

COMP/MATH 553 Algorithmic Game Theory Lecture 11: Revenue Maximization in Multi-Dimensional Settings

Oct 08, 2014

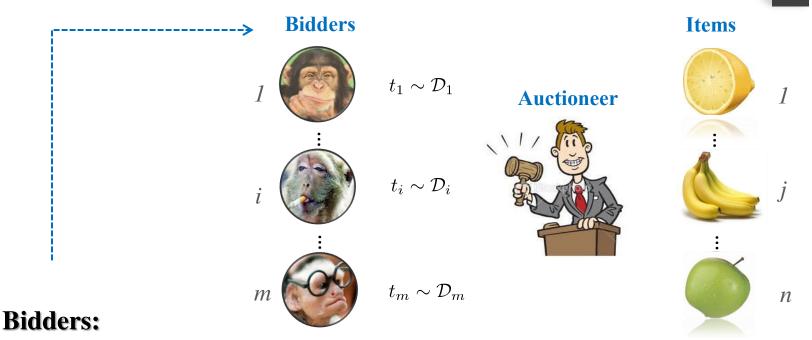
An overview of today's class

Basic LP Formulation for Multiple Bidders

Succinct LP: Reduced Form of an Auction

The Structure of the Optimal Auction

Multi-item Multi-bidder Auctions: Set-up



- have values on "items" and bundles of "items".
- *Valuation* aka *type* $t_i \in T_i$ encodes that information.
- Common Prior: Each t_i is sampled independently from \mathcal{D}_i .
 - Every bidder and the auctioneer knows \mathcal{D}
- Additive: Values for bundles of items = sum of values for each item.
 - From now on, $t_i = (v_{i1}, ..., v_{in})$.

☐ Variables:

- Allocation rule: for each item j in [n], each valuation v in T, there is a variable $x_j(v)$: the probability that the buyer receives item j when his report is v.
- Payment rule: for each valuation v in T, there is a variable p(v): the payment when the bid is v.
- □ Objective function: $\max \Sigma_v \Pr[t = v] p(v)$
- **Constraints**:
 - incentive compatibility: $\sum_{j} v_j x_j(v) p(v) \ge \sum_{j} v_j x_j(v') p(v')$ for all v and v' in T
 - individual rationality (non-negative utility): $\sum_{i} v_{i} x_{i}(v) p(v) \ge 0$ for all v in T
 - feasibility: $0 \le x_j(v) \le 1$ for all j in [n] and v in T

• Once the LP is solved, we immediately have a mechanism.

□ Let x* and p* be the optimal solution of our LP. Then when the bid is *v*, give the buyer item *j* with prob. $x_j^*(v)$ and charge him $p^*(v)$.

How long does it take to solve this LP?

- $\square \text{ # of variables} = (n+1)|T|; \text{ # of constraints} = |T|^2 + 2n|T|$
- □ Both are polynomial in **n** and **|T|** (input size), we can solve this LP in time polynomial in the input size!

Multiple Bidders setting

- \square *m* bidders and *n* items. All bidders are additive.
- \Box T_i is the set of possible valuations of bidder *i*. It's a subset of \mathbb{R}^n .
- □ Random variable t_i in \mathbb{R}^n represents i's valuation. We assume t_i is drawn independently from distribution D_i , whose support is T_i .
- \Box We know $\Pr[t_i = v_i]$ for every v_i in T_i and $\Sigma_v \Pr[t_i = v_i] = 1$.

☐ Some notations:

- $\quad T = T_1 \times T_2 \times \dots \times T_m$
- $D = D_1 \times D_2 \times \dots \times D_m$
- $t = (t_1, t_2, ..., t_m)$

Multiple Bidders: LP variables and objective

- □ Allocation Rule: for every bidder *i* in [*m*], every item *j* in [*n*], every valuation profile $v = (v_1, v_2, ..., v_m)$ in *T*, there is a variable $x_{ij}(v)$: the probability that the buyer *i* receives item *j* when the reported valuation profile is *v* (bidder *i* reports v_i).
- □ Payment Rule: for every bidder *i* in [*m*], every valuation profile *v* in *T*, there is a variable $p_i(v)$: the payment when the reported valuation profile is *v*.

D Objective Function: $\max \sum_{v \text{ in } T} \Pr_{t \sim D}[t = v] \sum_{i} p_{i}(v)$

Multiple Bidders: LP Constraints

- □ With multiple bidders, there are two kinds of Incentive Compatibility
 - > DSIC
 - $\sum_{j} v_{ij} x_{ij}(v) p_i(v) \ge \sum_{j} v_j x_{ij}(v'_i, v_{-i}) p_i(v'_i, v_{-i})$ for every i, every v_i and v'_i in T_i and v_{-i} in T_{-i}
 - > Bayesian Incentive Compatible (BIC)
 - If every one else is bidding her true valuation, bidding my own true valuation is the optimal strategy.
 - If everyone is bidding truthfully, we have a Nash equilibrium.
 - For every *i*, every v_i and v'_i in T_i

$$\sum_{v_{-i}\in T_{-i}} \Pr[t_{-i} = v_{-i}] \left(\sum_{j} v_{ij} x_{ij}(v) - p_i(v)\right) \ge \sum_{v_{-i}\in T_{-i}} \Pr[t_{-i} = v_{-i}] \left(\sum_{j} v_{ij} x_{ij}(v'_i, v_{-i}) - p_i(v'_i, v_{-i})\right)$$

