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Abstract

We study a partial-information online-learning prob-
lem where actions are restricted to noisy compar-
isons between pairs of strategies (also known as
bandits). In contrast to conventional approaches
that require the absolute reward of the chosen strat-
egy to be quantifiable and observable, our setting
assumes only that (noisy) binary feedback about
the relative reward of two chosen strategies is avail-
able. This type of relative feedback is particularly
appropriate in applications where absolute rewards
have no natural scale or are difficult to measure
(e.g., user-perceived quality of a set of retrieval
results, taste of food, product attractiveness), but
where pairwise comparisons are easy to make. We
propose a novel regret formulation in this setting,
as well as present an algorithm that achieves (al-
most) information-theoretically optimal regret bounds
(up to a constant factor).

1 Introduction

In partial information online learning problems (also known
as bandit problems) [Rob52], an algorithm must choose, in
each ofT consecutive iterations, one ofK possible bandits
(strategies). For conventional bandit problems, in every iter-
ation, each bandit receives a real-valued payoff in[0, 1], ini-
tially unkown to the algorithm. The algorithm then chooses
one bandit and receives (and thus observes) the associated
payoff. No other payoffs are observed. The goal then is to
maximize the total payoff (i.e., the sum of payoffs over all
iterations).

The conventional setting assumes that observations per-
fectly reflect (or are unbiased estimates of) the received pay-
offs. In many applications, however, such observations may
be unavailable or unreliable. Consider, for example, appli-
cations in sensory testing or information retrieval, where the
payoff is the goodness of taste or the user-perceived quality
of a retrieval result. While it is difficult to elicit payoffs on
an absolute scale in such applications, one can reliably obtain
relative judgments of payoff (i.e. “A tastes better than B”, or
“ranking A is better than ranking B”). In fact, user behavior
can often be modeled as maximizing payoff, so that such rel-
ative comparison statements can be derived from observable

user behavior. For example, to elicit whether a search-engine
user prefers rankingr1 overr2 for a given query, Radlinski et
al. [RKJ08] showed how to present an interleaved ranking of
r1 andr2 so that clicks indicate which of the two is preferred
by the user. This ready availability of pairwise comparison
feedback in applications where absolute payoffs are difficult
to observe motivates our learning framework.

Given a collection ofK bandits (e.g., retrieval functions),
we wish to find a sequence of noisy comparisons that has low
regret. We call this theK-armed Dueling Bandits Problem,
which can also be viewed as a regret-minimization version
of the classical problem of finding the maximum element of
a set using noisy comparisons [FRPU94]. A canonical appli-
cation example is an intranet-search system that is installed
for a new customer. AmongK built-in retrieval functions,
the search engine needs to select the one that provides the
best results on this collection, with pairwise feedback com-
ing from clicks in the interleaved rankings [RKJ08]. Since
the search engine incurs regret whenever it presents the re-
sults from a suboptimal retrieval function, it aims to identify
suboptimal retrieval functions as quickly as possible. More
generally, the Dueling Bandits Problem arises naturally in
many applications where a system must adapt interactively
to specific user bases, and where pairwise comparisons are
easier to elicit than absolute payoffs.

One important issue is formulating an appropriate no-
tion of regret. Since we are concerned with maximizing user
utility (or satisfaction), but utility is not directly quantifiable
in our pairwise-comparison model, a natural question to ask
is whether users, at each iteration, would have prefered an-
other bandit over the ones chosen by our algorithm. This
leads directly to our regret formulation (described in Section
3), which measures regret based on the (initially unknown)
probability that the best banditb∗ would win a comparison
with the chosen bandits at each iteration. One can alterna-
tively view this as the fraction of users who would have pref-
eredb∗ over the bandits chosen by our algorithm.

Our solution follows an “explore then exploit” approach,
where we will bound expected regret by the regret incurred
while running the exploration algorithm. We will present
two exploration algorithms in Section 4, which we call Inter-
leaved Filter 1 and Interleaved Filter 2. Interleaved Filter 1
incurs regret that, with high probability, is within a logarith-
mic factor of the information-theoretic optimum. Interleaved
Filter 2 uses an interesting extension to achieve expected
regret that is within a constant factor of the information-



theoretic optimum. We will prove the matching lower bound
in Section 5.

An interesting feature of our Interleaved Filter algorithms
is that, unlike previous search algorithms based on noisy
comparisons, e.g., [FRPU94], the number of experiments de-
voted to each bandit during the exploration phase is highly
non-uniform: of theK bandits, there is a small subset of
bandits (O(log K) of them in expectation) who each partici-
pate inO(K) comparisons, while the remaining bandits only
participate inO(log K) comparisons in expectation. In Sec-
tion 5 we provide insight about why existing methods suffer
high regret in our setting. Thus, our results provide theoreti-
cal support for Langford’s observation [Lan08] about a qual-
itative difference between algorithms for supervised learning
and those for learning from partial observations: in the super-
vised setting, “holistic information is often better,” whereas
in the setting of partial observations it is often better to se-
lect a few points and observe them many times while giving
scant attention to other points.

2 Related Work

Regret-minimizing algorithms for multi-armed bandit prob-
lems and their generalizations have been intensively stud-
ied for many years, both in the stochastic [LR85] and non-
stochastic [ACBFS02] cases. The vast literature on this topic
includes algorithms whose regret is within a constant factor
of the information-theoretic lower bound in the stochastic
case [ACBF02] and within aO(

√
log n) factor of the best

such lower bound in the non-stochastic case [ACBFS02].
Our use of upper confidence bounds in designing algorithms
for the dueling bandits problem is prefigured by their use
in the multi-armed bandit algorithms that appear in [Aue03,
ACBF02, LR85].

