9]
it is used to derive stopping rules for sampling procedures.
We will prove Theorem 4 in Section 2, together with some
useful confidence bounds on the standard deviation, which
may be valuable in their own right.

Our next result extends the uniform estimate in Corollary
5 to infinite loss classes whose complexity can be suitably
controlled. Beyond the simple extension involving cover-
ing numbers forF in the uniform norm‖·‖∞, we can use
the following complexity measure, which is also fairly com-
monplace in the machine learning literature [1], [3].

For ǫ > 0, a function classF and an integern, the
“growth function”N∞ (ǫ,F , m) is defined as

N∞ (ǫ,F , m) = sup
x∈Xn

N (ǫ,F (x) , ‖·‖∞) ,

whereF (x) = {(f (x1) , . . . , f (xn)) : f ∈ F} ⊆ R
n and

for A ⊆ R
n the numberN (ǫ, A, ‖·‖∞) is the smallest car-

dinality |A0| of a setA0 ⊆ A such thatA is contained in
the union ofǫ-balls centered at points inA0, in the metric
induced by‖·‖∞.

Theorem 6 Let X be a random variable with values in a
setX with distributionµ and letF be a class of hypotheses
f : X → [0, 1]. Fix δ ∈ (0, 1) , n ≥ 16 and set

M (n) = 10N∞ (1/n,F , 2n) .



Then with probability at least1 − δ in the random vector
X = (X1, . . . , Xn) ∼ µn we have

P (f, µ) − Pn (f,X) ≤
√

18Vn (f,X) ln (M (n) /δ)

n

+
15 ln (M (n) /δ)

n − 1
, ∀f ∈ F .

The structure of this bound is very similar to Corollary 5,
with 2 |F| replaced byM(n). In a number of practical cases
polynomial growth ofN∞ (1/n,F , n) in n has been estab-
lished. For instance, we quote [3, equation (28)] which states
that for the bounded linear functionals in the reproducing
kernel Hilbert space associated with Gaussian kernels one

haslnN∞ (1/n,F , 2n) = O
(

ln3/2 n
)

. Composition with

fixed Lipschitz functions preserves this property, so we can
see that Theorem 6 is applicable to a large family of func-
tion classes which occur in machine learning. We will prove
Theorem 6 in Section 3.

Since the minimization of uniform upper bounds is fre-
quent practice in machine learning, one could consider min-
imizing the bounds in Corollary 5 or Theorem 6. This leads
to sample variance penalization, a technique which selects
the hypothesis

SV Pλ (X) = arg min
f∈F

Pn (f,X) + λ

√

Vn (f,X)

n
,

whereλ ≥ 0 is some regularization parameter. Forλ = 0
we recover empirical risk minimization. The last term on the
right hand side can be regarded as a data-dependent regular-
izer.

Why, and under which circumstances, should sample vari-
ance penalization work better than empirical risk minimiza-
tion? If two hypotheses have the same empirical risk, why
should we discard the one with higher sample variance? Af-
ter all, the empirical risk of the high variance hypothesis may
be just as much overestimating the true risk as underestimat-
ing it. In Section 4 we will argue that the decay of the excess
risk of sample variance penalization can be bounded in terms
of the variance of an optimal hypothesis (see Theorem 15)
and if there is an optimal hypothesis with zero variance, then
the excess risk decreases as1/n. We also give an example of
such a case where the excess risk of empirical risk minimiza-
tion cannot decrease faster thanO (1/

√
n). We then report

on the comparison of the two algorithms in a toy experiment.
Finally, in Section 5 we present some preliminary ob-

servations concerning the application of empirical Bernstein
bounds to sample-compression schemes.

1.2 Notation

We summarize the notation used throughout the paper. We
define the following functions on the cube[0, 1]n, which will
be used throughout. For everyx = (x1, . . . , xn) ∈ [0, 1]

n

we let

Pn (x) =
1

n

n
∑

i=1

xi

and

Vn (x) =
1

n (n − 1)

n
∑

i,j=1

(xi − xj)
2

2
.

If X is some set,f : X → [0, 1] andx = (x1, . . . , xn) ∈
Xn we write f (x) = (f (x1) , . . . , f (xn)), Pn (f,x) =
Pn (f (x)) andVn (f,x) = Vn (f (x)).

