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Abstract

We study the problem of estimating multiple linear
regression equations for the purpose of both pre-
diction and variable selection. Following recent
work on multi-task learning [1], we assume that
the sparsity patterns of the regression vectors are
included in the same set of small cardinality. This
assumption leads us to consider the Group Lasso
as a candidate estimation method. We show that
this estimator enjoys nice sparsity oracle inequal-
ities and variable selection properties. The results
hold under a certain restricted eigenvalue condi-
tion and a coherence condition on the design ma-
trix, which naturally extend recent work in [3, 19].
In particular, in the multi-task learning scenario, in
which the number of tasks can grow, we are able
to remove completely the effect of the number of
predictor variables in the bounds. Finally, we show
how our results can be extended to more general
noise distributions, of which we only require the
variance to be finite.1

1 Introduction
We study the problem of estimating multiple regression equa-
tions under sparsity assumptions on the underlying regres-
sion coefficients. More precisely, we consider multiple Gaus-
sian regression models,

y1 = X1β
∗
1 + W1

y2 = X2β
∗
2 + W2

...
yT = XT β∗T + WT

(1.1)

where, for each t = 1, . . . , T , we let Xt be a prescribed
n ×M design matrix, β∗t the unknown vector of regression

1The first author should be considered for Mark Fulk award.

coefficients and yt an n-dimensional vector of observations.
We assume that W1, . . . ,WT are i.i.d. zero mean random
vectors.

We are interested in estimation methods which work well
even when the number of parameters in each equation is
much larger than the number of observations, that is, M �
n. This situation may arise in many practical applications
in which the predictor variables are inherently high dimen-
sional, or it may be “costly” to observe response variables,
due to difficult experimental procedures, see, for example [1]
for a discussion.

Examples in which this estimation problem is relevant
range from multi-task learning [1, 8, 20, 24] and conjoint
analysis (see, for example, [13, 18] and references therein)
to longitudinal data analysis [10] as well as the analysis of
panel data [14, 28], among others. In particular, multi-task
learning provides a main motivation for our study. In that
setting each regression equation corresponds to a different
learning task (the classification case can be treated similarly);
in addition to the requirement that M � n, we also allow
for the number of tasks T to be much larger than n. Follow-
ing [1] we assume that there are only few common impor-
tant variables which are shared by the tasks. A general goal
of this paper is to study the implications of this assumption
from a statistical learning view point, in particular, to quan-
tify the advantage provided by the large number of tasks to
learn the underlying vectors β∗1 , . . . , β∗T as well as to select
common variables shared by the tasks.

Our study pertains and draws substantial ideas from the
recently developed area of compressed sensing and sparse
estimation (or sparse recovery), see [3, 7, 11] and references
therein. A central problem studied therein is that of estimat-
ing the parameters of a (single) Gaussian regression model.
Here, the term “sparse” means that most of the components
of the underlying M -dimensional regression vector are equal
to zero. A main motivation for sparse estimation comes from
the observation that in many practical applications M is much
larger than the number n of observations but the underly-
ing model is sparse, see [7, 11] and references therein. Un-



der this circumstance ordinary least squares will not work.
A more appropriate method for sparse estimation is the `1-
norm penalized least squares method, which is commonly
referred to as the Lasso method. In fact, it has been re-
cently shown by different authors, under different conditions
on the design matrix, that the Lasso satisfies sparsity oracle
inequalities, see [3, 5, 6, 26] and references therein. Closest
to our study in this paper is [3], which relies upon a Re-
stricted Eigenvalue (RE) assumption. The results of these
works make it possible to estimate the parameter β even in
the so-called “p much larger than n” regime (in our notation,
the number of predictor variables p corresponds to MT ).

In this paper, we assume that the vectors β∗1 , . . . , β∗T are
not only sparse but also have their sparsity patterns included
in the same set of small cardinality s. In other words, the
response variable associated with each equation in (1.1) de-
pends only on some members of a small subset of the corre-
sponding predictor variables, which is preserved across the
different equations. This assumption, that we further refer
to as structured sparsity assumption, is motivated by some
recent work on multi-task learning [1]. It naturally leads
to an extension of the Lasso method, the so-called Group
Lasso [29], in which the error term is the average residual
error across the different equations and the penalty term is
a mixed (2, 1)-norm. The structured sparsity assumption in-
duces a relation between the responses and, as we shall see,
can be used to improve estimation.

The paper is organized as follows. In Section 2 we de-
fine the estimation method and comment on previous related
work. In Section 3 we study the oracle properties of this
estimator when the errors Wt are Gaussian. Our main re-
sults concern upper bounds on the prediction error and the
distance between the estimator and the true regression vec-
tor β∗. Specifically, Theorem 3.3 establishes that under the
above structured sparsity assumption on β∗, the prediction
error is essentially of the order of s/n. In particular, in the
multi-task learning scenario, in which T can grow, we are
able to remove completely the effect of the number of pre-
dictor variables in the bounds. Next, in Section 4, under
a stronger condition on the design matrices, we describe a
simple modification of our method and show that it selects
the correct sparsity pattern with an overwhelming probabil-
ity (Theorem 4.3). We also find the rates of convergence
of the estimators for mixed (2, 1)-norms with 1 ≤ p ≤ ∞
(Corollary 4.4). The techniques of proofs build upon and ex-
tend those of [3] and [19]. Finally, in Section 5 we discuss
how our results can be extended to more general noise distri-
butions, of which we only require the variance to be finite.