Upper confidence bounds are also central to the design of
multi-armed bandit problems in the PAC setting [EDMM06,
MT04], where the algorithm’s objective is to identify an arm
that isε-optimal with probability at least1 − δ. Our work
adopts a very different feedback model (pairwise compar-
isons rather than direct observation of payoffs) and a dif-
ferent objective (regret minimization rather than the PAC
objective) but there are clear similarities between our IF1
and IF2 algorithms and the Successive Elimination and Me-
dian Eliminiation algorithms developed for the PAC setting
in [EDMM06]. There are also some clear differences be-
tween the algorithms: these are discussed in Section 5.1.

The difficulty of the dueling bandits problem stems from
the fact that the algorithm has no way of directly observing
the costs of the actions it chooses. It is an example of apar-
tial monitoring problem, a class of regret-minimization prob-
lems defined in [CBLS06], in which an algorithm (the “fore-
caster”) chooses actions and then observes feedback signals
that depend on the actions chosen by the forecaster and by an
unseen opponent (the “environment”). This pair of actions
also determines a loss, which is not revealed to the forecaster
but is used in defining the forecaster’s regret. Under the cru-
cial assumption that the feedback matrix has high enough
rank that its row space spans the row space of the loss matrix
(which is required in order to allow for a Hannan consis-
tent forecaster) the results of [CBLS06] show that there is
a forecaster whose regret is bounded byO(T 2/3) against a

non-stochastic (adversarial) environment, and that there exist
partial monitoring problems for which this bound can not be
improved. Our dueling bandits problem is a special case of
the partial monitoring problem, our environment is stochas-
tic rather than adversarial, and thus our regret bound exhibits
much better (i.e., logarithmic) dependence onT .

Banditized online learning problems based on absolute
rewards (of individual actions) have been previously studied
in the context of web advertising [PACJ07, LZ07]. In that
setting, clear explicit feedback is available in the form of
(expected) revenue. We study settings where such absolute
measures are unavailable or unreliable.

Our work is also closely related to the literature on com-
puting with noisy comparison operations [AGHB+94, BOH08,
FRPU94, KK07], in particular the design of tournaments to
identify the maximum element in an ordered set, given ac-
cess to noisy comparators. All of these papers assume unit
cost per comparison, whereas we charge a different cost for
each comparison depending on the pair of elements being
compared. In the unit-cost-per-comparison model, and as-
suming that every comparison hasε probability of error re-
gardless of the pair of elements being compared, Feige et
al. [FRPU94] presented sequential and parallel algorithms
that achieve the information-theoretically optimal expected
cost (up to constant factors) for many basic problems such
as sorting, searching, and selecting the maximum. The up-
per bound for noisy binary search has been improved in a
very recent paper [BOH08] that achieves the information-
theoretic optimum up to a1+o(1) factor. When the probabil-
ity of error depends on the pair of elements being compared
(as in our dueling bandits problem), Adler et al. [AGHB+94]
and Karp and Kleinberg [KK07] present algorithms that achieve
the information-theoretic optimum (up to constant factors)
for the problem of selecting the maximum and for binary
search, respectively. Our results can be seen as extending
this line of work to the setting of regret minimization. It is
worth noting that the most efficient algorithms for selecting
the maximum in the model of noisy comparisons with unit
cost per comparison [AGHB+94, FRPU94] are not suitable
in the regret minimization setting considered here, because
they devote undue effort to comparing elements that are far
from the maximum. This point is discussed further in Sec-
tion 5.1.

Yue and Joachims [YJ09] simultaneously studied a con-
tinuous version of the Dueling Bandits Problem, where ban-
dits (e.g., retrieval functions) are characterized using a com-
pact parameter space. For that setting, they proposed a gradi-
ent descent algorithm which achieves sublinear regret (with
respect to the time horizon). In many applications, it may be
infeasible or undesirable to interactively explore such a large
space of bandits. For instance, in intranet search one might
reasonably “cover” the space of plausible retrieval functions
with a small number of hand-crafted retrieval functions. In
such cases, selecting the best ofK well-engineered solutions
would be much more efficient than searching a possibly huge
space of real-valued parameters.

Learning based on pairwise comparisons is well studied
in the (off-line) supervised learning setting called learning
to rank. Typically, a preference function is first learned us-
ing a set of i.i.d. training examples, and subsequent pre-



dictions are made to minimize the number of mis-ranked
pairs (e.g., [CSS99]). Most prior work assume access to a
training set with absolute labels (e.g., of relevance or util-
ity) on individual examples, with pairwise preferences gen-
erated using inputs with labels from different ordinal classes
(e.g., [HGO99, FISS03, Joa05, BBB+07, LS07, AM08]).
In the case where there are exactly two label classes, this
becomes the so-called bipartite ranking problem [BBB+07,
AM08], which is a more general version of learning to op-
timize ROC-Area [HGO99, Joa05, LS07]. All known prior
work assume that the training data defines (or is used to gen-
erate) preferences between individual examples, rather than
between hypothesis functions (which is our setting).