Questions of measurability will be ignored throughout,
if necessary this is enforced through finiteness assumptions.
If X is a real valued random variable we useEX andVX
to denote its expectation and variance, respectively. IfX
is a random variable distributed in some setX according to
a distributionµ, we write X ∼ µ. Product measures are
denoted by the symbols× or

∏

, µn is then-fold product
of µ and the random variableX = (X1, . . . , Xn) ∼ µn

is an i.i.d. sample generated fromµ. If X ∼ µ andf :
X → R then we writeP (f, µ) = EX∼µf (X) = Ef (X)
andV (f, µ) = VX∼µf (X) = Vf (X).

2 Empirical Bernstein bounds and variance
estimation

In this section, we prove Theorem 4 and some related useful
results, in particular concentration inequalities for thevari-
ance of a bounded random variable, (5) and (6) below, which
may be of independent interest. For future use we derive our
results for the more general case where theXi in the sample
are independent, but not necessarily identically distributed.

We need two auxiliary results. One is a concentration
inequality for self-bounding random variables (Theorem 13
in [7]):

Theorem 7 Let X = (X1, . . . , Xn) be a vector of inde-
pendent random variables with values in some setX . For
1 ≤ k ≤ n and y ∈ X , we useXy,k to denote the vector
obtained fromX by replacingXk by y. Suppose thata ≥ 1
and thatZ = Z (X) satisfies the inequalities

Z (X) − inf
y∈X

Z (Xy,k) ≤ 1, ∀k (1)

n
∑

k=1

(

Z (X) − inf
y∈X

Z (Xy,k)

)2

≤ aZ (X) (2)

almost surely. Then, fort > 0,

Pr {EZ − Z > t} ≤ exp

( −t2

2aEZ

)

.

If Z satisfies only the self-boundedness condition (2) we still
have

Pr {Z − EZ > t} ≤ exp

( −t2

2aEZ + at

)

.

The other result we need is a technical lemma on condi-
tional expectations.

Lemma 8 Let X , Y be i.i.d. random variables with values
in an interval[a, a + 1]. Then

EX

[

EY (X − Y )2
]2

≤ (1/2)E (X − Y )2 .

Proof: The right side of the above inequality is of course the
varianceE

[

X2 − XY
]

. One computes

EX

[

EY (X − Y )
2
]2

= E
[

X4 + 3X2Y 2 − 4X3Y
]

.



We therefore have to show thatE [g (X, Y )] ≥ 0 where

g (X, Y ) = X2 − XY − X4 − 3X2Y 2 + 4X3Y

A rather tedious computation gives

g (X, Y ) + g (Y, X) =

= X2 − XY − X4 − 3X2Y 2 + 4X3Y +

+ Y 2 − XY − Y 4 − 3X2Y 2 + 4Y 3X

= (X − Y + 1) (Y − X + 1) (Y − X)
2
.

The latter expression is clearly nonnegative, so

2 [Eg (X, Y )] = E [g (X, Y ) + g (Y, X)] ≥ 0,

which completes the proof.

When the random variablesX andY are uniformly dis-
tributed on a finite set,{x1, . . . , xn}, Lemma 8 gives the fol-
lowing useful corollary.

Corollary 9 Suppose{x1, . . . , xn} ⊂ [0, 1]. Then

1

n

∑

k





1

n

∑

j

(xk − xj)
2





2

≤ 1

2n2

∑

k,j

(xk − xj)
2
.

We first establish confidence bounds for the standard de-
viation.

Theorem 10 Letn ≥ 2 andX = (X1, . . . , Xn) be a vector
of independent random variables with values in[0, 1]. Then
for δ > 0 we have, writingEVn for EXVn (X),

Pr

{

√

EVn >
√

Vn (X) +

√

2 ln 1/δ

n − 1

}

≤ δ (3)

Pr

{

√

Vn (X) >
√

EVn +

√

2 ln 1/δ

n − 1

}

≤ δ. (4)

Proof: Write Z (X) = nVn (X). Now fix somek and
choose anyy ∈ [0, 1]. Then

Z (X) − Z (Xy,k) =

=
1

n − 1

∑

j

(

(Xk − Xj)
2 − (y − Xj)

2
)

≤ 1

n − 1

∑

j

(Xk − Xj)
2 .

