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Abstract. We describe the category-theoretic semantics for a simply
typed variant of Cocon, a contextual modal type theory where the box
modality mediates between the weak function space that is used to repre-
sent higher-order abstract syntax (HOAS) trees and the strong function
space that describes (recursive) computations about them. What makes
Cocon different from standard type theories is the presence of first-class
context and contextual objects to describe syntax trees that are closed
with respect to a given context of assumptions. Following M. Hofmann’s
work, we use a presheaf model to characterize HOAS trees. Surprisingly,
this model already provides the necessary structure to also model Co-
con. In particular, we can capture the contextual objects of Cocon using
the global sections comonad. This gives a simple semantic characterisa-
tion of the invariants of contextual types (such as being invariant under
substitution) and identifies Cocon as a type-theoretic syntax of these se-
mantic models. We express our category-theoretic constructions by using
a modal internal type theory that is implemented in Agda-Flat.

1 Introduction

A fundamental question when defining, implementing, and working with lan-
guages and logics is: How do we represent and analyse syntactic structures?
Higher-order abstract syntax [16] (or lambda-tree syntax [14]) provides a de-
ceptively simple answer to this question. The basic idea to represent syntactic
structures is to map uniformly binding structures in our object language (OL)
to the function space in a meta-language thereby inheriting α-renaming and
capture-avoiding substitution. In the logical framework LF [8], for example, we
can define a small functional programming language consisting of functions,
function application, and let-expressions using a type tm as follows:

lam : (tm → tm) → tm. letv: tm → (tm → tm) → tm.
app : tm → tm → tm.

The object-language term (lam x. lam y. let w = x y in w y) is then encoded
as lam λx.lam λy.letv (app x y) λw.app w y using the LF abstractions to model
binding. Object-level substitution is modelled through LF application; for in-
stance, the fact that ((lam x.M) N) reduces to [N/x]M in our object language
is expressed as (app (lam M) N) reducing to (M N).

This approach is elegant and can offer substantial benefits: we can treat two
objects equivalent modulo renaming and two objects are substitution invariant.
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However, we not only want to construct HOAS trees, but also to analyse them
and to select sub-trees. This is challenging, as sub-trees are context sensitive.
For example, letv (app x y) λw.app w y only makes sense in a context x:tm,

y:tm. Moreover, one cannot simply extend LF to allow syntax analysis. If one
simply added a recursion combinator to LF, then it could be used to define many
functions M: tm → tm for which lam M would not represent a syntax term [10].

Contextual types [15,17] offer a type-theoretic solution to these problems by
reifying the typing judgement, i.e. that letv (app x y) λw.app w y has type tm in
the context x:tm,y:tm, as a contextual type dx:tm, y:tm ` tme. The contextual type
dx:tm, y:tm ` tme describes a set of terms of type tm that may contain variables
x and y. In particular, the contextual object dx, y ` letv (app x y) λw.app w ye
has the given contextual type. By abstracting over contexts and treating contexts
as first-class, we can now recursively analyse HOAS trees [17,22,18]. Recently,
[20] further generalized these ideas and presented a contextual modal type the-
ory, Cocon, where we can mix HOAS trees and computations, i.e. we can use
(recursive) computations to analyse and traverse (contextual) HOAS trees and
we can embed computations within HOAS trees. This line of work provides a
syntactic perspective to the question of how to represent and analyse syntac-
tic structures with binders, as it focuses on decidability of type checking and
normalization. However, its semantics remains not well-understood. What is the
semantic meaning of a contextual type? Can we semantically justify the given
induction principles? What is the semantic of a first-class context?

While a number of closely related categorical models of abstract syntax with
bindings [10,6,7] were proposed around 2000, the relationship of these models
to concrete type-theoretic languages for computing with HOAS structures was
teneous. In this paper, we give a category-theoretic semantics for Cocon (for
simply-typed HOAS). This provides semantic perspective of contextual types
and first-class contexts. Maybe surprisingly, the presheaf model introduced by
Hofmann [10] already provides the necessary structure to also model contextual
modal type theory. In fact, besides the standard structure of this model, we
only need two additional concepts: a [-modality and a cartesian closed Yoneda
universe. For simplicity and lack of space, we focus on the special case of Cocon
where the HOAS trees are simply-typed. Concentrating on the simply-typed set-
ting allows us to introduce the main idea without the additional complexity that
choosing a dependently typed language brings with it. We outline the dependent
case in Sec. 6. Our work not only provides a semantic foundation to Cocon, but
at the same time connects Cocon to other work on internal languages for presheaf
categories with a [-modality, such as Shulman’s spatial type theory [24] or Licata
et al.’s crisp type theory [13].