3 The Dueling Bandits Problem

We propose a new online optimization problem, called the
K-armed Dueling Bandits Problem, where the goal is to find
the best amongK banditsB = {b1, . . . , bK}. Each itera-
tion comprises of a noisy comparison (a duel) between two
bandits (possibly the same bandit with itself). We assume
that the outcomes of these noisy comparisons are indepen-
dent random variables and that the probability ofb winning
a comparison withb′ is stationary over time. We write this
probability asP (b > b′) = ε(b, b′) + 1/2, whereε(b, b′) ∈
(−1/2, 1/2) is a measure of the distinguishability between
b andb′. We assume that there exists a total ordering onB
such thatb � b′ implies ε(b, b′) > 0. We will also use the
notationεi,j ≡ ε(bi, bj).

Let (b(t)
1 , b

(t)
2 ) be the bandits chosen at iterationt, and let

b∗ be the overall best bandit. We definestrong regret based
on comparing the chosen bandits withb∗,

RT =
T∑

t=1

(
ε(b∗, b(t)

1 ) + ε(b∗, b(t)
2 )
)

, (1)

whereT is the time horizon. We also defineweak regret,

R̃T =
T∑

t=1

min{ε(b∗, b(t)
1 ), ε(b∗, b(t)

2 )}, (2)

which only compareŝb against the better ofb(t)
1 andb

(t)
2 . One

can regard strong regret as the fraction of users who would
have preferred the best bandit over the chosen ones in each
iteration1. (More precisely, it corresponds to the fraction
of users who prefer the best bandit to a uniformly-random
member of the pair of bandits chosen, in the case of strong
regret, or to the better of the two bandits chosen, in the case
of weak regret.) We will present algorithms which achieve
identical regret bounds for both formulations (up to constant
factors) by assuming a property called stochastic triangle in-
equality, which is described in the next section.

3.1 Assumptions

We impose additional structure to the probabilistic compar-
isons. First, we assumestrong stochastic transitivity, which
requires that any triplet of banditsbi � bj � bk satisfies

εi,k ≥ max{εi,j , εj,k}. (3)

1In the search setting, users experience an interleaving, or mix-
ing, of results from both retrieval functions to be compared.

Algorithm 1 Explore Then Exploit Solution

1: Input: T , B = {b1, . . . , bK}, EXPLORE

2: (b̂, T̂ )← EXPLORE(T,B)
3: for t = T̂ + 1, . . . , T do
4: comparêb andb̂
5: end for

This assumption provides a monotonicity constraint on pos-
sible probability values.

We also assumestochastic triangle inequality, which
requires any triplet of banditsbi � bj � bk to satisfy

εi,k ≤ εi,j + εj,k. (4)

Stochastic triangle inequality captures the condition that the
probability of a bandit winning (or losing) a comparison will
exhibit diminishing returns as it becomes increasingly supe-
rior (or inferior) to the competing bandit2.

We briefly describe two common generative models which
satisfy these two assumptions. The first is the logistic or
Bradley-Terry model, where each banditbi is assigned a pos-
itive real valueµi. Probabilistic comparisons are made using

P (bi > bj) =
µi

µi + µj
.

The second is a Gaussian model, where each bandit is associ-
ated with a random variableXi that has a Gaussian distribu-
tion with meanµi and variance1. Probabilistic comparisons
are made using

P (bi > bj) = P (Xi −Xj > 0),

whereXi − Xj ∼ N(µi − µj , 2). It is straightforward to
check that both models satisfy strong stochastic transitivity
and stochastic triangle inequality.

4 Algorithm & Analysis

Our solution, which is described in Algorithm 1, follows an
explore then exploit approach. For a given time horizonT
and a set ofK banditsB = {b1, . . . , bK}, an exploration al-
gorithm (denoted generically as EXPLORE) is used to find
the best banditb∗. EXPLORE returns both its solution̂b
as well as the total number of iterationŝT for which it ran
(it is possible thatT̂ > T ). ShouldT̂ < T , we enter an
exploit phase by repeatedly choosing(b(t)

1 , b
(t)
2 ) = (b̂, b̂),

which incurs no additional regret assuming EXPLORE cor-
rectly found the best bandit (b̂ = b∗). In the case where
T̂ > T , then the regret incurred from running EXPLORE
still bounds our regret formulations (which only measure re-
gret up toT ), so our analysis in this section will still hold.

We will consider two versions of our proposed explo-
ration algorithm, which we call Interleaved Filter 1 (IF1) and
Interleaved Filter 2 (IF2). We will show that both algorithms
(which we refer to generically as IF) correctly return the best
bandit with probability at least1− 1/T . Correspondingly, a
suboptimal bandit is returned with probability at most1/T ,

2Our analysis also applies for a relaxed version whereεi,k ≤
γ(εi,j + εj,k) for finite γ > 0.



in which case we assume maximal regretO(T ). We can thus
bound the expected regret by

E[RT ] ≤
(

1− 1
T

)
E
[
RIF

T

]
+

1
T
O(T )

= O
(
E
[
RIF

T

]
+ 1
)

(5)

whereRIF
T denotes the regret incurred from running Inter-

leaved Filter. Thus the regret bound depends entirely on the
regret incurred by Interleaved Filter.

The two IF algorithms are described in Algorithm 2 and
Algorithm 3, respectively. IF2 achieves an expected regret
bound which matches the information-theoretic lower bound
(up to constant factors) presented in Section 5, whereas IF1
matches with high probability the lower bound up to a log
factor. We first examine IF1 due to its ease of analysis.
We then analyze IF2, which builds upon IF1 to achieve the
information-theoretic optimum.

