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Abstract

We give improved constants for data dependentand
variance sensitive confidence bounds, called em-
pirical Bernstein bounds, and extend these inequal-
ities to hold uniformly over classes of functions
whose growth function is polynomial in the sam-
ple sizen. The bounds lead us to consideam-

ple variance penalizatigra novel learning method
which takes into account the empirical variance of
the loss function. We give conditions under which
sample variance penalization is effective. In par-
ticular, we present a bound on the excess risk in-
curred by the method. Using this, we argue that
there are situations in which the excess risk of our
method is of orded /n, while the excess risk of
empirical risk minimization is of ordet//n. We
show some experimental results, which confirm the
theory. Finally, we discuss the potential applica-
tion of our results to sample compression schemes.
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It is customary to call this result Hoeffding’s inequality.
It appears in a stronger, more general form in Hoeffding’s
1963 milestone paper [4]. Proofs can be found in [4] or
[8]. We cited Hoeffding’s inequality in form of a confidence-
dependent bound on the deviation, which is more convenient
for our discussion than a deviation-dependent bound on the
confidence. Replacing by 1 — Z shows that the confidence
interval is symmetric abolZ.

Suppose some underlying observation is modeled by a
random variableX, distributed in some spack& according
to some lawu. In learning theory Hoeffding’s inequality is
often applied wherZ measures the loss incurred by some
hypothesig» whenX is observed, that is,

Z =t (X).

The expectatioE x..,.0, (X) is called the risk associated
with hypothesish and distributiory:.. Since the risk depends
only on the functior?;, and onu we can write the risk as

P(éha:u)7

where P is the expectation functional. If an i.i.d. vector
X = (Xy,...,X,) has been observed, then Hoeffding’s in-
equality allows us to estimate the risk, for fixed hypothesis

The method of empirical risk minimization (ERM) is so in-
tuitive, that some of the less plausible alternatives have r
ceived little attention by the machine learning commuriity.
this work we present sample variance penalization (SVP), a
method which is motivated by some variance-sensitive;data
dependent confidence bounds, which we develop in the pa-within a confidence interval of length,/(In 1/6) / (2n).
per. We describe circumstances under which SVP works bet-  Let us call the sef of functions,, for all different hy-
ter than ERM and provide some preliminary experimental potheses the hypothesis spacand its membershypothe-
results which confirm the theory. ses ignoring the distinction between a hypothesiand the

In order to explain the underlying ideas and highlight the induced loss functio#,. The bound in Hoeffding’s inequal-
differences between SVP and ERM, we begin with a discus- ity can easily be adjusted to hold uniformly over any finite
sion of the confidence bounds most frequently used in learn-hypothesis spacg to give the following well known result
ing theory. [1].

by the empirical risk

P, (0, X) = % >l (Xi)

Theorem 1 (Hoeffding'sinequality) LetZ, 74, ..., Z, be
i.i.d. random variables with values if9, 1] and leté > 0.
Then with probability at least — § in (71, ..., Z,,) we have

Corollary 2 Let X be a random variable with values in a
setX” with distribution ., and letF be a finite class of hy-
potheseg : X — [0,1] andé > 0. Then with probability at

mi/o leastl —0inX = (Xy,...,X,) ~ i

1 n
EZ — — Z; < .
n; - 2n

*This work was partially supported by EPSRC Grants
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P - P (1X) <[ e g

where|F| is the cardinality ofF.



This result can be further extended to hold uniformly whereV,, (Z) is the sample variance
over hypothesis spaces whose complexity can be controlled
with different covering numbers which then appear in place Vi, (Z) = 1 Z (Z; — Z')Q
of the cardinality| | above. A large body of literature exists " n(n—1) LT
on the subject of such uniform bounds to justify hypothesis
selection by empirical risk minimization, see [1] and refer
ences therein. Given a sam@eand a hypothesis spade
empirical risk minimization selects the hypothesis

1<i<j<n
We next extend Theorem 4 over a finite function class.

Corollary 5 Let X be a random variable with values in a
ERM (X) = argmin P, (f,X). set X with distribution i, and letF be a finite class of hy-
fer pothesesf : X —[0,1]. Foré > 0, n > 2 we have with