Multiple Bidders: LP Constraints

- Similarly, we use the interim individual rationality (this doesn't make much difference)
 - If every one else is bidding her true valuation, bidding my own true valuation always give me non-negative utility.
 - For every i, every v_i in T_i

$$\sum_{v_{-i} \in T_{-i}} \Pr[t_{-i} = v_{-i}] \left(\sum_{j} v_{ij} x_{ij}(v) - p_i(v)\right) \ge 0$$

- □ Finally, the feasibility constraint
 - Since each item can be allocated to at most one bidder, we have the following
 - For all item *j* in [*n*] and valuation profile *v* in *T*: $\sum_{i} x_{ij}(v) \le l$

Multiple bidders: Implementation

□ Let x* and p* be the optimal solution of our LP. Then when the bid is v, give the bidder *i* item *j* with prob. $x_{ij}^*(v)$ and charge him $p_i^*(v)$.

□ How long does it take to solve this LP?

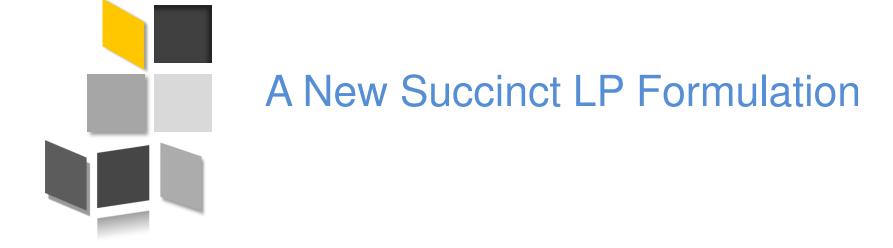
D What is the input size? Polynomial in **m**, **n** and $\Sigma_i |T_i|$.

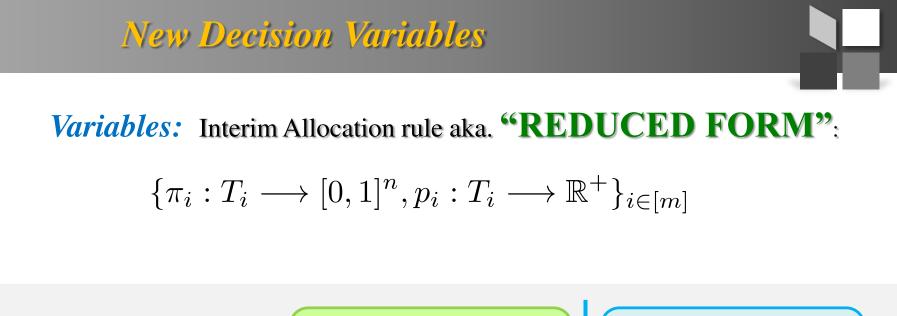
- \square # of variables = (n+1)|T| = (n+1) Π_i |T_i| (scales exponentially with the input)
- $\square \text{ # of constraints} = \sum_{i} |\mathbf{T}_{i}|^{2} + 2\mathbf{n} |\mathbf{T}_{i}| = \sum_{i} |\mathbf{T}_{i}|^{2} + 2\mathbf{n} |\mathbf{\Pi}_{i}| |\mathbf{T}_{i}| \text{ (again scales exponentially with the input)}$

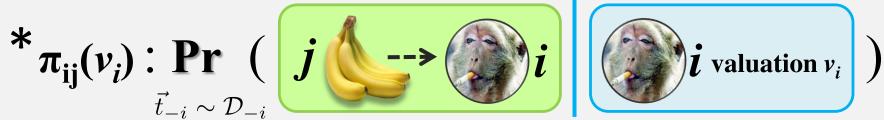
Takes *exponential time to even write down*, not mention solving it!!!

Any Solution for Multiple bidders?

- □ The LP we discussed will only be useful if you have a small number of bidders.
- □ Is there a more succinct LP for our problem: polynomial in the size of the input.
- □ This is not only meaningful computationally.
- □ A more succinct LP in fact provides **conceptually insights** about the structure of the optimal mechanism in multi-item settings.







* $\hat{p}_i(v_i)$: **E** [**price**_i $(\vec{t}_{-i} \sim \mathcal{D}_{-i})$

Example of a reduced form

Example: Suppose 1 item, 2 bidders

Consider auction that allocates item preferring A to C to B to D, and charges \$2 dollars to whoever gets the item.