In both versions, IF maintains a candidate banditb̂ and
simulates simultaneously comparingb̂ with all other remain-
ing bandits via round robin scheduling (i.e., interleaving).
Any bandit that is empirically inferior tôb with 1 − δ con-
fidence is removed (we will describe later how to chooseδ).
When some banditb′ is empirically superior tôb with 1 − δ

confidence, then̂b is removed andb′ becomes the new can-
didateb̂← b′. IF2 contains an additional step where all em-
pirically inferior bandits (even if lacking1 − δ confidence)
are removed (called pruning – see lines 16-18 in Algorithm
3). This process repeats until only one bandit remains. As-
suming IF has not made any mistakes, then it will return the
best bandit̂b = b∗.

Terminology. Interleaved Filter makes a “mistake” if it
draws a false conclusion regarding a pair of bandits. A mis-
take occurs when an inferior bandit is determined with1− δ
confidence to be the superior one. We call the additional step
of IF2 (lines 16-18 in Algorithm 3) “pruning ”. We define a
“match” to be all the comparisons Interleaved Filter makes
between two bandits, and a “round” to be all the matches
played by one candidatêb. We always refer tolog x as the
natural log,lnx, whenever the distinction is necessary.

In our analysis, we assume WLOG that the bandits inB
are sorted in preferential orderb1 � . . . � bK . Then for
T ≥ K, we will show in Theorem 1 that running IF1 incurs,
with high probability, regret bounded by

RIF1
T = O

(
K log K

ε1,2
log T

)
.

Note thatε1,2 = P (b1 � b2) − 1/2 is the distinguishabil-
ity between the two best bandits. Due to strong stochastic
transitivity,ε1,2 lower bounds the distinguishability between
the best bandit and any other bandit. We will also show in
Theorem 2 that running IF2 incurs expected regret bounded
by

E
[
RIF2

T

]
= O

(
K

ε1,2
log T

)
,

which matches the information-theoretic lower bound (up to
constant factors) described in Section 5.

Analysis Approach. Our analysis follows three phases.
We first bound the regret incurred for any match. Then for

Algorithm 2 Interleaved Filter 1 (IF1)
1: Input: T , B = {b1, . . . , bK}
2: δ ← 1/(TK2)
3: Choosêb ∈ B randomly
4: W ← {b1, . . . , bK} \ {b̂}
5: ∀b ∈W , maintain estimatêPb̂,b of P (b̂ > b)
6: ∀b ∈W , maintain1− δ confidence interval̂Cb̂,b of P̂b̂,b

7: while W 6= ∅ do
8: for b ∈W do
9: comparêb andb

10: updateP̂b̂,b, Ĉb̂,b

11: end for
12: while ∃b ∈W s.t.

(
P̂b̂,b > 1/2 ∧ 1/2 /∈ Ĉb̂,b

)
do

13: W ←W \ {b}
14: end while
15: if ∃b′ ∈W s.t.

(
P̂b̂,b′ < 1/2 ∧ 1/2 /∈ Ĉb̂,b′

)
then

16: b̂← b′, W ←W \ {b′} //new round
17: ∀b ∈W , resetP̂b̂,b andĈb̂,b

18: end if
19: end while
20: T̂ ← Total Comparisons Made
21: return(b̂, T̂ )

both IF1 and IF2, we show that the mistake probability is at
most1/T . We finally bound the matches played by IF1 and
IF2 to arrive at our final regret bounds.

4.1 Confidence Intervals

In a match betweenbi andbj , IF maintains a number̂Pi,j , the
empirical estimate ofP (bi � bj) after t comparisons3. For
ease of notation, we drop the subscripts(bi, bj), and useP̂t,
which emphasizes the dependence on the number of compar-
isons. IF similarly maintains a confidence interval

Ĉt = (P̂t − ct, P̂t + ct),

wherect =
√

log(1/δ)/t. We justify the construction of
these confidence intervals in the following lemma.

Lemma 1. For δ = 1/(TK2), the number of comparisons
in a match betweenbi andbj is with high probability at most

O

(
1

ε2i,j
log(TK)

)
.

Moreover, the winner is identified correctly with probability
at least1− δ, providedδ ∈ (0, 1/2].

Proof. We first argue correctness. Fix the number of com-
parisonst, and note thatE[P̂t] = 1/2 + εi,j . This tells us
P (1/2 + εi,j /∈ Ĉt) is bounded above by the probability that
P̂t deviates from its expected value by at leastct. An ap-
plication of Hoeffding’s inequality [Hoe63] shows that this
probability is bounded above by

2 exp(−2tc2
t ) = 2 exp(−2 log(1/δ)) ≤ δ

3In other words,P̂i,j is the fraction of theset comparisons in
which bi was the winner.



for δ ≤ 1/2. Thus for everyt, we know with confidence at
least1 − δ that 1/2 + εi,j ∈ Ĉt. It follows from this fact
and the stopping conditions of the match that the winner is
correctly identified with probability at least1− δ.

To bound the number of comparisonsn in a match, it suf-
fices to prove that for anyd ≥ 1, there exists anm depending
only ond such that

P

(
n ≥ m

ε2i,j
log(TK)

)
≤ K−d

for all K sufficiently large. Assume without loss of general-
ity that εi,j > 0, and define the eventEt = {P̂t− ct < 1/2}.
Note thatEt is a necessary condition for the match to con-
tinue aftert comparisons, so for anyt ∈ N,

P (n > t) ≤ P (Et).
For m ≥ 4 and t = dm log(TK2)/ε2i,je, we havect ≤
εi,j/2. Applying Hoeffding’s inequality for thist shows

P (Et) = P (P̂t − (1/2 + εi,j) < ct − εi,j)

= P (E[P̂t]− P̂t > εi,j − ct)

≤ P (|P̂t −E[P̂t]| > εi,j/2)

≤ 2 exp(−tε2i,j/2)

≤ 2 exp(−m log(TK2))
= 2/(TK2)m.

