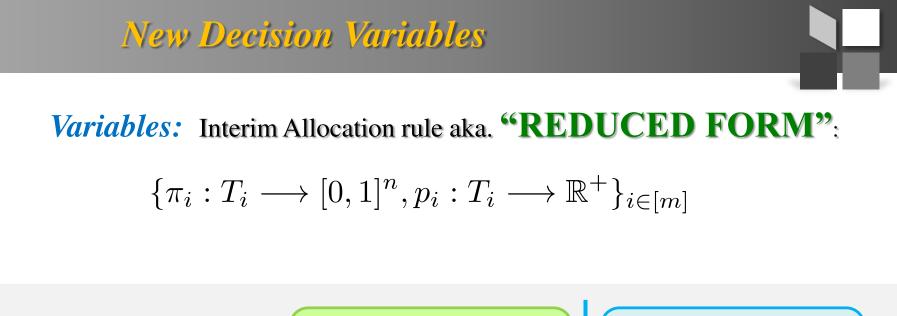
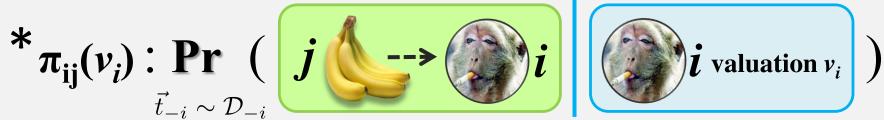


COMP/MATH 553 Algorithmic Game Theory Lecture 12: Implementation of the Reduced Forms and the Structure of the Optimal Multi-item Auction

Oct 15, 2014

Yang Cai





* $\hat{p}_i(v_i)$: **E** [**price**_i $(\vec{t}_{-i} \sim \mathcal{D}_{-i})$

- Variables:
 - π_{ij}(v_i): probability that item *j* is allocated to bidder *i* if her reported valuation (*bid*) is v_i in expectation over every other bidders' valuations (bids);
 - $p_i(v_i)$: price bidder *i* pays if her reported valuation (bid) is v_i in expectation over every other bidder's valuations (bids)
- Constraints:

• BIC:
$$\sum_{j} v_{ij} \cdot \pi_{ij}(v_i) - p_i(v_i) \ge \sum_{j} v_{ij} \cdot \pi_{ij}(v'_i) - p_i(v'_i)$$
 for all v_i and v'_i in T_i

- IR: $\sum_{j} v_{ij} \cdot \pi_{ij}(v_i) p_i(v_i) \ge 0$ for all v_i in T_i
- Feasibility: exists an auction with this reduced form.
- Objective:
 - Expected revenue: $\sum_{i} \sum_{v_i \in T_i} \Pr[t_i = v_i] \cdot p_i(v_i)$

Implementation of a Feasible Reduced Form

□ After solving the succinct LP, we find the optimal reduced form π^* and p^* .

- Can you turn π* and p* into an auction whose reduced form is exactly π* and p*?
- □ This is crucial, otherwise being able to solve the LP is meaningless.
- □ Will show you a way to implement any feasible reduced form, and it reveals important structure of the revenue-optimal auction!

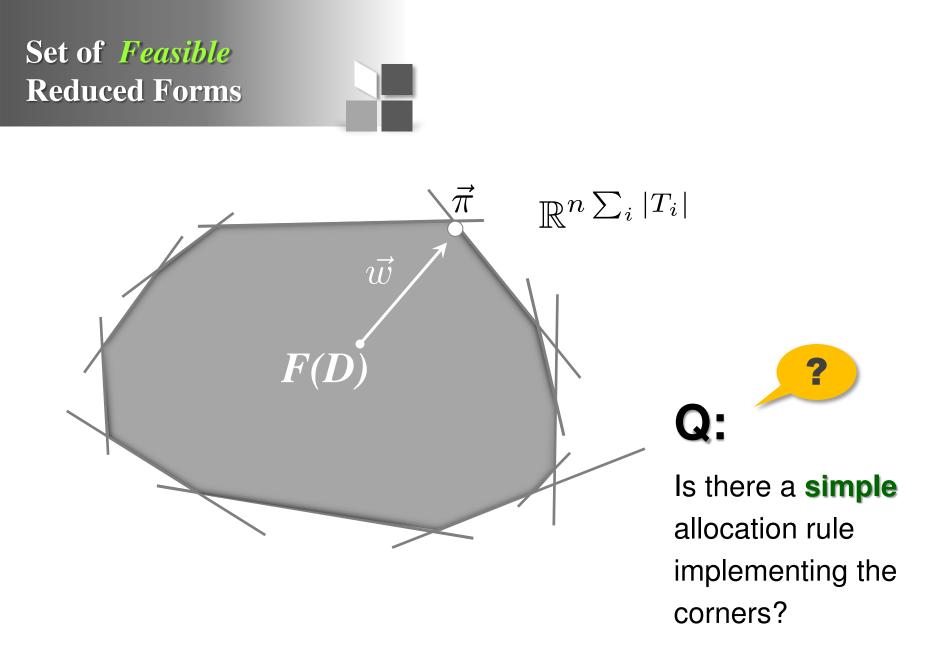
Implementation of a Feasible Reduced Form