It follows thatZ (X) − infy∈Ω Z (Xy,k) ≤ 1. We also get

∑

k

(

Z (X) − inf
y∈[0,1]

Z (Xy,k)

)2

≤

≤
∑

k





1

n − 1

∑

j

(Xk − Xj)
2





2

≤ n3

(n − 1)
2

1

2n2

∑

kj

(Xk − Xj)
2

=
n

n − 1
Z (X) ,

where we applied Corollary 9 to get the second inequality.
It follows thatZ satisfies (1) and (2) witha = n/ (n − 1).
From Theorem 7 and

Pr{±EVn ∓ Vn (X) > s} = Pr {±EZ ∓ Z (X) > ns}
we can therefore conclude the following concentration result
for the sample variance: Fors > 0

Pr {EVn − Vn (X) > s} ≤ exp

(− (n − 1) s2

2EVn

)

(5)

Pr {Vn (X) − EVn > s} ≤ exp

(− (n − 1) s2

2EVn + s

)

. (6)

From the lower tail bound (5) we obtain with probability at
least1 − δ that

EVn − 2
√

EVn

√

ln 1/δ

2 (n − 1)
≤ Vn (X) .

Completing the square on the left hand side, taking the square-
root, adding

√

ln (1/δ) / (2 (n − 1)) and using
√

a + b ≤√
a +

√
b gives (3). Solving the right side of (6) fors and

using the same square-root inequality we find that with prob-
ability at least1 − δ we have

Vn (X) ≤ EVn + 2

√

EVn ln 1/δ

2 (n − 1)
+

ln 1/δ

(n − 1)

=

(

√

EVn +

√

ln 1/δ

2 (n − 1)

)2

+
ln 1/δ

2 (n − 1)
.

Taking the square-root and using the root-inequality again
gives (4).

We can now prove the empirical Bernstein bound, which
reduces to Theorem 4 for identically distributed variables.

Theorem 11 Let X = (X1, . . . , Xn) be a vector of inde-
pendent random variables with values in[0, 1]. Let δ > 0.
Then with probability at least1 − δ in X we have

E [Pn (X)] ≤ Pn (X) +

√

2Vn (X) ln 2/δ

n
+

7 ln 2/δ

3 (n − 1)
.

Proof: Write W = (1/n)
∑

i VXi and observe that

W ≤ 1

n

∑

i

E (Xi − EXi)
2 (7)

+
1

2n (n − 1)

∑

i6=j

(EXi − EXj)
2 (8)

=
1

2n (n − 1)

∑

i,j

E (Xi − Xj)
2

= EVn. (9)
Recall that Bennett’s inequality, which holds also if theXi

are not identically distributed (see [8]), implies with proba-
bility at least1 − δ

EPn (X) ≤ Pn (X) +

√

2W ln 1/δ

n
+

ln 1/δ

3n

≤ Pn (X) +

√

2EVn ln 1/δ

n
+

ln 1/δ

3n
,

so that the conclusion follows from combining this inequal-
ity with (3) in a union bound and some simple estimates.



3 Empirical Bernstein bounds for function
classes of polynomial growth

We now prove Theorem 6. We will use the classical double-
sample method ([10], [1]), but we have to pervert it some-
what to adapt it to the nonlinearity of the empirical standard-
deviation functional. Define functionsΦ, Ψ : [0, 1]

n×R+ →
R by

Φ (x, t) = Pn (x) +

√

2Vn (x) t

n
+

7t

3 (n − 1)
,

Ψ (x, t) = Pn (x) +

√

18Vn (x) t

n
+

11t

n − 1
.

We first record some simple Lipschitz properties of these
functions.

Lemma 12 For t > 0, x,x′ ∈ [0, 1]n we have

(i) Φ (x, t) − Φ (x′, t) ≤
(

1 + 2
√

t/n
)

‖x − x
′‖∞ ,

(ii) Ψ (x, t) − Ψ (x′, t) ≤
(

1 + 6
√

t/n
)

‖x − x
′‖∞ .

Proof: One verifies that
√

Vn (x) −
√

Vn (x′) ≤
√

2 ‖x− x
′‖∞ ,

which implies (i) and (ii).

Given two vectorsx,x′ ∈ Xn andσ ∈ {−1, 1}n de-
fine (σ,x,x′) ∈ Xn by (σ,x,x′)i = xi if σi = 1 and
(σ,x,x′)i = x′

i if σi = −1. In the following theσi will
be independent random variables, uniformly distributed on
{−1, 1}.