Taking m = max{4, d} proves the lemma for allK ≥ 2.

4.2 Regret per Match

We now bound the accumulated regret of each match.

Lemma 2. Assumingb1 has not been removed andT ≥ K,
then with high probability the accumulated weak regret and
also (assuming stochastic triangle inequality) strong regret
from any match is at most

O
(

1
ε1,2

log T

)
.

Proof. Suppose the candidate banditb̂ = bj is playing a
match againstbi. Since all matches within a round are played
simultaneously, then by Lemma 1, any match played bybj

contains at most

O

(
1

ε21,j

log(TK)

)
≤ O

(
1

ε21,2

log(TK)

)
comparisons, where the inequality follows from strong sto-
chastic transitivity. Note thatmin{ε1,j , ε1,i} ≤ ε1,j . Then
the accumulated weak regret (2) is bounded by

ε1,jO

(
1

ε21,j

log(TK)

)
= O

(
1

ε1,j
log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
= O

(
1

ε1,2
log T

)
(6)

where (6) holds sincelog(TK) ≤ log(T 2) = 2 log T . We
now bound the accumulated strong regret (1) by leveraging
stochastic triangle inequality. Each comparison incursε1,j +
ε1,i regret. We now consider three cases.

Case 1: Supposebi � bj . Thenε1,j + ε1,i ≤ 2ε1,j , and
the accumulated strong regret of the match is bounded by

2ε1,jO

(
1

ε21,j

log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
Case 2: Supposebj � bi andεj,i ≤ ε1,j . Then

ε1,j + ε1,i ≤ ε1,j + ε1,j + εj,i

≤ 3ε1,j

and the accumulated strong regret is bounded by

3ε1,jO

(
1

ε21,j

log(TK)

)
= O

(
1

ε1,j
log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
Case 3: Supposebj � bi andεj,i > ε1,j . Then we can

also use Lemma 1 to bound with high probability the number
of comparisons by

O

(
1

ε2j,i
log(TK)

)
.

The accumulated strong regret is then bounded by

3εj,iO

(
1

ε2j,i
log(TK)

)
= O

(
1

εj,i
log(TK)

)
≤ O

(
1

ε1,j
log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
Like in the analysis for weak regret (6), we finally note that

O
(

1
ε1,2

log(TK)
)

= O
(

1
ε1,2

log T

)
.

In the next two sections, we will bound the mistake prob-
ability and total matches played by IF1 and IF2, respectively.

4.3 Regret Bound for Interleaved Filter 1

We first state our main regret bound for Interleaved Filter 1.

Theorem 1. Running Algorithm 1 withB = {b1, . . . , bK},
time horizonT (T ≥ K), and IF1 incurs expected regret
(both weak and strong) bounded by

E[RT ] ≤ O
(
E
[
RIF1

T

])
= O

(
K log K

ε1,2
log T

)
.

The proof follows immediately from combining Lemma
3, Lemma 5, Lemma 2 and (5). We begin by analyzing the
probability of IF1 making a mistake.



Lemma 3. For δ ≤ 1/(TK2), IF1 makes a mistake with
probability at most1/T

Proof. By Lemma 1, the probability that IF1 makes a mis-
take in any given match is at most1/(TK2). SinceK2 is a
trivial upper bound on the number of matches, applying the
union bound over all matches proves the lemma.

We assume for the remainder of this section that IF1 is
mistake-free, since the cost of making a mistake is consid-
ered in (5), and we are interested here in boundingRIF1

T .
Random Walk Model. We can model the sequence of

candidate bandits as a random walk. Let each bandit be a
node on a graph, wherebj (j > 1) transitions tobi for
1 ≤ i < j with some probability. The best banditb1 is
an absorbing node. Due to strong stochastic transitivity, the
probability of bj transitioning tobi is at least the probabil-
ity of transitioning tobh (for h > i). We will consider the
worst case wherebj transitions to each ofb1, . . . , bj−1 with
equal probability. We can thus bound the number of rounds
required by IF1 (and also IF2) by analyzing the length of a
random walk frombK to b1. We will prove that this random
walk requiresO(log K) steps with high probability.

Let Xi (1 ≤ i < K) be an indicator random variable
corresponding to whether a random walk starting atbK visits
bi in the Random Walk Model.

Lemma 4. For Xi as defined above with1 ≤ i < K,

P (Xi = 1) =
1
i
,

and furthermore, for allS ⊆ {X1, . . . , XK−1},

P (S) =
∏

Xi∈S

P (Xi), (7)

meaningX1, . . . , XK−1 are mutually independent.

Proof. We can rewrite (7) as

P (S) =
∏

Xi∈S

P (Xi|Si),

whereSi = {Xj ∈ S|j > i}.
We first considerS = {X1, . . . , XK−1}. For the factor

on Xi, denote withj the smallest index inSi with Xj = 1
in the condition. Then

P (Xi = 1|Xi+1, ..., XK−1)

= P (Xi = 1|Xi+1 = 0, ..., Xj−1 = 0, Xj = 1) =
1
i

since the walk moved to one of the firsti nodes with uni-
form probability independent ofj. Since∀j > i : P (Xi =
1|Xj = 1) = 1

i , this impliesP (Xi = 1) = 1
i . So we can

conclude

P (X1, . . . , XK−1) =
K−1∏
i=1

P (Xi).