Set of *Feasible* Reduced Forms

- Reduced form is collection $\{\pi_i : T_i \longrightarrow [0,1]^n\};$
- Can view it as a vector $\vec{\pi} \in \mathbb{R}^{n \sum_{i} |T_i|}$;
- Let's call set of feasible reduced forms $F(D) \in \mathbb{R}^{n \sum_{i} |T_i|}$;
- Claim 1: F(D) is a convex polytope.
- **Proof:** *Easy!*
 - A feasible reduced form $\vec{\pi}$ is implemented by a feasible allocation rule *M*.
 - *M* is a distribution over deterministic feasible allocation rules, of which there is a finite number. So: $M = \sum_{\ell=1}^{k} p_{\ell} \cdot M_{\ell}$, where M_{ℓ} is deterministic.

• Easy to see:
$$\vec{\pi} = \sum_{\ell=1}^{k} p_{\ell} \cdot \vec{\pi}(M_{\ell})$$

• So, $F(D) = \begin{pmatrix} \text{convex hull of reduced forms of} \\ \text{feasible deterministic mechanisms} \end{pmatrix}$



* Is there a simple allocation rule implementing a corner?

> virtual welfare maximizing interim rule when virtual value functions are the f_i 's

 $\mathbb{R}^{n\sum_{i}|T_{i}|}$ \vec{w} F(D) $\vec{\pi} \in ! \operatorname{argmax}_{\vec{\pi}' \in F(D)} \{\vec{\pi}' \cdot \vec{w}\}$

 $f_{ij}(A) := \frac{w_{ij}(A)}{\Pr_{\mathcal{D}}[t_i = A]}$

expected **virtual** welfare of an allocation rule with interim rule π ' interpretation: **virtual** value derived by bidder *i* when given item *j* when his type is A

Is there a simple allocation rule implementing a corner?

?

virtual welfare maximizing interim rule when virtual value functions are the f_i 's

Q: Can you name an algorithm doing this?

A: YES, the VCG allocation rule = (w/virtual value functions f_i , i=1,...,m)

interpretation: **virtual** value derived by bidder *i* when given item *j* when his type is A

$$\vec{\pi} \in \operatorname{largmax}_{\vec{\pi}' \in F(D)} \{ \vec{\pi}' \cdot \vec{w} \}$$

 \overline{u}

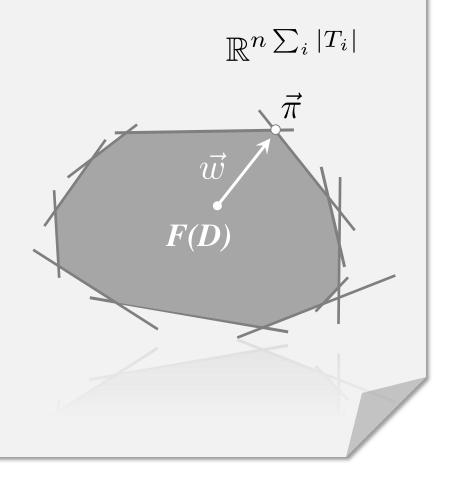
 $\mathbb{R}^{n\sum_{i}|T_{i}|}$

= : virtual-VCG(
$$\{f_i\}$$
)

$$f_{ij}(A) := \frac{w_{ij}(A)}{\Pr_{\mathcal{D}}[t_i = A]}$$

F(*D*) is a Convex Polytope whosecorners are implementable byvirtual VCG allocation rules.