A drawback of Hoeffding’s inequality is that the con- probability atleastl — 4§ in X = (Xi,..., X,) ~ " that

fidence interval is independent of the hypothesis in ques-

tion, and always of ordey/1/n, leaving us with a uniformly P(f,p) — Py (f,X) S\/2Vn (f,X)In (|71/9) +
blurred view of the hypothesis class. But for hypotheses of n
small variance better estimates are possible, such aslthe fo 7In(|F]/6) Ve F
lowing, which can be derived from what is usually called 3(n—1) " ’
Bennett's inequality (see e.g. Hoeffding’s paper [4]).
whereV,, (f,X) =V, (f (X1),.... f (Xa)).
Theorem 3 (Bennett’'sinequality) Under the conditions of
Theorem 1 we have with probability at ledst- § that Theorem 4 makes the diameter of the confidence interval
observable. The corollary is obtained from a union bound
1 — 2VZInl1/6 1Inl/d over F, analogous to Corollary 2, and provides us with a
EZ - n Z Zi < \ n + n view of the loss class which is blurred for hypotheses ofdarg
=1 sample variance, and more in focus for hypotheses of small

whereVZ7 is the varianc&VZ = E (Z — IEZ)Q. sample variance. o
We note that an analogous result to Theorem 4 is given

The bound is symmetric aboitZ and for largen the by Audibert et al. [2]. Our technique of proof is new and the
confidence interval is now close ®/VZ times the confi- bound we derive has a .sll,ghtly better ,co_nstant.. Theorem 4
dence interval in Hoeffding’s inequality. A version of this gz%liéesgﬁzl?graerbnustt?rﬂ:rg{SB;r:)nbesté‘:’JggguaJ%m:; For
bound which is uniform over finite hypothesis spaces, anal- this reason it has Been called eampirical Bernsqtein boun.d
ogous to Corollary 2, is easily obtained, involving now for P

each hypothesis the varianca/h (X). If i, andhs are two in [9]. In [2] Audibert et al. apply their result to the anaiys

of algorithms for the multi-armed bandit problem and in [9]
hypotheses the/Vh, (X) and2,/Vh, (X) are always i is ysed to derive stopping rules for sampling procedures.
less than or equal td but they can also be much smaller, or

. We will prove Theorem 4 in Section 2, together with some
one of them can be substantially smaller than the other one.;ga1| confidence bounds on the standard deviation, which
For hypotheses of zero variance the diameter of the confi- may be valuable in their own right.
dence mter\’/a'l decays a(1/n). . . . Our next result extends the uniform estimate in Corollary

Bennett's inequality therefore provides us with estimates g 4,y inite loss classes whose complexity can be suitably
oflower accuracy for hypotheses of large variance, anddigh ., \qlled. Beyond the simple extension involving cover-
accuracy for hypotheses of small variance. Given many hy- 'y mbers for in the uniform norml-||_, we can use
potheses of equal and nearly minimal empirical risk it seems the following complexity measure, which is also fairly com-
intuitively safer to select the one whose true risk can betmos monplace in the machine Iearnind literature [1], [3]
accurately estimated (a point to which we shall return). But Fore > 0. a function class? and an inte' eﬁ the
unfortunately the right hand side of Bennett's inequaligy d ., rowthefunctic’)n"/\/ (e, F,m) is defined as gen,
pends on the unobservable variance, so our view of the hy- 9 oo (&S, M

pothesis class remains uniformly blurred. Noo (6, F,m) = Su)? N, Fx), ).
xe n

1.1 Mainresultsand SVP algorithm
We are now ready to describe the main results of the paper,Vhere+ (’;) ={(f(z1),...,f(zn)) : f€F} C R"and
which provide the motivation for the SVP algorithm. for A C R" the numberV (¢, 4, |||.,,) is the smallest car-

Our first result provides a purely data-dependent bound dinality [Ao| of a setd, C A such thatd is contained in
with similar properties as Bennett's inequality. _the union ofe-balls centered at points idg, in the metric

induced byj|-|| .-

Theorem 4 Under the conditions of Theorem 1 we have with
probability atleasti —d inthe i.i.d. vectoZ = (Z1, ..., Z,) Theorem 6 Let X be a random variable with values in a
that setX with distributiony and letF be a class of hypotheses

f: X —]0,1]. Fixé € (0,1),n > 16 and set

1 & 2V, (Z)In2/6  TIn2/6
EZ — — Z; < )
n; n +3(n—1) M (n) = 10N« (1/n, F,2n).



Then with probability at least — ¢ in the random vector
X =(Xy,...,X,) ~ u" we have

P(f.p) — P (f,X) <\/18Vn(fyx)1?(/\/l(n)/5)

. 15In El/\/_l (171) /0)

, VfeF.

The structure of this bound is very similar to Corollary 5,
with 2 | F| replaced byM(n). In a number of practical cases
polynomial growth ofN (1/n, F,n) in n has been estab-
lished. Forinstance, we quote [3, equation (28)] whichestat
that for the bounded linear functionals in the reproducing

kernel Hilbert space associated with Gaussian kernels oneandVv (7, 1) = Vxouf (X)=V

hasin N, (1/n, F,2n) = O (lrf‘/2 n) Composition with

fixed Lipschitz functions preserves this property, so we can
see that Theorem 6 is applicable to a large family of func-
tion classes which occur in machine learning. We will prove
Theorem 6 in Section 3.