2 Method and related work
In this section we first introduce some notation and then de-
scribe the estimation method which we analyze in the paper.
As stated above, our goal is to estimate T linear regression
functions identified by the parameters β∗1 , . . . , β∗T ∈ RM .
We may write the model (1.1) in compact notation as

y = Xβ∗ + W (2.1)

where y and W are the nT -dimensional random vectors formed
by stacking the vectors y1, . . . , yT and the vectors W1, . . . ,WT ,
respectively. Likewise β∗ denotes the vector obtained by

stacking the regression vectors β∗1 , . . . , β∗T . Unless other-
wise specified, all vectors are meant to be column vectors.
Thus, for every t ∈ NT , we write yt = (yti : i ∈ Nn)> and
Wt = (Wti : i ∈ Nn)>, where, hereafter, for every positive
integer k, we let Nk be the set of integers from 1 and up to k.
The nT ×MT block diagonal design matrix X has its t-th
block formed by the n ×M matrix Xt. We let x>t1, . . . , x

>
tn

be the row vectors forming Xt and (xti)j the j-th component
of the vector xti. Throughout the paper we assume that xti

are deterministic.
For every β ∈ RMT we introduce (β)j ≡ βj = (βtj :

t ∈ NT )>, that is, the vector formed by the coefficients cor-
responding to the j-th variable. For every 1 ≤ p < ∞ we
define the mixed (2, p)-norm of β as

‖β‖2,p =

 M∑
j=1

(
T∑

t=1

β2
tj

) p
2


1
p

=

 M∑
j=1

‖βj‖p

 1
p

and the (2,∞)-norm of β as

‖β‖2,∞ = max
1≤j≤M

‖βj‖,

where ‖ · ‖ is the standard Euclidean norm.
If J ⊆ NM we let βJ ∈ RMT be the vector formed

by stacking the vectors (βjI{j ∈ J} : j ∈ NM ), where
I{·} denotes the indicator function. Finally we set J(β) =
{j : βj 6= 0, j ∈ NM} and M(β) = |J(β)| where |J |
denotes the cardinality of set J ⊂ {1, . . . ,M}. The set J(β)
contains the indices of the relevant variables shared by the
vectors β1, . . . , βT and the number M(β) quantifies the level
of structured sparsity across those vectors.

We have now accumulated the sufficient information to
introduce the estimation method. We define the empirical
residual error

Ŝ(β) =
1

nT

T∑
t=1

n∑
i=1

(x>
tiβt − yti)2 =

1
nT

‖Xβ − y‖2

and, for every λ > 0, we let our estimator β̂ be a solution of
the optimization problem [1]

min
β

Ŝ(β) + 2λ‖β‖2,1. (2.2)

In order to study the statistical properties of this estima-
tor, it is useful to derive the optimality condition for a so-
lution of the problem (2.2). Since the objective function in
(2.2) is convex, β̂ is a solution of (2.2) if and only if 0 (the
MT -dimensional zero vector) belongs to the subdifferential
of the objective function. In turn, this condition is equivalent
to the requirement that

−∇Ŝ(β̂) ∈ 2λ∂

 M∑
j=1

‖β̂j‖

 ,

where ∂ denotes the subdifferential (see, for example, [4] for
more information on convex analysis). Note that

∂

 M∑
j=1

‖βj‖

 =
{

θ ∈ RMT : θj =
βj

‖βj‖
if βj 6= 0,

‖θj‖ ≤ 1, if βj = 0, j ∈ NM

}
.



Thus, β̂ is a solution of (2.2) if and only if

1
nT

(X>(y −Xβ̂))j =λ
β̂j

‖β̂j‖
, if β̂j 6= 0 (2.3)

1
nT

‖(X>(y −Xβ̂))j‖≤λ, if β̂j = 0. (2.4)

We now comment on previous related work. Our esti-
mator is a special case of the Group Lasso estimator [29].
Several papers analyzing statistical properties of the Group
Lasso appeared quite recently [2, 9, 15, 17, 21, 22, 23, 25].
Most of them are focused on the Group Lasso for additive
models [15, 17, 22, 25] or generalized linear models [21].
Special choice of groups is studied in [9]. Discussion of
the Group Lasso in a relatively general setting is given by
Bach [2] and Nardi and Rinaldo [23]. Bach [2] assumes
that the predictors xti are random with a positive definite
covariance matrix and proves results on consistent selection
of sparsity pattern J(β∗) when the dimension of the model
(p = MT in our case) is fixed and n → ∞. Nardi and
Rinaldo [23] consider a setting that covers ours and address
the issue of sparsity oracle inequalities in the spirit of [3].
However, their bounds are too coarse (see comments in Sec-
tion 3 below). Obozinski et al. [25] consider the case where
all the matrices Xi are the same and all their rows are inde-
pendent Gaussian random vectors with the same covariance
matrix. They show that the resulting estimator achieves con-
sistent selection of the sparsity pattern and that there may
be some improvement with respect to the usual Lasso. Ex-
cept for this very particular example, theoretical advantages
of the group Lasso as compared to the usual Lasso were not
featured in the literature. Note also that Obozinski et al. [25]
focused on the consistent selection, whereas it remained un-
clear whether there is some improvement in the prediction
properties as compared to the usual Lasso.