Lemma 13 LetX = (X1, . . . , Xn) andX
′ = (X ′

1, . . . , X
′
n)

be random vectors with values inX such that all theXi and
X ′

i are independent and identically distributed. Suppose that
F : X 2n → [0, 1]. Then

EF (X,X′) ≤ sup
(x,x′)∈X 2n

EσF ((σ,x,x′) , (−σ,x,x′)) .

Proof: For any configurationσ and(X,X′), the configura-
tion ((σ,X,X′) , (−σ,X,X′)) is obtained from(X,X′) by
exchangingXi andX ′

i wheneverσi = −1. SinceXi and
X ′

i are identically distributed this does not affect the expec-
tation. Thus

EF (X,X′) = EσEF ((σ,X,X′) , (−σ,X,X′))

≤ sup
(x,x′)∈X 2n

EσF ((σ,x,x′) , (−σ,x,x′)) .

The next lemma is where we use the concentration results
in Section 2.

Lemma 14 Let f : X → [0, 1] and(x,x′) ∈ X 2n be fixed.
Then

Pr
σ
{Φ (f (σ,x,x′) , t) > Ψ (f (−σ,x,x′) , t)} ≤ 5e−t.

Proof: Define the random vectorY = (Y1, . . . , Yn), where
theYi are independent random variables, eachYi being uni-
formly distributed on{f (xi) , f (x′

i)}. TheYi are of course
not identically distributed. Within this proof we use the short-
hand notationEPn = EYPn (Y) andEVn = EYVn (Y),
and let

A = EPn +

√

8EVn t

n
+

14t

3 (n − 1)
.

Evidently

Pr
σ
{Φ (f (σ,x,x′) , t) > Ψ (f (−σ,x,x′) , t)} ≤

≤ Pr
σ
{Φ (f (σ,x,x′) , t) > A} +

+ Pr
σ
{A > Ψ (f (−σ,x,x′) , t)} =

= Pr
Y

{Φ (Y, t) > A} + Pr
Y

{A > Ψ (Y, t)} .

To prove our result we will bound these two probabilities in
turn.

Now

Pr
Y

{Φ (Y, t) > A} ≤

≤ Pr

{

Pn (Y) > EPn +

√

2EVnt

n
+

t

3 (n − 1)

}

+

+ Pr

{
√

2Vn (Y) t

n
>

√

2EVn t

n
+

2t

n − 1

}

.

Since
∑

i V (f (Yi)) ≤ nEVn by equation (7), the first of
these probabilities is at moste−t by Bennett’s inequality,
which also holds for variables which are not identically dis-
tributed. That the second of these probabilities is bounded
by e−t follows directly from Theorem 10 (4). We conclude
thatPrY {Φ (Y, t) > A} ≤ 2e−t.

Since
√

2 +
√

8 =
√

18 we have

Pr
Y

{A > Ψ (Y, t)} ≤

≤ Pr

{

EPn > Pn (Y) +

√

2Vn (Y) t

n
+

7t

3 (n − 1)

}

+

+ Pr

{
√

8EVn t

n
>

√

8Vn (Y) t

n
+

4t

n − 1

}

.

The first probability in the sum is at most2e−t by Theorem
11, and the second is at moste−t by Theorem 10 (3). Hence
PrY {A > Ψ (f (Y) , t)} ≤ 3e−t, so it follows that

Pr
σ
{Φ (f (σ,x,x′) , t) > Ψ (f (−σ,x,x′) , t)} ≤ 5e−t.

Proof of Theorem 6. It follows from Theorem 11 that for
t > ln 4 we have for anyf ∈ F that

Pr {Φ (f (X) , t) > P (f, µ)} ≥ 1/2.