Since the minimization of uniform upper bounds is fre-
guent practice in machine learning, one could consider min-
imizing the bounds in Corollary 5 or Theorem 6. This leads
to sample variance penalizatipa technique which selects
the hypothesis

Vo (f, X

SV Py (X) =argmin P, (f,X) + A L,
feF n

whereX > 0 is some regularization parameter. Por= 0

we recover empirical risk minimization. The last term on the

If X is some setf : X —[0,1] andx = (z1,...,zy)
X we write f (x) = (f(x1),--., f (2a)), Pu (f.%)
Py (f (x)) andV,, (f,x) = V,, ( (x))-

Questions of measurability will be ignored throughout,
if necessary this is enforced through finiteness assumsution
If X is a real valued random variable we US& andVX
to denote its expectation and variance, respectivelyX If
is a random variable distributed in some gétccording to
a distributiony, we write X ~ pu. Product measures are
denoted by the symbols or [], ¢" is then-fold product
of 4 and the random variablX = (Xq,...,X,) ~ u”
is an i.i.d. sample generated from If X ~ pandf :

X — R then we writeP (f, u) = Ex~,f (X) = Ef (X)
f(X).

S

2 Empirical Bernstein bounds and variance
estimation

In this section, we prove Theorem 4 and some related useful
results, in particular concentration inequalities for tzei-
ance of a bounded random variable, (5) and (6) below, which
may be of independent interest. For future use we derive our
results for the more general case where ihen the sample
are independent, but not necessarily identically distedu

We need two auxiliary results. One is a concentration
inequality for self-bounding random variables (Theorem 13

in [7]):

Theorem7 Let X = (Xi,...,X,) be a vector of inde-
pendent random variables with values in someetFor

right hand side can be regarded as a data-dependentregular < t < n andy € X, we useX, , to denote the vector

izer.

obtained fromX by replacingX by y. Suppose that > 1

Why, and under which circumstances, should sample vari-gnd thatZ = Z (X) satisfies the inequalities

ance penalization work better than empirical risk minimiza
tion? If two hypotheses have the same empirical risk, why
should we discard the one with higher sample variance? Af-
ter all, the empirical risk of the high variance hypothesam

be just as much overestimating the true risk as underestimat

ing it. In Section 4 we will argue that the decay of the excess

risk of sample variance penalization can be bounded in termsalmost surely. Then, far> 0,

of the variance of an optimal hypothesis (see Theorem 15)

and if there is an optimal hypothesis with zero variancen the
the excess risk decreaseslda. We also give an example of

200~ mLZ(K0 < LW @)
n 2
> (z0-mzxw) < zx @
42
Pr{EZ —Z >t} <exp (2aEZ) .

such a case where the excess risk of empirical risk minimiza- |f 7 satisfies only the self-boundedness condition (2) we still

tion cannot decrease faster th@r(1//n). We then report
on the comparison of the two algorithms in a toy experiment.

Finally, in Section 5 we present some preliminary ob-
servations concerning the application of empirical Bezimst
bounds to sample-compression schemes.

1.2 Notation

We summarize the notation used throughout the paper. We

define the following functions on the cufig 1]", which will

be used throughout. For every= (z1,...,z,) € [0,1]"
we let
1 n
Pn - — 4
(x) =~ ;l
and )
B 1 - (x; — ;)
Vo (%) n(n—1) Z 2

have
—¢2

Pr{Z -EZ >t} < —_—
. ” }_eXp(QaEZ—i—at

).

The other result we need is a technical lemma on condi-
tional expectations.

Lemma8 Let X, Y be i.i.d. random variables with values
in an interval[a, a + 1]. Then

Ey [EY (X — Yﬂ S (1/2)E(X — V).

Proof: The right side of the above inequality is of course the
varianceE [X? — XY'|. One computes

Ex [Ey (X - Yﬂ "_E (X' +3X%Y? —4X%Y].



We therefore have to show thEtg (X,Y)] > 0 where
g(X,Y)=X%2- XY — X* —3X%Y? +4X3%Y
A rather tedious computation gives
g(X.Y) +g(V,X) =
= X? - XY - X* - 3X%Y? 4 4X3Y +
+Y?2 - XY - Y* - 3X?Y? +4Y3X
=S (X-Y+1)(Y -X+1)(Y-X)>.
The latter expression is clearly nonnegative, so
2[Eg (X, Y)]=E[g(X,Y)+g(Y,X)] >0,
which completes the proof. |

When the random variables andY are uniformly dis-
,Zn }, Lemma 8 gives the fol-

tributed on a finite setz4, . ..
lowing useful corollary.