One of the aims of this paper is to show that such an im-
provement does exist. In particular, our Theorem 3.3 implies
that the prediction bound for the Group Lasso estimator that
we use here is better than for the standard Lasso under the
same assumptions. Furthermore, we demonstrate that as the
number of tasks T increases the dependence of the bound on
M disappears, provided that M grows at the rate slower than
exp(

√
T ).

Finally, we note that we recently came across the work
[16], whose results are similar to those in Section 3 below.

3 Sparsity oracle inequality
Let 1 ≤ s ≤ M be an integer that gives an upper bound on
the structured sparsity M(β∗) of the true regression vector
β∗. We make the following assumption.

Assumption 3.1 There exists a positive number κ = κ(s)
such that

min
{
‖X∆‖√
n‖∆J‖

: |J | ≤ s,∆ ∈ RMT \ {0},

‖∆Jc‖2,1 ≤ 3‖∆J‖2,1

}
≥ κ,

where Jc denotes the complement of the set of indices J .

To emphasize the dependency of Assumption 3.1 on s,
we will sometimes refer to it as Assumption RE(s). This
is a natural extension to our setting of the Restricted Eigen-
value assumption for the usual Lasso and Dantzig selector
from [3]. The `1 norms are now replaced by the mixed
(2,1)-norms. Note that, however, the analogy is not com-
plete. In fact, the sample size n in the usual Lasso setting
corresponds to nT in our case, whereas in Assumption 3.1
we consider

√
∆>X>X∆/n and not

√
∆>X>X∆/(nT ).

This is done in order to have a correct normalization of κ
without compulsory dependence on T (if we use the term√

∆>X>X∆/(nT ) in Assumption 3.1, then κ ∼ T−1/2

even in the case of the identity matrix X>X/n).
Several simple sufficient conditions for Assumption 3.1

with T = 1 are given in [3]. Similar sufficient conditions
can be stated in our more general setting. For example, it
is enough to suppose that each of the matrices X>

t Xt/n is
positive definite or satisfies a Restricted Isometry condition
as in [7] or the coherence condition (cf. Lemma 4.2 below).

Lemma 3.2 Consider the model (1.1) for M ≥ 2 and T, n ≥
1. Assume that the random vectors W1, . . . ,WT are i.i.d.
Gaussian with zero mean and covariance matrix σ2In×n, all
diagonal elements of the matrix X>X/n are equal to 1 and
M(β∗) ≤ s. Let

λ =
2σ√
nT

(
1 +

A log M√
T

)1/2

,

where A > 8 and let q = min(8 log M,A
√

T/8). Then with
probability at least 1−M1−q, for any solution β̂ of problem
(2.2) and all β ∈ RMT we have

1
nT

‖X(β̂ − β∗)‖2 + λ‖β̂ − β‖2,1 ≤ (3.1)

≤ 1
nT

‖X(β − β∗)‖2 + 4λ
∑

j∈J(β)

‖β̂j − βj‖,

1
nT

max
1≤j≤M

‖(X>X(β∗ − β̂))j‖ ≤ 3
2
λ, (3.2)

M(β̂) ≤ 4φmax

λ2nT 2
‖X(β̂ − β∗)‖2, (3.3)

where φmax is the maximum eigenvalue of the matrix X>X/n.

Proof: For all β ∈ RMT , we have

1
nT

‖Xβ̂−y‖2+2λ

M∑
j=1

‖β̂j‖ ≤ 1
nT

‖Xβ−y‖2+2λ

M∑
j=1

‖βj‖

which, using y = Xβ∗ + W , is equivalent to

1
nT

‖X(β̂ − β∗)‖2 ≤ 1
nT

‖X(β − β∗)‖2

+
2

nT
W>X(β̂ − β) + 2λ

M∑
j=1

(
‖βj‖ − ‖β̂j‖

)
. (3.4)

By Hölder’s inequality, we have that

W>X(β̂ − β) ≤ ‖X>W‖2,∞‖β̂ − β‖2,1



where

‖X>W‖2,∞ = max
1≤j≤M

√√√√ T∑
t=1

(
n∑

i=1

(xti)jWti

)2

.

Consider the random event

A =
{

1
nT

‖X>W‖2,∞ ≤ λ

2

}
.

Since we assume all diagonal elements of the matrix X>X/n
to be equal to 1, the random variables

Vtj =
1

σ
√

n

n∑
i=1

(xti)jWti,

t = 1, . . . , T , are i.i.d. standard Gaussian. Using this fact
we can write, for any j = 1, . . . ,M ,

Pr

 T∑
t=1

(
n∑

i=1

(xti)jWti

)2

≥ λ2(nT )2

4


= Pr

(
χ2

T ≥
λ2nT 2

4σ2

)
= Pr

(
χ2

T ≥ T + A
√

T log M
)

,

where χ2
T is a chi-square random variable with T degrees of

freedom. We now apply Lemma A.1, the union bound and
the fact that A > 8 to get

Pr(Ac) ≤ M exp
(
−A log M

8
min

(√
T , A log M

))
≤ M1−q.

It follows from (3.4) that, on the event A.