Now consider arbitraryS. We use
∑

Sc to indicate sum-
ming over the joint states of allXi variables not inS. We

can writeP (S) as

P (S) =
∑
Sc

P (X1, . . . , XK−1)

=
∑
Sc

K−1∏
i=1

P (Xi)

=
∏

Xi∈S

P (Xi)

(∑
Sc

∏
Xi∈Sc

P (Xi)

)
=
∏

Xi∈S

P (Xi).

This proves mutual independence (7).

We can express the number of steps taken by a random
walk from bK to b1 in the Random Walk Model asSK =
1 +

∑K−1
i=1 Xi. Lemma 4 implies that

E[SK ] = 1 +
K−1∑
i=1

E[Xi] = 1 + HK−1 ≈ log K,

whereHi is the harmonic sum. We now show thatSK =
O(log K) with high probability.

Lemma 5. Assuming IF1 is mistake-free, then it runs for
O(log K) rounds with high probability.

Proof. Consider the Random Walk Model. It suffices to show
that for anyd ≥ 1, there exists am depending only ond such
that

∀K ≥ 1 : P (SK > m log K) ≤ 1
Kd

. (8)

Using the Chernoff bound [MR95], we know that for any
m > 1,

P (SK > m(1 + HK−1)) ≤
(

em−1

mm

)1+HK−1

≤
(

em−1

mm

)1+log K

(9)

= (eK)m−1−m log m

(9) is true since

log K ≤ HK−1 < log K + 1.155

for all K ≥ 1 (where 1.155 is approximately twice Euler’s
constant). We require this bound to be at most1/Kd. Solv-
ing

(eK)m−1−m log m ≤ K−d

yieldsm ≥ ed. The Chernoff bound applies for allK ≥ 0.
So for anyd ≥ 1, we can choosem = ed to satisfy (8).



Algorithm 3 Interleaved Filter 2 (IF2)
1: Input: T , B = {b1, . . . , bK}
2: δ ← 1/(TK2)
3: Choosêb ∈ B randomly
4: W ← {b1, . . . , bK} \ {b̂}
5: ∀b ∈W , maintain estimatêPb̂,b of P (b̂ > b)
6: ∀b ∈W , maintain1− δ confidence interval̂Cb̂,b of P̂b̂,b

7: while W 6= ∅ do
8: for b ∈W do
9: comparêb andb

10: updateP̂b̂,b, Ĉb̂,b

11: end for
12: while ∃b ∈W s.t.

(
P̂b̂,b > 1/2 ∧ 1/2 /∈ Ĉb̂,b

)
do

13: W ←W \ {b}
14: end while
15: if ∃b′ ∈W s.t.

(
P̂b̂,b′ < 1/2 ∧ 1/2 /∈ Ĉb̂,b′

)
then

16: while ∃b ∈W s.t. P̂b̂,b > 1/2 do
17: W ←W \ {b} //pruning
18: end while
19: b̂← b′, W ←W \ {b′} //new round
20: ∀b ∈W , resetP̂b̂,b andĈb̂,b

21: end if
22: end while
23: T̂ ← Total Comparisons Made
24: return(b̂, T̂ )

4.4 Regret Bound for Interleaved Filter 2

We first state our main regret bound for Interleaved Filter 2.

Theorem 2. Running Algorithm 1 withB = {b1, . . . , bK},
time horizonT (T ≥ K), and IF2 incurs expected regret
(both weak and strong) bounded by

E[RT ] ≤ O
(
E
[
RIF2

T

])
= O

(
K

ε1,2
log T

)
.

The proof follows immediately from combining Lemma
6, Lemma 7, Lemma 2 and (5). IF2 improves upon IF1 by
removing all empirically inferior bandits whenever the can-
didate is defeated, which we call pruning. We begin by ana-
lyzing the pruning technique.

Theorem 3. For δ ≤ 1/(TK2), when the incumbent bandit
b̂ is defeated with1 − δ confidence by some other banditb′,
then for all banditsb′′ found to be empirically inferior (but
lacking 1 − δ confidence) tôb, we can conclude thatb′ is
superior tob′′ with 1− δ confidence.

Proof. Suppose a round just ended, where the incumbent
candidatêb = bj has been defeated bybi. We treati as a
random variable, since any remaining bandit could, in princi-
ple, have defeatedbj . Suppose also that banditbk was found
empirically inferior tobj (but lacking1− δ confidence).

Definen to be the number of comparisons made for each
match in this round, and letSi,j denote the number of com-
parisonsbi won versusbj . By definition of our confidence

intervals (see Section 4.1), we know that

Si,j −
n

2
>

√
n log

(
1
δ

)
, (10)

since that is the stopping condition for the round.
Let An,i,k denote the event thatbi is the bandit that de-

featsbj in n comparisons, andbk � bi, but IF2 mistakenly
concludesbi � bk. Then for anybk, it suffices to prove

P

⋃
i,n

An,i,k

 ≤ δ.

By taking the union bound, we have

P

⋃
n,i

An,i,k

 ≤∑
n,i

P (An,i,k)

=
∑
n,i

P (n, i)P (Bn,i,k|n, i)

= En,i[P (Bn,i,k|n, i)] (11)

whereP (n, i) is the joint probability that the round lasts for
n comparisons per match withbi winning the round.Bn,i,k

denotes the event that,conditionedonn andbi winning, IF2
mistakenly concludesbi � bk. We will show that for alln
andbi, we can rejectBn,i,k with confidence1 − δ and thus
can bound (11) byδ.