Corollary 9 Suppos€z1,...,z,} C [0,1]. Then

%Z (%Z(xk —ﬂ?j)Q) < #Z@k —;)*
k J k.j

We first establish confidence bounds for the standard de-

viation.

Theorem 10 Letn > 2 andX = (Xq, ..

for § > 0 we have, writingtV,, for ExV;, (X),

Pr{\/EVn>\/Vn(X)+\/2:Ln7_1{5} < 0 (3
Pr{fvn<x'>> BV, + 2;“1/5} < b @

—1
Proof: Write Z (X) = nV, (X).
choose any, € [0, 1]. Then

Z(X)—-Z Xy =
= I (K= X - (- X))

Now fix somek and

n—1

1 (XK - X5)*.

n—14%
J

It follows thatZ (X)) —

IN

infyen Z (Xy,x) < 1. We also get

2
(Z (X) — inf Z(X%k)) <

y€[0,1]

2
3 (nLZ(Xk—X»?)
k J
n 1

., X,,) be avector
of independent random variables with values(nl]. Then

where we applied Corollary 9 to get the second inequality.
It follows that Z satisfies (1) and (2) with = n/ (n — 1).
From Theorem 7 and

Pr{£EV, ¥V, (X) > s} = Pr{£EZ ¥ Z (X) > ns}
we can therefore conclude the following concentrationltesu
for the sample variance: Fer> 0

_ _ 2
< e (5500 ©

—EV, >s} < exp(%) (6)

From the lower tail bound (5) we obtain with probability at
leastl — ¢ that

Pr{EV, -V, (X) > s}

Pr{V, (X)

In1/§
2(n—1)
Completing the square on the left hand side, taking the sguar
root, adding+/In (1/8) /(2 (n — 1)) and usingya + b <
Va + /b gives (3). Solving the right side of (6) ferand
using the same square-root inequality we find that with prob-
ability at leastl — § we have
EV,In1/6

2(n—1)

EV, — 2\/EV, <V, (X).

Inl/é
(n—1)

Vo(X) < EV,+2

2
Inl/§ Inl/6
= [ VEV, — —
< Vo 2(n—1)> 2(n—1)
Taking the square-root and using the root-inequality again
gives (4).
We can now prove the empirical Bernstein bound, which
reduces to Theorem 4 for identically distributed variables

Theorem 11 Let X = (Xi,...,X,) be a vector of inde-
pendent random variables with values|in1]. Letd > 0.
Then with probability at least — ¢ in X we have

2V, (X)In2/6  7In2/6
< )
E[P, (X)] < P, (X) + " S 1)
Proof: Write W = (1/n) >, VX; and observe that
1 2
< = - .
wo< Z:IE (X; —EX;) )
1 2
pE Ty r— Z (EX; — EX;) (8)
1#£]
1
 2n(n—1) EJ:E (X = X; )
= EV,. 9)

Recall that Bennett’s inequality, which holds also if thig
are not identically distributed (see [8]), implies with pa

bility at leastl — ¢
Py (X) + /2W1n1/5+1n1/(5
n 3n
Py (X) + /2IE<:T/n1n1/(5_|_1111/(57
n 3n

so that the conclusion follows from combining this inequal-
ity with (3) in a union bound and some simple estimatii.

EP, (X) <

IN




3 Empirical Bernstein bounds for function
classes of polynomial growth

Proof: Define the random vectdf = (Y1, ...,Y,), where
theY; are independent random variables, eagheing uni-
formly distributed on{ f (x;) , f (z})}. TheY; are of course

We now prove Theorem 6. We will use the classical double- notidentically distributed. Within this proof we use thesh
sample method ([10], [1]), but we have to pervert it some- hand notatiorEP,, = Ey P, (Y) andEV,, = EyV, (Y),

what to adapt it to the nonlinearity of the empirical stamtdar

deviation functional. Define functiords, ¥ : [0, 1]" xR —
R by

U(x,1) = Po(x)+ 18‘4;1 ()t nlitl

We first record some simple Lipschitz properties of these

functions.

Lemmal2 Fort > 0,x,x" € [0,1]" we have

(i) @) @, < (1+2v/i/n) Ix =,
(i) W (x,8) — W (x,1) < (1+6\/t/_n) % — x|, -

Proof: One verifies that
VVa () = Vi () < V2 [x = ||,
which implies (i) and (ii). |

Given two vectorsx,x’ € X" ando € {—1,1}" de-
fine (o,x,x") € &A™ by (0,x,x'), = x; if 0y = 1 and
(0,x,x"), = 2} if o; = —1. In the following thec; will

be independent random variables, uniformly distributed on

{~1,1}.