1
nT

‖X(β̂ − β∗)‖2 + λ

M∑
j=1

‖β̂j − βj‖ ≤

1
nT

‖X(β − β∗)‖2 + 2λ

M∑
j=1

(
‖β̂j − βj‖+ ‖βj‖ − ‖β̂j‖

)
≤ 1

nT
‖X(β − β∗)‖2 + 4λ

∑
j∈J(β)

‖β̂j − βj‖,

which coincides with (3.1). To prove (3.2), we use the in-
equality

1
nT

max
1≤j≤M

‖(X>(y −Xβ̂))j‖ ≤ λ, (3.5)

which follows from (2.3) and (2.4). Then,

1
nT

‖(X>(X(β̂ − β∗)))j‖ ≤

1
nT

‖(X>(Xβ̂ − y))j‖+
1

nT
‖(X>W )j‖,

where we have used y = Xβ∗+W and the triangle inequal-
ity. The result then follows by combining the last inequality
with inequality (3.5) and using the definition of the event A.

Finally, we prove (3.3). First, observe that, on the event
A,

1
nT

‖(X>X(β̂ − β∗))j‖ ≥ λ

2
, if β̂j 6= 0.

This fact follows from (2.3), (2.1) and the definition of the
event A. The following chain yields the result:

M(β̂) ≤ 4
λ2(nT )2

∑
j∈J(β̂)

‖(X>X(β̂ − β∗))j‖2

≤ 4
λ2(nT )2

M∑
j=1

‖(X>X(β̂ − β∗))j‖2

=
4

λ2(nT )2
‖X>X(β̂ − β∗)‖2

≤ 4φmax

λ2nT 2
‖X(β̂ − β∗)‖2,

where, in the last line we have used the fact that the eigen-
values of X>X/n are bounded from above by Φmax.

We are now ready to state the main result of this section.

Theorem 3.3 Consider the model (1.1) for M ≥ 2 and T, n ≥
1. Assume that the random vectors W1, . . . ,WT are i.i.d.
Gaussian with zero mean and covariance matrix σ2In×n,
all diagonal elements of the matrix X>X/n are equal to 1
and M(β∗) ≤ s. Furthermore let Assumption 3.1 hold with
κ = κ(s) and let φmax be the largest eigenvalue of the matrix
X>X/n. Let

λ =
2σ√
nT

(
1 +

A log M√
T

)1/2

,

where A > 8 and let q = min(8 log M,A
√

T/8). Then with
probability at least 1−M1−q, for any solution β̂ of problem
(2.2) we have

1
nT

‖X(β̂ − β∗)‖2 ≤ 64σ2

κ2

s

n

(
1 +

A log M√
T

)
(3.6)

1√
T
‖β̂ − β∗‖2,1 ≤

32σ

κ2

s√
n

√
1 +

A log M√
T

(3.7)

M(β̂) ≤ 64φmax

κ2
s. (3.8)

If, in addition, Assumption RE(2s) holds, then with the same
probability for any solution β̂ of problem (2.2) we have

1√
T
‖β̂ − β∗‖ ≤ 8

√
10σ

κ2(2s)

√
s

n

√
1 +

A log M√
T

. (3.9)

Proof: We act similarly to the proof of Theorem 6.2 in [3].
Let J = J(β∗) = {j : (β∗)j 6= 0}. By inequality (3.1) with
β = β∗ we have, on the event A, that

1
nT

‖X(β̂ − β∗)‖2 ≤ 4λ
∑
j∈J

‖β̂j − β∗j‖

≤ 4λ
√

s‖(β̂ − β∗)J‖. (3.10)

Moreover by the same inequality, on the event A, we have∑M
j=1 ‖β̂j − β∗j‖ ≤ 4

∑
j∈J ‖β̂j − β∗j‖, which implies



that
∑

j∈Jc ‖β̂j − β∗j‖ ≤ 3
∑

j∈J ‖β̂j − β∗j‖. Thus, by
Assumption 3.1

‖(β̂ − β∗)J‖ ≤
‖X(β̂ − β∗)‖

κ
√

n
. (3.11)

Now, (3.6) follows from (3.10) and (3.11). Inequality (3.7)
follows again by noting that

M∑
j=1

‖β̂j − β∗j‖ ≤ 4
∑
j∈J

‖β̂j − β∗j‖ ≤ 4
√

s‖(β̂ − β∗)J‖

and then using (3.6). Inequality (3.8) follows from (3.3) and
(3.6).

Finally, we prove (3.9). Let ∆ = β̂−β∗ and let J ′ be the
set of indices in Jc corresponding to s maximal in absolute
value norms ‖∆j‖. Consider the set J2s = J ∪ J ′. Note that
|J2s| 6 2s. Let ‖∆(k)

Jc ‖ denote the k-th largest norm in the
set {‖∆j‖ : j ∈ Jc}. Then, clearly,

‖∆(k)
Jc ‖ ≤

∑
j∈Jc

‖∆j‖/k = ‖∆Jc‖2,1/k.

This and the fact that ‖∆Jc‖2,1 ≤ 3‖∆J‖2,1 on the event A
implies∑

j∈Jc
2s

‖∆j‖2 ≤
∞∑

k=s+1

‖∆Jc‖22,1

k2

≤
‖∆Jc‖22,1

s
≤

9‖∆J‖22,1

s

≤ 9
∑
j∈J

‖∆j‖2 ≤ 9
∑

j∈J2s

‖∆j‖2.