☐ For comparison: $x_{11}(A,C) = 1$, $x_{11}(A,D) = 1$, $x_{11}(B,C) = 0$ and $x_{11}(B,D) = 1$

The reduced form:
$$\pi_{11}(A) = x_{11}(A,C) \times 0.5 + x_{11}(A,D) \times 0.5 = 1;$$

 $p_1(A) = 2 \times 0.5 + 2 \times 0.5 = 2$

Similarly, we can compute $\pi_{11}(B) = 1/2$, $\pi_{21}(C) = 1/2$, $\pi_{21}(D) = 0$; $p_1(B) = 1$, $p_2(C) = 1$ and $p_2(D) = 0$.

- Variables:
 - π_{ij}(v_i): probability that item *j* is allocated to bidder *i* if her reported valuation (*bid*) is v_i in expectation over every other bidders' valuations (bids);
 - $p_i(v_i)$: price bidder *i* pays if her reported valuation (bid) is v_i in expectation over every other bidder's valuations (bids)
- Constraints:

• BIC:
$$\sum_{j} v_{ij} \cdot \pi_{ij}(v_i) - p_i(v_i) \ge \sum_{j} v_{ij} \cdot \pi_{ij}(v'_i) - p_i(v'_i)$$
 for all v_i and v'_i in T_i

- IR: $\sum_{j} v_{ij} \cdot \pi_{ij}(v_i) p_i(v_i) \ge 0$ for all v_i in T_i
- Feasibility: exists an auction with this reduced form. Unclear?
- Objective:
 - Expected revenue: $\sum_{i} \sum_{v_i \in T_i} \Pr[t_i = v_i] \cdot p_i(v_i)$

Feasibility of Reduced Forms (example)

Easy setting: single item, two bidders with types uniformly distributed in $T_1 = \{A, B, C\}$ and $T_2 = \{D, E, F\}$ respectively

Question: Is the following interim allocation rule feasible? bidder 1 $\xrightarrow{\gamma_3} A \pi_{11}(A) = 1$ $\xrightarrow{\gamma_3} B \pi_{11}(B) = 0$. $\xrightarrow{\gamma_3} B \pi_{11}(B) = 0$. $\xrightarrow{\gamma_3} C \pi_{11}(C) = 0$ $(A, D/E/F) \rightarrow A \text{ wins.} \quad \pi_{11}(A) = 1 \quad \checkmark$ $(B/C, D) \rightarrow D \text{ wins.} \quad \pi_{21}(D) = 2/3 \quad \checkmark$ (B, F) \rightarrow B wins. $\pi_{11}(B) = 0.5 \ge 1/3$ (C, E) \rightarrow E wins. $\pi_{21}(E) = 5/9 \ge 1/3$ $(B, E) \rightarrow B$ needs to win w.p. $\frac{1}{2}$, E needs to win w.p. $\frac{2}{3}$

Feasibility of Reduced From (Cont'd)

- A necessary condition for *feasible single-item reduced form*:
 ∀S₁ ⊆ T₁,..., S_m ⊆ T_m,
 Pr[∃ i whose type is in S_i and gets the item] ≤ Pr[∃ i whose type is in S_i]
- [Border '91, Border '07, Che-Kim-Mierendorff '11]:

(*) is **also a sufficient condition** for feasibility.

BUT, too many subsets: need to check $2^{\sum_i |T_i|}$ conditions !!!

[C.-Daskalakis-Weinberg ²

We can check feasibility almost linear in $\Sigma_i |T_i|$, *i.e. the total number of bidd type profiles*).

Feasibility for Multi-item Reduced Form



Remark:

- With this we can solve our succinct LP!
- The proof uses the ellipsoid method, separation Ξ optimization and sampling etc.
- Have many extensions, e.g. accommodates any combinatorial allocation constraints (unit-demand, single-minded...)

Implementation of a Feasible Reduced Form

□ After solving the succinct LP, we find the optimal reduced form π^* and p^* .

- Can you turn π* and p* into an auction whose reduced form is exactly π* and p*?
- □ This is crucial, otherwise being able to solve the LP is meaningless.
- □ Will show you a way to implement any feasible reduced form, and it reveals important structure of the revenue-optimal auction!

Implementation of a Feasible Reduced Form

Set of *Feasible* Reduced Forms

- Reduced form is collection $\{\pi_i : T_i \longrightarrow [0,1]^n\};$
- Can view it as a vector $\vec{\pi} \in \mathbb{R}^{n \sum_{i} |T_i|}$;
- Let's call set of feasible reduced forms $F(D) \in \mathbb{R}^{n \sum_{i} |T_i|}$;
- Claim 1: F(D) is a convex polytope.
- **Proof:** *Easy!*
 - A feasible reduced form $\vec{\pi}$ is implemented by a feasible allocation rule *M*.
 - *M* is a distribution over deterministic feasible allocation rules, of which there is a finite number. So: $M = \sum_{\ell=1}^{k} p_{\ell} \cdot M_{\ell}$, where M_{ℓ} is deterministic.

• Easy to see:
$$\vec{\pi} = \sum_{\ell=1}^{k} p_{\ell} \cdot \vec{\pi}(M_{\ell})$$

• So, $F(D) = \begin{pmatrix} \text{convex hull of reduced forms of} \\ \text{feasible deterministic mechanisms} \end{pmatrix}$