Lemma 13 LetX = (Xq,...,X,)andX' = (X7,..., X))
be random vectors with values i such that all theX; and

X/ are independent and identically distributed. Suppose that

F: X% —[0,1]. Then

EF(X,X')<  sup
(x,x’)EXQ"

E,F ((0,x,x'),(—0,x,%)).

Proof: For any configuratiowr and(X, X’), the configura-

tion ((o,X,X’), (-0, X, X)) is obtained from X, X’) by
exchangingX; and X! whenevers; = —1. SinceX; and

X/ are identically distributed this does not affect the expec-

tation. Thus

EF (X,X') = E,EF ((0,X,X),(~0,X,X"))
E,F ((0,%,x'), (—0,%x,%X)).

< sup
(x,x/)ex?2n

and let

[8EV,, t 14¢
A=EP, - .
+ n + 3(n—1)
Evidently

Pr{® (f (0,%,X),t) > ¥ (f (~0,%,%') , 1)} <
<Pr{®(f(0,%,¥),t) > A} +
+Pr{A> U (f(—0,x,X),t)} =
= f;{r{(I)(Y,t) > A} +I;{r{A > U (Y,t)}.
To prove our result we will bound these two probabilities in

turn.
Now

Pr{®(Y,1) > A} <

2EV,.t t
< Pr<{P,(Y EP,
< r{ (Y) > +14/ - +3(n—1)}+
+Pr{\/2vn(Y)t>\/2EVnt+ 2t }
n n n—1

Since) . V(f (Y;)) < nEV, by equation (7), the first of
these probabilities is at mostt by Bennett’s inequality,
which also holds for variables which are not identically-dis
tributed. That the second of these probabilities is bounded
by e~ follows directly from Theorem 10 (4). We conclude
thatPry {® (Y, t) > A} < 2e~ .

Sincev2 + v/8 = v/18 we have

lz{r{A >0 (Y, 1)} <

< Pr{EPn>Pn(Y)+ 2V (Y)t Tt )}+

{ \/SEVnt \/SVn Y)t 4 }
+ Pr > + .
n n n—1

The first probability in the sum is at mo2t~—* by Theorem
11, and the second is at mest' by Theorem 10 (3). Hence
Pry {A > VU (f(Y),t)} < 3e”t, soit follows that

P;r{@ (f (0,%,x"),t) > U (f (—0,%x,x'),t)} < 5e "

The nextlemma is where we use the concentration resultsproof of Theorem 6. It follows from Theorem 11 that for

in Section 2.

Lemmal4 Letf: X — [0,1] and(x,x’) € X" be fixed.

Then
1:;1" {®(f (0,%,%X),t) > U (f (—0,%x,x),t)} <5e "

t > In4 we have for anyf € F that

Pr{®(f(X),t) > P(f,u)}=>1/2.
In other words, the functional

froA(f) =Ex {2 (f (X'),t) > P(f, 1)}



satisfiesl < 2A (f) for all f. Consequently, for any > 0
we have, using A to denote the indicator function of, that

Pri3fe F:P(fip) >V (f(X),t)+s}

=Ex sup I{P(f,pu) >
feF

U (f(X),1) + s}

< Ex sup I{P (f.) > ¥ (f (X),

{
{P

< 2Exx’ sup I{® (f (X’
feEF

t)+ s} 2A(f)

= 2Ex sup Ex/I
fer

< 2Exx/supl
feF

<2 sup Pr{3feF:0(f(0,x,x),t)

(x,x")exzn 7
> U (f (—o,x,x"),t) + s},

where we used Lemma 13 in the last step.
Now we fix (x,x’) € X?" and lete > 0 be arbitrary.
We can choose a finite subsgt: of F such that|Fy| <

N (e, F,2n) and thatVf € F there existsf € Fy such
that|f (z;) — f (z:)] < eand]f(x;) - i)\ < ¢ forall

f (]
i €{1,...,n}. Suppose there exisfsc F such that

@ (f (0.%,%),1) > U (f (~o.3,%) 1)+ (us@) e_

IEfoIIows from the Lemma 12 (i) and (ii) that there must exist
f € Fo such that

@(f(o,x,x’),t) > \Il(f(—o,x,x’),t).
We conclude from the above that
Af e F:0(f (0,x,%x'),t) >
{ >0 (f(—0,x,x'),t) + (24—8\/%)6 }

Pr

g

7Pr{§|f€f0 :®(f(0,%,%'),t) > U (f (—0,%x,%X),1) }
< ZPr{(I) (o,%,x") )>\Il(f(—o,x,x’),t)}
feFo

< BN (e, F,2n)e

where we used Lemma 14 in the last step. We arrive at the
statement that

P}’(r{EIfE]—":P(f,,u)Z\I/(f(X),t)—F<2+8\/g> e}

< 10N (e, F,2n) e "

Equating this probability t@, solving fort, substitutings =
1/n and using8+/t/n < 2t, forn > 16 andt > 1, give the
result. |

We remark that a simplified version of the above argu-

ment gives uniform bounds for the standard deviatjovi (f, 1),
using Theorem 10 (4) and (3).