Therefore, on A we have

‖∆‖2 ≤ 10
∑

j∈J2s

‖∆j‖2 ≡ 10‖∆J2s‖2 (3.12)

and also from (3.10):

1
nT

‖X∆‖2 ≤ 4λ
√

s‖∆J2s
‖. (3.13)

In addition, ‖∆Jc‖2,1 ≤ 3‖∆J‖2,1 easily implies that

‖∆Jc
2s
‖2,1 ≤ 3‖∆J2s‖2,1.

Combining (3.13) with Assumption RE(2s) we find that on
the event A it holds that

‖∆J2s‖ ≤
4λ
√

s T

κ2(2s)
.

This inequality and (3.12) yield (3.9).

Theorem 3.3 is valid for any fixed n, M, T ; the approach
is non-asymptotic. Some relations between these parameters
are relevant in the particular applications and various asymp-
totics can be derived as corollaries. For example, in multi-
task learning it is natural to assume that T ≥ n, and the mo-
tivation for our approach is the strongest if also M � n. The
bounds of Theorem 3.3 are meaningful if the sparsity index s
is small as compared to the sample size n and the logarithm
of the dimension log M is not too large as compared to

√
T .

Note also that the values T and
√

T in the denominators
of the right-hand sides of (3.6), (3.7), and (3.9) appear quite
naturally. For instance, the norm ‖β̂−β∗‖2,1 in (3.7) is a sum
of M terms each of which is a Euclidean norm of a vector
in RT , and thus it is of the order

√
T if all the components

are equal. Therefore, (3.7) can be interpreted as a correctly
normalized “error per coefficient” bound.

We now state several important conclusions. They are all
valid for the general Group Lasso, and not only in the multi-
task learning setup. They key point for their validity is the
structured sparsity assumption.

1. Theorem 3.3 applies to the general Group Lasso setting.
Indeed, the proofs in this section do not use the fact that
the matrix X>X is block-diagonal. The only restric-
tion on X>X is given in Assumption 3.1. For example,
Assumption 3.1 is obviously satisfied if X>X/(nT )
(the correctly normalized Gram matrix of the regression
model (2.1)) has a positive minimal eigenvalue.

2. The dependence on the dimension M is negligible for
large T . Indeed, the bounds of Theorem 3.3 become
independent of M if we choose the number of tasks T
larger than log2 M . A striking fact is that no relation
between the sample size n and the dimension M is re-
quired. This is quite in contrast to the previous results
on sparse recovery where the assumption log M = o(n)
was considered as sine qua non constraint. For ex-
ample, Theorem 3.3 gives meaningful bounds if M =
exp(nγ) for arbitrarily large γ > 0, provided that T >
n2γ . This is due to the structured sparsity assumption,
and is not conditioned by the block-diagonal (multi-
task) structure of the regression matrices.

3. Our estimator admits better risk bounds than the usual
Lasso. Let us explain this point considering the exam-
ple of the prediction error bound (3.6). Indeed, for the
same multi-task setup, we can apply a usual Lasso esti-
mator β̂L, that is a solution of the following optimiza-
tion problem

min
β

S(β) + 2λ′
T∑

t=1

M∑
j=1

|βtj |

where λ′ > 0 is a tuning parameter. We will use the
bounds of [3] for the prediction error of β̂L. For a fair
comparison with Theorem 3.3, we assume that we are in
the most favorable situation where M < n, each of the
matrices 1

nXT
t Xt is positive definite and has minimal

eigenvalue greater than κ2. This implies both Assump-
tion 3.1 and the Restricted Eigenvalue assumption as
stated in [3]. Next, we assume, as in Theorem 3.3, that
the diagonal elements of the matrix X>X/n are equal
to 1.

To use the results of [3], we note that the parameters n,
M , s therein correspond to n′ = nT , M ′ = MT , s′ =
sT in our setup, and the minimal eigenvalue of the ma-
trix 1

n′X
T X = 1

nT XT X is greater than (κ′)2 ≡ κ2/T .
Another particularity is that, due to our normalization,
the diagonal elements of the matrix 1

nT XT X are equal



to 1/T , and not to 1, as in [3]. This results in the fact
that the correct λ′ is by a

√
T factor smaller than that

given in [3]:

λ′ = A′
σ√
T

√
log(MT )

nT
,

where A′ > 2
√

2. We can then act as in the proof of
inequality (7.8) from [3] (cf. (B.31) in [3]) to obtain

that, with probability at least 1−(MT )1−
(A′)2

8 , it holds

1
nT

||X(β̂L − β∗)||2 ≤ 16s′(λ′)2

(κ′)2

=
16(A′)2

κ2
σ2s

log(MT )
n

.

Comparing with (3.6) we conclude that if log M is not
too large as compared to

√
T the rate of prediction bound

(3.6) for the Group Lasso is by a factor of log(MT )
better than for the usual Lasso under the same assump-
tions. Let us emphasize that the improvement is only
due to the property that β∗ is structured sparse.