Suppose thatP (bi > bj) = α. Then underBn,i,k, we
know from strong stochastic transitivity thatP (bk > bj) ≥
α, and thereforeP (bj > bk) ≤ 1−α andE[Si,j +Sj,k] ≤ n.
CombiningSj,k ≥ n/2 with (10) yields

Si,j + Sj,k − n >

√
n log

(
1
δ

)
. (12)

Then we can consider

P

(
Si,j + Sj,k − n >

√
n log

(
1
δ

))
. (13)

We will analyze the worst case whenP (bj > bk) = 1 − α.
Deviating from this worst case will only make Hoeffding’s
inequality on (13) tighter. In this worst case, for anyα we
haveE[Si,j + Sj,k] = n. Using Hoeffding’s inequality
[Hoe63], we have

P
�
Si,j + Sj,k − n >

q
n log

�
1
δ

��
≤ exp

n
−2n log(1/δ)

2n

o

= δ

We can thus rejectBn,i,k with confidence at least1− δ.

Lemma 6. For δ ≤ 1/(TK2), IF2 makes a mistake with
probability at most1/T

Proof. In roundr, supposebi is the incumbent, and suppose
bi is not defeated. Then every match in this round is played to
completion, so by Lemma 1, the probability that IF2 makes
a mistake in any single match is at most1/(TK2). An ap-
plication of the union bound shows that IF2 makes a mis-
take in this round with probability at most1/(TK). On the



other hand, suppose that in roundr, bi is defeated bybk. In
this case, IF2 makes a mistake only if it discards a banditbj

when in factbj � bk. By Theorem 3, we know the prob-
ability of this event is bounded above by1/(TK2), so the
probability that IF2 makes a mistake in this round is at most
1/(TK). Taking the union bound over all rounds proves the
lemma.

For the remainder of this section, we analyze the behav-
ior of IF2 when it is mistake-free. We will show that, in ex-
pectation, IF2 playsO(K) matches and thus incurs expected
regret bounded by

O
(

K

ε1,2
log T

)
.

Lemma 7. Assuming IF2 is mistake free, then it playsO(K)
matches in expectation.

Proof. We leverage the Random Walk Model defined in Sec-
tion 4.3 in order to provide a worst case analysis. LetBj

denote a random variable counting the number of matches
played bybj when it isnot the candidate (to avoid double-
counting). We can writeBj as

Bj = Aj + Gj ,

whereAj indicates the number of matches played bybj against
bi for i > j (when the candidate was inferior tobj), andGj

indicates the number of matches played bybj againstbi for
i < j (when the candidate was superior tobj). We can thus
bound the expected number of matches played by

K−1∑
j=1

E[Bj ] =
K−1∑
j=1

E[Aj ] + E[Gj ]. (14)

By Lemma 4, we can writeE[Aj ] as

E[Aj ] = 1 +
K−1∑

i=j+1

1
i

= 1 + HK−1 −Hi,

whereHi is the harmonic sum.
We now analyzeE[Gj ]. We assume the worst case that

E[Gj ] does not lose a match (with1 − δ confidence) to any
superior candidatebi before the match concludes (bi is de-
feated) unlessbi = b1. We can thus boundE[Gj ] using the
probability thatbj is pruned at the conclusion of each round.
Let Ej,t denote the event thatbj is pruned after thetth round
in which the candidate bandit is superior tobj , conditioned
on not being pruned in the firstt − 1 such rounds. Define
Gj,t to indicate the number of matches beyond the firstt− 1
played bybj against a superior candidate, conditioned on
playing at leastt− 1 such matches. We can writeE[Gj,t] as

E[Gj,t] = 1 + P (Ec
j,t)E[Gj,t+1],

and thus

E[Gj ] ≤ E[Gj,1] ≤ 1 + P (Ec
j,1)E[Gj,2]. (15)

We know thatP (Ec
j,t) ≤ 1/2 for all j 6= 1 and t. From

Lemma 5, we know thatE[Gj,t] ≤ O(K log K) and is thus
finite. Hence, we can bound (15) by the infinite geometric
series1 + 1/2 + 1/4 + . . . = 2.

We can thus write (14) as

K−1∑
j=1

E[Aj ] + E[Gj ] ≤
K−1∑
j=1

(1 + HK−1 −Hj) + 2(K − 1)

=
K−1∑
j=1

(j − 1)
1
j

+ 3(K − 1) = O(K).

5 Lower Bounds

We now show that the bound in Theorem 2 is information
theoretically optimal up to constant factors. The proof is
similar to the lower bound proof for the standard stochas-
tic multi-armed bandit problem. However, since we make a
number of assumptions not present in the standard case (such
as a total ordering ofB), we present a simple self-contained
lower bound argument, rather than a reduction from the stan-
dard case.

Theorem 4. Any algorithmφ for the dueling bandits prob-
lem has

Rφ
T = Ω

(
K

ε
log T

)
,

whereε = minb 6=b∗ P (b∗, b).

The proof is motivated by Lemma 5 of [KNMS08]. Fix
ε > 0 and define the following family of problem instances.
In instancẽqj , let bj be the best bandit, and order the remain-
ing bandits by their indices. LetP (bi � bk) = ε whenever
bi � bk. Note that these are valid problem instances, i.e. they
satisfy (3), (4), and the assumptions in Section 3.

Let qj be the distribution onT -step histories induced by
instanceq̃j . Let nj,T be the number of matches involving
banditbj scheduled byφ up to timeT. Using these instances,
we will prove a lemma from which Theorem 4 will follow.