How about implementing any point inside F(D)?

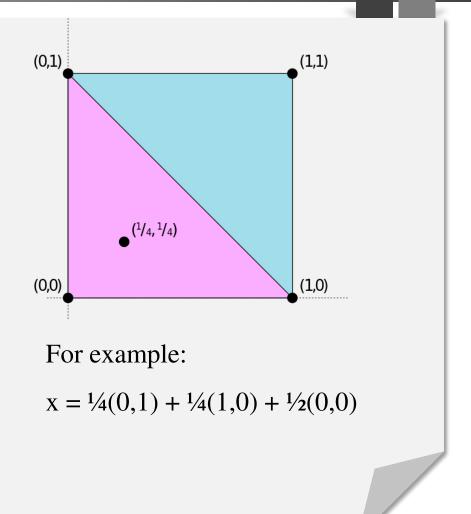


Carathéodory's theorem

If some point x is in the convex hull of P then

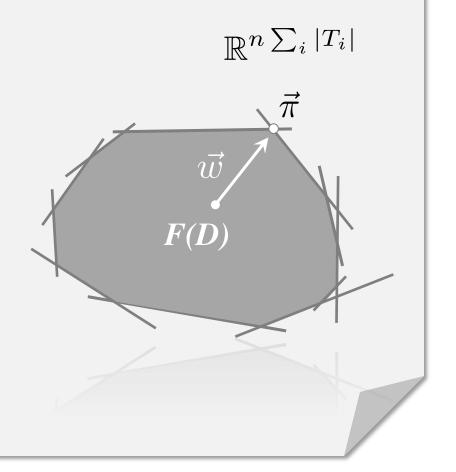
$$\begin{aligned} x &= \sum_{p_i \in P} q_i \cdot p_i \\ \text{s.t.} \ \sum_i q_i = 1 \text{ and } q_i \geq 0 \ \forall i \end{aligned}$$

Carathéodory's Theorem: If a point x of R^d lies in the convex hull of a set P, there is a subset P' of P consisting of d + 1 or fewer points such that x lies in the convex hull of P'.



Any point inside F(D) is a convex combination (distribution) over the corners.

The interim allocation rule of any
feasible mechanism can be
implemented as a distribution over
virtual VCG allocation rules.



Characterization of Optimal Multi-Item Auctions

Theorem [C.-Daskalaks-Weinberg]: Optimal multi-item auction has the following structure:

- 1. Bidders submit valuations (t_1, \dots, t_m) to auctioneer.
- 2. Auctioneer samples virtual transformations f_1, \ldots, f_m
- 3. Auctioneer computes virtual types $t'_i = f_i(t_i)$
- 4. Virtual welfare maximizing allocation is chosen.

Namely, each item is given to bidder with highest virtual value for that item (if positive)

5. Prices are charged to ensure truthfulness.

Characterization of Optimal Multi-Item Auctions

Theorem [C.-Daskalaks-Weinberg]: Optimal multi-item auction has the following structure:

- 1. Bidders submit valuations (t_1, \dots, t_m) to auctioneer.
- 2. Auctioneer samples virtual transformations f_1, \dots, f_m
- 3. Auctioneer computes virtual types $t'_i = f_i(t_i)$
- Virtual welfare maximizing allocation is chosen.
 Namely, each item is given to bidder with highest virtual value for that item (if positive)
- 5. Prices are charged to ensure truthfulness.

Exact same structure as Myerson!

- in Myerson's theorem: virtual function = deterministic
- here, *randomized* (and they must be)

Another difference: in Myerson's theorem: virtual function is given explicitly, in our result, the transformation is computed by an LP. Is there any structure of our transformation?

In single-dimensional settings, the optimal auction is DSIC. In multidimensional settings, this is unlikely to be true. What is the gap between the optimal BIC solution and the optimal DSIC solution?