Finally, we note that [23] follow the scheme of the proof
of [3] to derive similar in spirit to ours but coarse oracle in-
equalities. Their results do not explain the advantages dis-
cussed in the points 1–3 above. Indeed, the tuning parameter
λ chosen in [23], pp. 614–615, is larger than our λ by at
least a factor of

√
T . As a consequence, the corresponding

bounds in the oracle inequalities of [23] are larger than ours
by positive powers of T .

4 Coordinate-wise estimation and selection of
sparsity pattern

In this section, we show how from any solution of the prob-
lem (2.2) we can reliably estimate the correct sparsity pattern
with high probability.

We first introduce some more notation. We define the
Gram matrix of the design Ψ = 1

nX>X . Note that Ψ is
a MT × MT block-diagonal matrix with T blocks of di-
mension M × M each. We denote these blocks by Ψt =
1
nX>

t Xt ≡ (Ψtj,tk)j,k=1,...,M .
In this section we assume that the following condition

holds true.

Assumption 4.1 The elements Ψtj,tk of the Gram matrix Ψ
satisfy

Ψtj,tj = 1, ∀1 6 j 6 M, 1 6 t 6 T,

and
max

16t6T,j 6=k
|Ψtj,tk| 6

1
7αs

,

for some integer s > 1 and some constant α > 1.

Note that the above assumption on Ψ implies Assumption
3.1 as we prove in the following lemma.

Lemma 4.2 Let Assumption 4.1 be satisfied. Then Assump-

tion 3.1 is satisfied with κ =
√

1− 1
α .

Proof: For any subset J of {1, . . . ,M} such that |J | 6 s
and any ∆ ∈ RMT such that ‖∆Jc‖2,1 6 3‖∆J‖2,1, we
have

∆>
J Ψ∆J

‖∆J‖2
= 1 +

∆>
J (Ψ− IMT×MT )∆J

‖∆J‖2

> 1− 1
7αs

(∑
j∈J

∑T
t=1 |∆tj |

)2

‖∆J‖2

> 1− 1
7α

where we have used Assumption 4.1 and the Cauchy-Schwarz
inequality. Next, using consecutively Assumption 4.1, the
Cauchy-Schwarz inequality and the inequality ‖∆Jc‖2,1 6
3‖∆J‖2,1 we obtain

|∆>
JcΨ∆J |
‖∆J‖2

6
1

7αs

∑T
t=1

∑
j∈J

∑
k∈Jc |∆tj ||∆tk|

‖∆J‖2

6
1

7αs

∑
j∈J,k∈Jc ‖∆j‖‖∆k‖

‖∆J‖2

6
3

7αs

‖∆J‖22,1

‖∆J‖2

6
3
7α

.

Combining these inequalities we find

∆>Ψ∆
‖∆J‖2

>
∆>

J Ψ∆J

‖∆J‖2
+

2∆>
JcΨ∆J

‖∆J‖2
> 1− 1

α
> 0.

Note also that, by an argument as in [19], it is not hard
to show that under Assumption 4.1 the vector β∗ satisfying
(2.1) is unique.

Theorem 3.3 provides bounds for compound measures of
risk, that is, depending simultaneously on all the vectors βj .
An important question is to evaluate the performance of es-
timators for each of the components βj separately. The next
theorem provides a bound of this type and, as a consequence,
a result on the selection of sparsity pattern.

Theorem 4.3 Consider the model (1.1) for M > 2 and T, n >
1. Let the assumptions of Lemma 3.2 be satisfied and let As-
sumption 4.1 hold with the same s. Set

c =
(

3 +
32

7(α− 1)

)
σ.

Let λ, A and W1, . . . ,WT be as in Lemma 3.2. Then with
probability at least 1−M1−q, where q = min(8 log M,ByA

√
T/8),

for any solution β̂ of problem (2.2) we have

1√
T
‖β̂ − β∗‖2,∞ 6

c√
n

√
1 +

A log M√
T

. (4.1)

If, in addition,

min
j∈J(β∗)

1√
T
‖(β∗)j‖ >

2c√
n

√
1 +

A log M√
T

, (4.2)



then with the same probability for any solution β̂ of problem
(2.2) the set of indices

Ĵ =

{
j :

1√
T
‖β̂j‖ >

c√
n

√
1 +

A log M√
T

}
(4.3)

estimates correctly the sparsity pattern J(β∗), that is,

Ĵ = J(β∗).

Proof: Set ∆ = β̂ − β∗. We have

‖∆‖2,∞ 6 ‖Ψ∆‖2,∞ + ‖(Ψ− IMT×MT )∆‖2,∞. (4.4)

Using Assumption 4.1 we obtain

‖(Ψ− IMT×MT )∆‖2,∞ =

max
16j6M

 T∑
t=1

 M∑
k=1:k 6=j

|Ψtj,tk||∆tk|

2


1/2

≤

max
16j6M

 max
16t6T,j 6=k

|Ψtj,tk|2
T∑

t=1

 M∑
k=1:k 6=j

|∆tk|

2


1/2

≤

1
7αs

 T∑
t=1

(
M∑

k=1

|∆tk|

)2
1/2

.

(4.5)

By the Minkowski inequality for the Euclidean norm in RT , T∑
t=1

(
M∑

k=1

|∆tk|

)2
1/2

6 ‖∆‖2,1. (4.6)

Combining the three above displays we get

‖∆‖2,∞ 6 ‖Ψ∆‖2,∞ +
1

7αs
‖∆‖2,1.