4 Sample variance penalization versus

empirical risk minimization
Since empirical Bernstein bounds are observable, have es-
timation errors which can be as small@51/n) for small
sample variances, and can be adjusted to hold uniformly over
realistic function classes, they suggest a method which min

imizes the bounds of Corollary 5 or Theorem 6. Specifically
we consider the algorithm

Vo (£, X)
n

SV Py (X )—argmmP (f, X) +

where \ is a non- negatlve parameter. We call this method
sample variance penalization (SVP). Choosing the regular-
ization parametek = 0 reduces the algorithm to empirical
risk minimization (ERM).

It is intuitively clear that SVP will be inferior to ERM if
losses corresponding to better hypotheses have larger vari
ances than the worse ones. But this seems to be a somewhat
unnatural situation. If, on the other hand, there are some op
timal hypotheses of small variance, then SVP should work
well. To make this rigorous we provide a result, which can
be used to bound the excess risk4¥f P,. Below we use
Theorem 6, but itis clear how the argument is to be modified
to obtain better constants for finite hypothesis spaces.

(10)

)

Theorem 15 Let X be a random variable with values in a
setX’ with distributiony, and letF be a class of hypotheses
f: X —=]0,1]. Fixé € (0,1),n > 2 and setM (n) =
10N (1/n, F,2n) and X = /181n (3M (n) /9).

Fix f* € F. Then with probability at least — § in the
draw of X ~ p'™,

P (SVP\(X),p) — P (£, 1)
- \/ 32V (f*, 1) In (3M (n) /5)
, 22 (T3L/\_/t 1(n) /6).

Proof: Denote the hypothesV Py (X) by f. By Theorem
6 we have with probability at leagt— §/3 that

P(f,u) < Pn(f,X)+)\ Vn(Tfl,X)leS}i,\_?l)
< P (LX) + A Yo (%, X) 1812A_21)~

The second inequality follows from the definition 8 P.
By Bennett’s inequality (Theorem 3) we have with probabil-
ity at leastl — §/3 that

P (f7,X) < P(f* ) + \/W (f*jrl;)lng/d +

In3/d
3n




and by Theorem 10 (4) we have with probability at lebst
d/3 that

VG X) < V() 4 2

Combining these three inequalities in a union bound and us-
ing In (3M (n) /6) > 1 and some other crude but obvious
estimates, we obtain with probability at ledast §

32V (f*, ) In 3BM (n) /9)

n

P (f,u) < P(f*,u)+\/
+221n (3BM (n) /5)

n—1

If we let f* be an optimal hypothesis we obtain a bound
on the excess risk. The square-root term in the bound scale
with the standard deviation of this hypothesis, which can be
quite small. In particular, if there is an optimal (minimal
risk) hypothesis of zero variance, then the excess riskef th
hypothesis chosen by SVP decayglasM (n)) /n. In the
case of finite hypothesis spac&$(n) = |F| is independent
of n and the excess risk then decayslda. Observe that
apart from the complexity bound af no assumption such
as convexity of the function class or special propertiesef t
loss functions were needed to derive this result.

To demonstrate a potential competitive edge of SVP over
ERM we will now give a very simple example of this type,
where the excess risk of the hypothesis chosen by ERM is of
orderO (1/+/n).

Suppose thafF consists of only two hypotheses =
{c1/2,b1/2+c}. The underlying distribution: is such that
c1/2 (X) = 1/2 almost surely and, /5, . (X) is a Bernoulli

variable with expectatioh/2 + ¢, wheree < 1/+/8. The hy-
pothesis:; /, is optimal and has zero variance, the hypothesis
b1 /24 has excess riskand variance /4 — €2. We are given

an i.i.d. sampl&X = (X,...,X,,) ~ u™ on which we are

to base the selection of either hypothesis.

It follows from the previous theorem (witli* = ¢, /5),
that the excess risk ¢fV P, decays a$/n, for suitably cho-
sen)\. To make our point we need to give a lower bound for
the excess risk of empirical risk minimization. We use the
following inequality due to Slud which we cite in the form
givenin [1, p. 363].