Lemma 8. Let φ be an algorithm for the dueling bandits
problem such that

Rφ
T = o(T a)

for all a > 0. Then for allj,

Eq1 [nj,T ] = Ω
(

log T

ε2

)
.

Proof. Fix j 6= 1 and0 < a < 1/2. Define the eventEj =
{nj,T < log(T )/ε2}. If q1(Ej) < 1/3, then

Eq1 [nj,T ] ≥ q1(Ec
j )(log(T )/ε2) = Ω

(
log T

ε2

)
.

So suppose now thatq1(Ej) ≥ 1/3. Under qj , the algo-
rithm incurs regretε for every comparison involving a bandit
b 6= bj . This fact together with the assumption onφ imply
thatEqj [T − nj,T ] = o(T a). Using this fact and Markov’s
inequality, we have

qj(Ej) = qj({T − nj,T > T − log(T )/ε2})

≤
Eqj

[T − nj,T ]
T − log(T )/ε2

= o(T a−1).



In [KK07], Karp and Kleinberg prove that for any eventE
and distributionsp, q with p(E) ≥ 1/3 andq(E) < 1/3,

KL(p; q) ≥ 1
3

ln
(

1
3q(E)

)
− 1

e
.

Applying this lemma with the eventEj , we have

KL(q1; qj) ≥ 1
3

ln
(

1
3o(T a−1)

)
− 1

e

= Ω(log T ) (16)

On the other hand, by the chain rule for KL divergence [CT99],
we have

KL(q1; qj) = Eq1 [nj,T ]KL(1/2 + ε; 1/2− ε)

≤ 16ε2Eq1 [nj,T ] (17)

Combining (16) and (17) proves the lemma.

Proof of Theorem 4.Let φ be any algorithm for the duel-
ing bandits problem. Ifφ does not satisfy the hypothesis
of Lemma 8, the theorem holds trivially. Otherwise, on the
problem instance specified byq1, φ incurs regret at leastε
every time it plays a match involvingbj 6= b1. It follows
from Lemma 8 that

Rφ
T ≥

∑
j 6=1

εEq1 [nj,T ] = Ω
(

K

ε
log T

)
.

5.1 Discussion of Related Work

Algorithms for finding maximal elements in a noisy informa-
tion model are discussed in [FRPU94]. That paper describes
a tournament-style algorithm that returns the best ofK el-
ements with probability1 − δ in O(K log(1/δ)/ε2) com-
parisons, whereε is the minimum margin of victory of one
element over an inferior one. This is achieved by arranging
the elements in a binary tree and running a series of mini-
tournaments, in which a parent and its two children compete
until a winner can be identified with high confidence. Win-
ning nodes are promoted to the parent position, and lower
levels of the tree are pruned to reduce the total number of
comparisons. The maximal element eventually reaches the
root of the tree with high probability.

Such a tournament could incur very high regret in our
framework. Consider a mini-tournament involving three sub-
optimal but barely distinguishable elements (e.g.P (b∗ �
bi,j,k) ≈ 1, but P (bi � bj) = 1/2 + γ for γ << 1).
This tournament would requireΩ(1/γ2) comparisons to de-
termine the best element, but each comparison would con-
tribute Ω(1) to the total regret. Sinceγ can be arbitrarily
small compared toε∗ = ε1,2, this yields a regret bound that
can be arbitrarily worse than the above lower bound. In gen-
eral, algorithms that achieve low regret in our model must
avoid such situations, and must discard suboptimal bandits
after as few comparisons as possible. This heuristic moti-
vates the interleaved structure proposed in our algorithms,
which allows for good control over the number of matches
involving suboptimal bandits.

This discussion also sheds light on the reasons our al-
gorithms for the dueling bandits problem differ from algo-
rithms that achieve optimal or near-optimal sample complex-
ity bounds for multi-armed bandit problems in the PAC set-
ting [EDMM06]. As mentioned in Section 2, there are strik-
ing similarities between our IF1 algorithm and the Succes-
sive Elimination algorithm from [EDMM06] as well as sim-
ilarities between our IF2 algorithm and the Median Elimi-
nation algorithm from [EDMM06]. However, as explained
in the preceding paragraph, in our setting all of the highly
suboptimal arms (those contributing significantly more than
ε regret per sample) must be eliminated quickly (before sam-
pling more thanε−2 times). In the Successive/Median Elim-
ination algorithms, every arm is sampled at leastε−2 times.
The need to eliminate highly suboptimal arms quickly is spe-
cific to the regret minimization setting and exerts a strong
influence on the design of the algorithm; in particular, it mo-
tivates the interleaved structure as explained above. This de-
sign choice prompts another feature of our algorithms that
distinguishes them from the Successive/Median Elimination
algorithms, namely the choice of an “incumbent” arm in each
phase that participates in many more samples than the other
arms. The algorithms for the PAC setting [EDMM06] dis-
tribute the sampling load evenly among all arms participat-
ing in a phase.

6 Conclusion

We have proposed a novel framework for partial informa-
tion online learning in which feedback is derived from pair-
wise comparisons, rather than absolute measures of utility.
We have defined a natural notion of regret for this problem,
and designed algorithms that are information theoretically
optimal for this performance measure. Our results extend
previous work on computing in noisy information models,
and is motivated by practical considerations from informa-
tion retrieval applications. Future directions include finding
other reasonable notions of regret in this framework (e.g.,
via contextualization [LZ07]), and designing algorithms that
achieve low-regret when the set of bandits is very large (a
special case of this is addressed in [YJ09]).
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