In other words, the functional

f 7→ Λ (f) = EX′1 {Φ (f (X′) , t) > P (f, µ)}



satisfies1 ≤ 2Λ (f) for all f . Consequently, for anys > 0
we have, usingIA to denote the indicator function ofA, that

Pr
X

{∃f ∈ F : P (f, µ) > Ψ (f (X) , t) + s}

= EX sup
f∈F

I {P (f, µ) > Ψ (f (X) , t) + s}

≤ EX sup
f∈F

I {P (f, µ) > Ψ (f (X) , t) + s} 2Λ (f)

= 2EX sup
f∈F

EX′ I

{

P (f, µ) > Ψ (f (X) , t) + s
andΦ (f (X′) , t) > P (f, µ)

}

≤ 2EXX
′ sup

f∈F

I

{

P (f, µ) > Ψ (f (X) , t) + s
andΦ (f (X′) , t) > P (f, µ)

}

≤ 2EXX
′ sup

f∈F

I {Φ (f (X′) , t) > Ψ (f (X) , t) + s}

≤ 2 sup
(x,x′)∈X 2n

Pr
σ

{

∃f ∈ F : Φ (f (σ,x,x′) , t)

> Ψ (f (−σ,x,x′) , t) + s
}

,

where we used Lemma 13 in the last step.
Now we fix (x,x′) ∈ X 2n and letǫ > 0 be arbitrary.

We can choose a finite subsetF0i of F such that|F0| ≤
N (ǫ,F , 2n) and that∀f ∈ F there existsf̂ ∈ F0 such

that
∣

∣

∣f (xi) − f̂ (xi)
∣

∣

∣ < ǫ and
∣

∣

∣f (x′
i) − f̂ (x′

i)
∣

∣

∣ < ǫ, for all

i ∈ {1, . . . , n}. Suppose there existsf ∈ F such that

Φ (f (σ,x,x′) , t) > Ψ (f (−σ,x,x′) , t)+

(

2 + 8

√

t

n

)

ǫ.

It follows from the Lemma 12 (i) and (ii) that there must exist
f̂ ∈ F0 such that

Φ
(

f̂ (σ,x,x′) , t
)

> Ψ
(

f̂ (−σ,x,x′) , t
)

.

We conclude from the above that

Pr
σ

{ ∃f ∈ F : Φ (f (σ,x,x′) , t) >

> Ψ (f (−σ,x,x′) , t) +
(

2 + 8
√

t
n

)

ǫ

}

≤ Pr
σ

{

∃f ∈ F0 : Φ (f (σ,x,x′) , t) > Ψ (f (−σ,x,x′) , t)
}

≤
∑

f∈F0

Pr
σ

{

Φ (f (σ,x,x′) , t) > Ψ (f (−σ,x,x′) , t)
}

≤ 5N (ǫ,F , 2n) e−t,

where we used Lemma 14 in the last step. We arrive at the
statement that

Pr
X

{

∃f ∈ F : P (f, µ) ≥ Ψ (f (X) , t) +

(

2 + 8

√

t

n

)

ǫ

}

≤ 10N (ǫ,F , 2n) e−t.

Equating this probability toδ, solving fort, substitutingǫ =

1/n and using8
√

t/n ≤ 2t, for n ≥ 16 andt ≥ 1, give the
result.

We remark that a simplified version of the above argu-
ment gives uniform bounds for the standard deviation

√

V (f, µ),
using Theorem 10 (4) and (3).

4 Sample variance penalization versus
empirical risk minimization

Since empirical Bernstein bounds are observable, have es-
timation errors which can be as small asO (1/n) for small
sample variances, and can be adjusted to hold uniformly over
realistic function classes, they suggest a method which min-
imizes the bounds of Corollary 5 or Theorem 6. Specifically
we consider the algorithm

SV Pλ (X) = argmin
f∈F

Pn (f,X) + λ

√

Vn (f,X)

n
, (10)

whereλ is a non-negative parameter. We call this method
sample variance penalization (SVP). Choosing the regular-
ization parameterλ = 0 reduces the algorithm to empirical
risk minimization (ERM).

It is intuitively clear that SVP will be inferior to ERM if
losses corresponding to better hypotheses have larger vari-
ances than the worse ones. But this seems to be a somewhat
unnatural situation. If, on the other hand, there are some op-
timal hypotheses of small variance, then SVP should work
well. To make this rigorous we provide a result, which can
be used to bound the excess risk ofSV Pλ. Below we use
Theorem 6, but it is clear how the argument is to be modified
to obtain better constants for finite hypothesis spaces.