Theorem 16 Let B be a binomial(n, p) random variable
with p < 1/2 and suppose thatp < ¢ <n (1 —p). Then

b

whereZ is a standard normalV (0, 1)-distributed random
variable.

t—mnp

PI‘{B>7§}ZPI‘{Z>m

Now ERM selects the inferior hypothesig/, . if
P, (b1/2+eax) < P, (01/27X) = 1/2
We therefore obtain from Theorem 16, with
B=n (]. — Pn (b1/2+€ (X))) 5

p

Pr {ERM (X) =by/a1c} > exp <_

=1/2 — eandt = n/2 that
Pr{ERM (X) = by/o1} Pr{P, (bi/a+e (X)) < 1/2}
Pr{B >t}

\/ne
PI‘{Z > \/ﬁ}

A well known bound for standard normal random variables
gives forn > 0

\%

v

2

1 7 -1
PI‘{Z>T]} =z \/—2—7Tm exp <T>
> exp (=), ifn=2

If we assumer > ¢~ 2 we have/ne/+/1/4 — €2 > 2, S0

2
> Z 6787746 ,

where we used < 1/+/8 in the last inequality. Since this is

ne2
1/4 — €2

just the probability that the excess riskeisve arrive at the

following statement: For every > e~ 2 there exists) (=
6*8”62) such that the excess risk of the hypothesis generated

by ERM is at least
~ [/In1/6
= 8n ’

with probability at leasé. Therefore the excess risk for ERM
cannot have a faster rate then1//n).

This example is of course a very artificial construction,
chosen as a simple illustration. It is clear that the conclu-
sions do not change if we add any number of deterministic
hypotheses with risk larger thari2 (they simply have no ef-
fect), or if we add any number of Bernoulli hypotheses with
risk at leastl /2 + ¢ (they just make things worse for ERM).

To obtain a more practical insight into the potential ad-
vantages of SVP we have conducted a simple experiment,

whereX = [0,1]* and the random variabl& € X is dis-
tributed according tq ], fa, s, Where

frap = (1/2) (ba—b + Satb) -

Each coordinater;, (X) of X is thus a binary random vari-
able, assuming the valueg — b, anday + by with equal
probability, having expectatiom, and variancé:.

The distribution ofX is itself generated at random by se-
lecting the pairgayx, bx) independentlyay, is chosen from
the uniform distribution oriB, 1 — B] and the standard de-
viation b, is chosen from the uniform distribution on the in-
terval [0, B]. ThusB is the only parameter governing the
generation of the distribution.

As hypotheses we just take ti#é coordinate functions
7 in [0, 1]K. Selecting thé:-th hypothesis then just means
that we select the corresponding distributjon ,, . Of course
we want to find a hypothesis of small rigk, but we can only
observen;, through the corresponding sample, the observa-
tion being obscured by the variankg

We choseB = 1/4 and K = 500. We tested the algo-
rithm (10) with A = 0, corresponding to ERM, anil= 2.5.
The sample sizes ranged from 10 to 500. We recorded the




SVP versus ERM the remaining data points for testing. A comparison of the

0.03 ‘ ‘ ‘ —— different results then leads to the choice of a subsample and
a corresponding hypothesis. If this hypothesis has snsl] ri
0.025 ? 1 we can say that the problem-relevant information of the sam-
ple is present in the subsample in a compressed form, hence
the name.

o0z Since the method is crucially dependent on the quality of

the individual performance estimates, and empirical Bern-
stein bounds give tight, variance sensitive estimatesya co
bination of sample compression and SVP is promising. For
simplicity we only consider compression sets of a fixed size
d. We introduce the following notation for a subsetC
{1,...,n} of cardinality|I| = d.

0.015

Excess risk

0.01f

0.005

o Ax(y) = the hypothesis trained witd from the sub-
sampleX|[I] consisting of those examples whose in-

I I I I
0 100 200 300 400 500

Sample size diceslieinI.
o Forf € F,welet
Figure 1: Comparison of the excess risks of the hypothe- Pre (f) = Po_q (f (X[I9)) = 1 Zf (X)),
ses returned by ERM (circled line) and SVP with= 2.5 n—d Pyt

(squared line) for different sample sizes.
the empirical risk off computed on the subsamX&/]

consisting of those examples whose indices do not lie in
true risks of the respective hypotheses generated, and av- 1.
eraged these risks over 10000 randomly generated distribu-
tions. The results are reported in Figure 1 and show clearly ® Forf e F,welet
the advantage of SVP in this particular case. It must however _ c
be pointed out that this advantage, while being consisient, Vielf) = Va-a (f ()1([[ )
small compared to the risk of the optimal hypotheses (around — X)) — F (X))

If we try to extract a practical conclusion from Theorem ’

15, our example and the experiment, then it appearsthat SVP  the sample variance gf computed orX|[/¢].
might be a good alternative to ERM, whenever the optimal
members of the hypothesis space still have substantial risk
(for otherwise ERM would do just as good), but there are
optimal hypotheses of very small variance. These two con-
ditions seem to be generic for many noisy situations: when
the noise arises from many independent sources, but doedS
not depend too much on any single source, then the loss of sy p, (X) =
an optimal hypothesis should be sharply concentrated droun
its expectation (e.g. by the bounded difference inequality i = arg min Pre (AX[I}) + M/ Vpe (AX[I])-
see [8]), resulting in a small variance. IeC

e C = the collection of subsets C {1,...,n} of cardi-
nality |I| = d.