Thus, by Lemma 3.2 and Theorem 3.1, with probability at
least 1−M1−q,

‖∆‖2,∞ 6

(
3
2

+
16

7ακ2

)
λT.

By Lemma 4.2, ακ2 = α− 1, which yields the first result of
the theorem. The second result follows from the first one in
an obvious way.

Assumption of type (4.2) is inevitable in the context of
selection of sparsity pattern. It says that the vectors (β∗)j

cannot be arbitrarily close to 0 for j in the pattern. Their
norms should be at least somewhat larger than the noise level.

The second result of Theorem 4.3 (selection of sparsity
pattern) can be compared with [2, 23] who considered the
Group Lasso. There are several differences. First, our esti-
mator Ĵ is based on thresholding of the norms ‖β̂j‖, while
[2, 23] take instead the set where these norms do not vanish.
In practice, the latter is known to be a poor selector; it typi-
cally overestimates the true sparsity pattern. Second, [2, 23]
consider specific asymptotic settings, while our result holds

for any fixed n, M, T . Different kinds of asymptotics can be
therefore obtained as simple corollaries. Finally, note that
the estimator β̂ is not necessarily unique. Though [23] does
not discuss this fact, the proof there only shows that there
exists a subsequence of solutions β̂ of (2.2) such that the set
{j : ‖β̂j‖ 6= 0} coincides with the sparsity pattern J(β∗) in
some specified asymptotics (we note that the “if and only if”
claim before formula (23) in [23] is not proved). In contrast,
the argument in Theorem 4.3 does not require any analysis
of the uniqueness issues, though it is not excluded that the
solution is indeed unique. It guarantees that simultaneously
for all solutions β̂ of (2.2) and any fixed n, M, T the correct
selection is done with high probability.

Theorems 3.3 and 4.3 imply the following corollary.

Corollary 4.4 Consider the model (1.1) for M > 2 and
T, n > 1. Let the assumptions of Lemma 3.2 be satisfied
and let Assumption 4.1 holds with the same s. Let λ, A and
W1, . . . ,WT be as in Lemma 3.2. Then with probability at
least 1−M1−q, where q = min(8 log M,A

√
T/8), for any

solution β̂ of problem (2.2) and any 1 ≤ p < ∞ we have

1√
T
‖β̂ − β∗‖2,p 6 c1σ

s1/p

√
n

√
1 +

A log M√
T

, (4.7)

where

c1 =
(

32α

α− 1

)1/p(
3 +

32
7(α− 1)

)1− 1
p

.

If, in addition, (4.2) holds, then with the same probability for
any solution β̂ of problem (2.2) and any 1 ≤ p < ∞ we have

1√
T
‖β̂ − β∗‖2,p 6 c1σ

|Ĵ |1/p

√
n

√
1 +

A log M√
T

, (4.8)

where Ĵ is defined in (4.3).

Proof: Set ∆ = β̂ − β. For any p > 1 we have

1√
T
‖∆‖2,p 6

(
1√
T
‖∆‖2,1

) 1
p
(

1√
T
‖∆‖2,∞

)1− 1
p

.

Combining (3.7), (4.1) with κ =
√

1− 1
α and the above

display yields the first result.

Inequalities (4.1) and (4.8) provide confidence intervals
for the unknown parameter β∗ in mixed (2,p)-norms.

For averages of the coefficients βtj we can establish a
sign consistency result which is somewhat stronger than the
result in Theorem 4.3. For any β ∈ RM , define ~sign(β) =
(sign(β1), . . . , sign(βM ))

>
where

sign(t) =


1 if t > 0,

0 if t = 0,

−1 if t < 0.

Introduce the averages

a∗j =
1
T

T∑
t=1

β∗tj , âj =
1
T

T∑
t=1

β̂tj .



Consider the threshold τ = c√
n

√
1 + A log M√

T
and define a

thresholded estimator

ãj = âjI
{
|âj | > τ

}
.

Let ã and a∗ be the vectors with components ãj and a∗j , j =
1, . . . ,M , respectively. We need the following additional
assumption.

Assumption 4.5 It holds that

min
j∈J(a∗)

|a∗j | ≥
2c√
n

√
1 +

A log M√
T

.

This assumption says that we cannot recover arbitrarily small
components. Similar assumptions are standard in the liter-
ature on sign consistency (see, for example, [19] for more
details and references).

Theorem 4.6 Consider the model (1.1) for M > 2 and T, n >
1. Let the assumptions of Lemma 3.2 be satisfied and let As-
sumption 4.1 hold with the same s. Let λ and A be defined
as in Lemma 3.2 and c as in Theorem 4.3. Then with proba-
bility at least 1−M1−q, where q = min(8 log M,A

√
T/8),

for any solution β̂ of problem (2.2) we have

max
16j6M

|âj − a∗j | 6
c√
n

√
1 +

A log M√
T

.

If, in addition, Assumption 4.5 holds, then with the same
probability, for any solution β̂ of problem (2.2), ã recovers
the sign pattern of a∗:

~sign(ã) = ~sign(a∗).

Proof: Note that for every j ∈ NM

|âj − a∗j | ≤
1√
T
‖β̂ − β∗‖2,∞ ≤ c√

n

√
1 +

A log M√
T

.

The proof is then similar to that of Theorem 4.3.