Theorem 15 Let X be a random variable with values in a
setX with distributionµ, and letF be a class of hypotheses
f : X → [0, 1]. Fix δ ∈ (0, 1) , n ≥ 2 and setM (n) =

10N∞ (1/n,F , 2n) andλ =
√

18 ln (3M (n) /δ).
Fix f∗ ∈ F . Then with probability at least1 − δ in the

draw ofX ∼ µn,

P (SV Pλ (X) , µ) − P (f∗, µ)

≤
√

32V (f∗, µ) ln (3M (n) /δ)

n

+
22 ln (3M (n) /δ)

n − 1
.

Proof: Denote the hypothesisSV Pλ (X) by f̂ . By Theorem
6 we have with probability at least1 − δ/3 that

P
(

f̂ , µ
)

≤ Pn

(

f̂ ,X
)

+ λ

√

√

√

√

Vn

(

f̂ ,X
)

n
+

15λ2

18 (n − 1)

≤ Pn (f∗,X) + λ

√

Vn (f∗,X)

n
+

15λ2

18 (n − 1)
.

The second inequality follows from the definition ofSV Pλ.
By Bennett’s inequality (Theorem 3) we have with probabil-
ity at least1 − δ/3 that

Pn (f∗,X) ≤ P (f∗, µ) +

√

2V (f∗, µ) ln 3/δ

n
+

ln 3/δ

3n



and by Theorem 10 (4) we have with probability at least1−
δ/3 that

√

Vn (f∗,X) ≤
√

V (f∗, µ) +

√

2 ln 3/δ

n − 1
.

Combining these three inequalities in a union bound and us-
ing ln (3M (n) /δ) ≥ 1 and some other crude but obvious
estimates, we obtain with probability at least1 − δ

P
(

f̂ , µ
)

≤ P (f∗, µ) +

√

32V (f∗, µ) ln (3M (n) /δ)

n

+
22 ln (3M (n) /δ)

n − 1
.

If we let f∗ be an optimal hypothesis we obtain a bound
on the excess risk. The square-root term in the bound scales
with the standard deviation of this hypothesis, which can be
quite small. In particular, if there is an optimal (minimal
risk) hypothesis of zero variance, then the excess risk of the
hypothesis chosen by SVP decays as(lnM (n)) /n. In the
case of finite hypothesis spacesM(n) = |F| is independent
of n and the excess risk then decays as1/n. Observe that
apart from the complexity bound onF no assumption such
as convexity of the function class or special properties of the
loss functions were needed to derive this result.

To demonstrate a potential competitive edge of SVP over
ERM we will now give a very simple example of this type,
where the excess risk of the hypothesis chosen by ERM is of
orderO (1/

√
n).

Suppose thatF consists of only two hypothesesF =
{

c1/2, b1/2+ǫ

}

. The underlying distributionµ is such that
c1/2 (X) = 1/2 almost surely andb1/2+ǫ (X) is a Bernoulli
variable with expectation1/2+ ǫ, whereǫ ≤ 1/

√
8. The hy-

pothesisc1/2 is optimal and has zero variance, the hypothesis
b1/2+ǫ has excess riskǫ and variance1/4− ǫ2. We are given
an i.i.d. sampleX = (X1, . . . , Xn) ∼ µn on which we are
to base the selection of either hypothesis.

It follows from the previous theorem (withf∗ = c1/2),
that the excess risk ofSV Pλ decays as1/n, for suitably cho-
senλ. To make our point we need to give a lower bound for
the excess risk of empirical risk minimization. We use the
following inequality due to Slud which we cite in the form
given in [1, p. 363].

Theorem 16 Let B be a binomial(n, p) random variable
with p ≤ 1/2 and suppose thatnp ≤ t ≤ n (1 − p). Then

Pr {B > t} ≥ Pr

{

Z >
t − np

√

np (1 − p)

}

,

whereZ is a standard normalN (0, 1)-distributed random
variable.

Now ERM selects the inferior hypothesisb1/2+ǫ if

Pn

(

b1/2+ǫ,X
)

< Pn

(

c1/2,X
)

= 1/2.

We therefore obtain from Theorem 16, with

B = n
(

1 − Pn

(

b1/2+ǫ (X)
))

,

p = 1/2 − ǫ andt = n/2 that

Pr
{

ERM (X) = b1/2+ǫ

}

= Pr
{

Pn

(

b1/2+ǫ (X)
)

< 1/2
}

≥ Pr{B > t}

≥ Pr

{

Z >

√
nǫ

√

1/4 − ǫ2

}

A well known bound for standard normal random variables
gives forη > 0

Pr{Z > η} ≥ 1√
2π

η

1 + η2
exp

(−η2

2

)

≥ exp
(

−η2
)

, if η ≥ 2.