With this notation we define our sample compression scheme

Axiy

L . As usual,A = 0 gives the classical sample compression
5 Application to sample compression schemes. The performance of this algorithm can be guar-

Sample compression schemes [6] provide an elegant methodp"me‘ad by the following result.
to reduce a potentially very complex function class to adinit S
data-dependent subclass. Withbeing as usual, assume that Theorem 17 With the notation introduced above & (0, 1),

[ ithmA i | d ified b fixed f ti n>2 andset\ = /21n (6 |C| /5) Then with probablllty at
some algor 's already speciiied by a fixed Tunction leastl — ¢ in the draw ofX ~ ', we have for every* € C

A:Xe|Jam - Ax e F, P (SVP\(X),p) — P (Ax(1+, 1)

n=1

by the algorithm on the basis of the training Secomposed n—d 3(n—d-1)

with the fixed loss function. For € X' the quantityAs ()

is thus the loss incurred by training the algorithm fréhand Proof: Use a union bound and Theorem 4 to obtain an em-

applying the resulting hypothesisio pirical Bernstein bound uniformly valid over allx(;; with
The idea of sample compression schemes [6] is to train I € C and therefore also valid fo§V Py (X). Then follow

the algorithm on subsamples of the training data and to usethe proof of Theorem 15. Since nalif € C is choserafter

The functionds can be interpreted as the hypothesis chosen < \/SV (Ax(r+, p) In (6]C| /6) | 1din (6IC[/d)



seeing the sample, uniform versions of Bennett’s inequalit
and Theorem 10 (4) have to be used, and are again readily
obtained with union bounds ovér |

The interpretation of this result as an excess risk bound
is more subtle than for Theorem 15, because the optimal hy-
pothesis is now sample-dependent. If we define

I" = argmin P (Axn. 1) »

then the theorem tells us how close we are to the choice
of the optimal subsample. This will be considerably better
than what we get from Hoeffding’s inequality if the variance
V (Ax(r+, ) is small and sparse solutions are sought in the
sense thai/n is small (observe thah |C| < d1n (ne/d)).

This type of relative excess risk bound is of course more
useful if the minimumpP (Ax(;-}, 1) is close to some true
optimum arising from some underlying generative model. In
this case we can expect the logg|;-) to behave like a noise

[5] W. S. Lee, P. L. Bartlett, R. C. Williamson. The Im-
portance of Convexity in Learning with Squared Loss.
IEEE Trans. Info. Theorg4(5):1974-1980, 1998.

[6] N. Littlestone and M. K. Warmuth. Relating data com-
pression and learnability. Technical report, University
of California Santa Cruz, Santa Cruz, CA, 1986.

[7] A. Maurer. Concentration inequalities for functions of
independent variablesRandom Structures and Algo-
rithms, 29:121-138, 2006.

[8] C. McDiarmid. ConcentrationIn Probabilistic Meth-
ods of Algorithmic Discrete Mathematigsages 195—
248. Springer, 1998.

[9] V. Mnih, C. Szepesvari, J. Y. Audibert. Empirical Bern-
stein Stopping. In Proc. ICML 2008.

variable centered at the rigk (Ax -1, 1) Ifthe noise arises  [10] V. Vapnik. The Nature of Statistical Learning Theory

from many independent sources, each of which makes only a
small contribution, them x ;- will be sharply concentrated

and have a small variandé (Ax -}, i), resulting in tight
control of the excess risk.

6 Conclusion

We presented sample variance penalization as a potential al
ternative to empirical risk minimization and analyzed some
of its statistical properties in terms of empirical Berriste
bounds and concentration properties of the empirical stan-
dard deviation. The promise of our method is that, in simple
but perhaps practical scenarios the excess risk of our rdetho
is guaranteed to be substantially better than that of eogbiri
risk minimization.

The present work raises some questions. Perhaps the
most pressing issue is to find an efficient implementation of
the method, to deal with the fact that sample variance penal-
ization is non-convex in many situations when empirica ris
minimization is convex, and to compare the two methods on
some real-life data sets. Anotherimportantissue is tdéurt
investigate the application of empirical Bernstein boutads
sample compression schemes.
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