5 Non-Gaussian noise
In this section, we only assume that the random variables
Wti, i ∈ Nn, t ∈ NT , are independent with zero mean and
finite variance E[W 2

ti] 6 σ2. In this case the results remain
similar to those of the previous sections, though the concen-
tration effect is weaker. We need the following technical as-
sumption

Assumption 5.1 The matrix X is such that

1
nT

T∑
t=1

n∑
i=1

max
16j6M

|(xti)j |2 6 c′,

for a constant c′ > 0.

This assumption is quite mild. It is satisfied for example, if
all (xti)j are bounded in absolute value by a constant uni-
formly in i, t, j. We have the two following theorems.

Theorem 5.2 Consider the model (1.1) for M ≥ 3 and T, n ≥
1. Assume that the random vectors W1, . . . ,WT are inde-
pendent with zero mean and finite variance E[W 2

ti] 6 σ2, all
diagonal elements of the matrix X>X/n are equal to 1 and
M(β∗) ≤ s. Let also Assumption 5.1 be satisfied. Further-
more let κ be defined as in Assumption 3.1 and φmax be the
largest eigenvalue of the matrix X>X/n. Let

λ = σ

√
(log M)1+δ

nT
, δ > 0.

Then with probability at least 1− (2e log M−e)c′

(log M)1+δ , for any so-

lution β̂ of problem (2.2) we have

1
nT

‖X(β̂ − β∗)‖2 ≤ 16
κ2

σ2s
(log M)1+δ

n
, (5.1)

1√
T
‖β̂ − β∗‖2,1 ≤

16
κ2

σs

√
(log M)1+δ

n
, (5.2)

M(β̂) ≤ 64φmax

κ2
s. (5.3)

If, in addition, Assumption RE(2s) holds, then with the same
probability for any solution β̂ of problem (2.2) we have

1
T
‖β̂ − β∗‖2 ≤ 160

κ4(2s)
σ2s

(log M)1+δ

n
.

Theorem 5.3 Consider the model (1.1) for M > 3 and T, n >
1. Let the assumptions of Theorem 5.2 be satisfied and let
Assumption 4.1 hold with the same s. Set

c =
(

3
2

+
1

7(α− 1)

)
σ.

Let λ be as in Theorem as in 5.2. Then with probability at
least 1 − (2e log M−e)c′

(log(MT ))1+δ , for any solution β̂ of problem (2.2)
we have

1√
T
‖β̂ − β∗‖2,∞ 6 c

√
(log M)1+δ

n
.

If, in addition, it holds that

min
j∈J(β∗)

1√
T
‖(β∗)j‖ > 2c

√
(log M)1+δ

n
,

then with the same probability for any solution β̂ of problem
(2.2) the set of indices

Ĵ =
{

j :
1√
T
‖β̂j‖ > c

√
(log M)1+δ

n

}
estimates correctly the sparsity pattern J(β∗):

Ĵ = J(β∗).

The proofs of these theorems are similar to the ones of
Theorems 3.3 and 4.3 up to a modification of the bound on
P (Ac) in Lemma 3.2. We consider now the event

A =

 M
max
j=1

√√√√ T∑
t=1

(
n∑

i=1

(xti)jWti

)2

≤ λnT

 .



The Markov inequality yields that

Pr(Ac) 6

∑T
t=1 E[max16j6M (

∑n
i=1(xti)jWti)

2]
(λnT )2

.

Then we use Lemma A.2 given below with the random vec-
tors

Yti = ((xti)1Wti/n, . . . , (xti)MWti/n) ∈ RM ,

∀i ∈ Nn, ∀t ∈ NT . We get that

Pr(Ac) 6
2e log M − e

λ2nT
σ2 1

nT

T∑
t=1

n∑
i=1

max
16j6M

|(xti)j |2.

By the definition of λ in Theorem 5.2 and Assumption 5.1
we obtain

Pr(Ac) 6
(2e log M − e)c′

(log M)1+δ
.

Thus, we see that under the finite variance assumption
on the noise, the dependence on the dimension M cannot be
made negligible for large T .
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A Auxiliary results
Here we collect two auxiliary results which are used in the
above analysis. The first result is a useful bound on the tail
of the chi-square distribution.

Lemma A.1 Let χ2
T be a chi-square random variable with

T degrees of freedom. Then

Pr(χ2
T > T + x) ≤ exp

(
−1

8
min

(
x,

x2

T

))
for all x > 0.

Proof: By the Wallace inequality [27] we have
Pr(χ2

T > T + x) ≤ Pr(N > z(x)),
whereN is the standard normal random variable and z(x) =√

x− T log(1 + x/T ). The result now follows from inequal-
ities Pr(N > z(x)) ≤ exp(−z2(x)/2) and

u− log(1 + u) ≥ u2

2(1 + u)
≥ 1

4
min

(
u, u2

)
, ∀u > 0.

The next result is a version of Nemirovski’s inequality
(see [12], Corollary 2.4 page 5).

Lemma A.2 Let Y1, . . . , Yn ∈ RM be independent random
vectors with zero means and finite variance, and let M > 3.
Then

E

[
|

n∑
i=1

Yi|2∞

]
6 (2e log M − e)

n∑
i=1

E
[
|Yi|2∞

]
,

where | · |∞ is the `∞ norm.
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