If we assumen ≥ ǫ−2 we have
√

nǫ/
√

1/4 − ǫ2 ≥ 2, so

Pr
{

ERM (X) = b1/2+ǫ

}

≥ exp

(

− nǫ2

1/4 − ǫ2

)

≥ e−8nǫ2 ,

where we usedǫ ≤ 1/
√

8 in the last inequality. Since this is
just the probability that the excess risk isǫ we arrive at the
following statement: For everyn ≥ ǫ−2 there existsδ (=
e−8nǫ2) such that the excess risk of the hypothesis generated
by ERM is at least

ǫ =

√

ln 1/δ

8n
,

with probability at leastδ. Therefore the excess risk for ERM
cannot have a faster rate thanO (1/

√
n).

This example is of course a very artificial construction,
chosen as a simple illustration. It is clear that the conclu-
sions do not change if we add any number of deterministic
hypotheses with risk larger than1/2 (they simply have no ef-
fect), or if we add any number of Bernoulli hypotheses with
risk at least1/2 + ǫ (they just make things worse for ERM).

To obtain a more practical insight into the potential ad-
vantages of SVP we have conducted a simple experiment,
whereX = [0, 1]

K and the random variableX ∈ X is dis-
tributed according to

∏K
k=1 µak,bk

where

µa,b = (1/2) (δa−b + δa+b) .

Each coordinateπk (X) of X is thus a binary random vari-
able, assuming the valuesak − bk andak + bk with equal
probability, having expectationak and varianceb2

k.
The distribution ofX is itself generated at random by se-

lecting the pairs(ak, bk) independently:ak is chosen from
the uniform distribution on[B, 1 − B] and the standard de-
viation bk is chosen from the uniform distribution on the in-
terval [0, B]. ThusB is the only parameter governing the
generation of the distribution.

As hypotheses we just take theK coordinate functions
πk in [0, 1]

K . Selecting thek-th hypothesis then just means
that we select the corresponding distributionµak,bk

. Of course
we want to find a hypothesis of small riskak, but we can only
observeak through the corresponding sample, the observa-
tion being obscured by the varianceb2

k.
We choseB = 1/4 andK = 500. We tested the algo-

rithm (10) withλ = 0, corresponding to ERM, andλ = 2.5.
The sample sizes ranged from 10 to 500. We recorded the
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Figure 1: Comparison of the excess risks of the hypothe-
ses returned by ERM (circled line) and SVP withλ = 2.5
(squared line) for different sample sizes.

true risks of the respective hypotheses generated, and av-
eraged these risks over 10000 randomly generated distribu-
tions. The results are reported in Figure 1 and show clearly
the advantage of SVP in this particular case. It must however
be pointed out that this advantage, while being consistent,is
small compared to the risk of the optimal hypotheses (around
1/4).

If we try to extract a practical conclusion from Theorem
15, our example and the experiment, then it appears that SVP
might be a good alternative to ERM, whenever the optimal
members of the hypothesis space still have substantial risk
(for otherwise ERM would do just as good), but there are
optimal hypotheses of very small variance. These two con-
ditions seem to be generic for many noisy situations: when
the noise arises from many independent sources, but does
not depend too much on any single source, then the loss of
an optimal hypothesis should be sharply concentrated around
its expectation (e.g. by the bounded difference inequality-
see [8]), resulting in a small variance.

5 Application to sample compression

Sample compression schemes [6] provide an elegant method
to reduce a potentially very complex function class to a finite,
data-dependent subclass. WithF being as usual, assume that
some algorithmA is already specified by a fixed function

A : X ∈
∞
⋃

n=1

Xn 7→ AX ∈ F .

The functionAS can be interpreted as the hypothesis chosen
by the algorithm on the basis of the training setS, composed
with the fixed loss function. Forx ∈ X the quantityAS (x)
is thus the loss incurred by training the algorithm fromS and
applying the resulting hypothesis tox.

The idea of sample compression schemes [6] is to train
the algorithm on subsamples of the training data and to use

the remaining data points for testing. A comparison of the
different results then leads to the choice of a subsample and
a corresponding hypothesis. If this hypothesis has small risk,
we can say that the problem-relevant information of the sam-
ple is present in the subsample in a compressed form, hence
the name.

Since the method is crucially dependent on the quality of
the individual performance estimates, and empirical Bern-
stein bounds give tight, variance sensitive estimates, a com-
bination of sample compression and SVP is promising. For
simplicity we only consider compression sets of a fixed size
d. We introduce the following notation for a subsetI ⊂
{1, . . . , n} of cardinality|I| = d.

• AX[I] = the hypothesis trained withA from the sub-
sampleX[I] consisting of those examples whose in-
dices lie inI.

• Forf ∈ F , we let

PIc (f) = Pn−d (f (X[Ic])) =
1

n − d

∑

i/∈I

f (Xi) ,

the empirical risk off computed on the subsampleX[Ic]
consisting of those examples whose indices do not lie in
I.

• Forf ∈ F , we let

VIc(f) = Vn−d (f (X[Ic]))

=
1

2(n − d)(n − d − 1)

∑

i,j /∈I

(f (Xi) − f (Xj))
2
,

the sample variance off computed onX[Ic].

• C = the collection of subsetsI ⊂ {1, . . . , n} of cardi-
nality |I| = d.

With this notation we define our sample compression scheme
as

SV Pλ (X) = A
X[Î]

Î = arg min
I∈C

PIc

(

AX[I]

)

+ λ
√

VIc

(

AX[I]

)

.

As usual,λ = 0 gives the classical sample compression
schemes. The performance of this algorithm can be guar-
anteed by the following result.

Theorem 17 With the notation introduced above fixδ ∈ (0, 1) ,

n ≥ 2 and setλ =
√

2 ln (6 |C| /δ). Then with probability at
least1− δ in the draw ofX ∼ µn, we have for everyI∗ ∈ C

P (SV Pλ (X) , µ) − P
(

AX[I∗], µ
)

≤

√

8V
(

AX[I∗], µ
)

ln (6 |C| /δ)

n − d
+

14 ln (6 |C| /δ)

3 (n − d − 1)

Proof: Use a union bound and Theorem 4 to obtain an em-
pirical Bernstein bound uniformly valid over allAX[I] with
I ∈ C and therefore also valid forSV Pλ (X). Then follow
the proof of Theorem 15. Since nowI∗ ∈ C is chosenafter



seeing the sample, uniform versions of Bennett’s inequality
and Theorem 10 (4) have to be used, and are again readily
obtained with union bounds overC.

The interpretation of this result as an excess risk bound
is more subtle than for Theorem 15, because the optimal hy-
pothesis is now sample-dependent. If we define

I∗ = argmin
I∈C

P
(

AX[I], µ
)

,

then the theorem tells us how close we are to the choice
of the optimal subsample. This will be considerably better
than what we get from Hoeffding’s inequality if the variance
V
(

AX[I∗], µ
)

is small and sparse solutions are sought in the
sense thatd/n is small (observe thatln |C| ≤ d ln (ne/d)).

This type of relative excess risk bound is of course more
useful if the minimumP

(

AX[I∗], µ
)

is close to some true
optimum arising from some underlying generative model. In
this case we can expect the lossAX[I∗] to behave like a noise
variable centered at the riskP

(

AX[I∗], µ
)

. If the noise arises
from many independent sources, each of which makes only a
small contribution, thenAX[I∗] will be sharply concentrated
and have a small varianceV

(

AX[I∗], µ
)

, resulting in tight
control of the excess risk.

6 Conclusion
We presented sample variance penalization as a potential al-
ternative to empirical risk minimization and analyzed some
of its statistical properties in terms of empirical Bernstein
bounds and concentration properties of the empirical stan-
dard deviation. The promise of our method is that, in simple
but perhaps practical scenarios the excess risk of our method
is guaranteed to be substantially better than that of empirical
risk minimization.

The present work raises some questions. Perhaps the
most pressing issue is to find an efficient implementation of
the method, to deal with the fact that sample variance penal-
ization is non-convex in many situations when empirical risk
minimization is convex, and to compare the two methods on
some real-life data sets. Another important issue is to further
investigate the application of empirical Bernstein boundsto
sample compression schemes.
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