2 Presheaves for Higher-Order Abstract Syntax

Our work begins with the presheaf models for HOAS of [10,6]. The key idea
of those approaches is to integrate substitution-invariance in the computational
universe in a controlled way. For the representation of abstract syntax, one wants
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to allow only substitution-invariant constructions. For example, lam M represents
an object-level abstraction if and only if M is a function that uses its argument in
a substitution-invariant way. For computation with abstract syntax, on the other
hand, one wants to allow non-substitution-invariant constructions too. Presheaf
categories allow one to choose the desired amount of substitution-invariance.

Let D be a small category. The presheaf category D̂ is defined to be the
category SetD

op

. Its objects are functors F : Dop → Set, which are also called
presheaves. Such a functor F is given by a set F (Ψ) for each object Ψ of D
together with a function F (σ) : F (Φ) → F (Ψ) for any σ : Ψ → Φ in D, subject
to the functor laws. The intuition is that F defines sets of elements in various
D-contexts, together with a D-substitution action. A morphism f : F → G is
a natural transformation, which is a family of functions fΨ : F (Ψ) → G(Ψ) for
any Ψ . This family of functions must be natural, i.e. commute with substitution
fΨ ◦ F (σ) = F (σ) ◦ fΦ.

For the purposes of modelling higher-order abstract syntax, D will typically
be the term model of some domain-level lambda-calculus. By domain-level, we
mean the calculus that serves as the meta-level for object-language encodings.
It is the calculus that contains constants like lam and app from the Introduction.
We call it domain-level to avoid possible confusion between different meta-levels
later. For simplicity, let us for now use a simply-typed lambda-calculus with
functions and products as the domain language. It is sufficient to encode the
example from the Introduction and allows us to explain the main idea underlying
our approach.

The term model of the simply-typed domain-level lambda-calculus forms a
cartesian closed category D. The objects of D are contexts x1:A1, . . . , xn:An
of simple types. We use Φ and Ψ to range over such contexts. A morphism
from x1:A1, . . . , xn:An to x1:B1, . . . , xm:Bm is a tuple (t1, . . . , tm) of terms
x1:A1, . . . , xn:An ` ti : Bi for i = 1, . . . ,m. A morphism of type Ψ → Φ in D
thus amounts to a (domain-level) substitution that provides a (domain-level)
term in context Ψ for each of the variables in Φ. Terms are identified up to
αβη-equality. The terminal object is the empty context, which we denote by 1,
and the product Φ × Ψ is defined by context concatenation. It is not hard to
see that any object x1:A1, . . . , xn:An is isomorphic to an object that is given
by a singleton context, namely x1: (A1 × · · · ×An). This is to say that contexts
can be identified with product types. In view of this isomorphism, we shall allow
ourselves to consider the objects of D also as types and vice versa. The category D
is cartesian closed, the exponential of Φ and Ψ being given by the function type
Φ→ Ψ (where the objects are considered as types).

The presheaf category D̂ is a computational universe that both embeds the
term model D and that can represent computations about it. Note that we
cannot just enrich D with terms for computations if we want to use HOAS. In
a simply-typed lambda-calculus with just the constant terms app: tm → tm →
tm and lam: (tm → tm) → tm, each term of type tm represents an object-level

term. This would not be the true anymore, if we were to allow computations in
the domain language, since one could define M to be something like (λx. if x
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represents an object-level application then M1 else M2) for distinct M1 and M2.
In this case, lam M

would not represent an object-level term anymore. If we want to preserve a
bijection between the object-level terms and their representations in the domain-
language, we cannot allow case-distinction over whether a term represents an
object-level an application.

The category D̂ unites terms with computations by allowing the user to
enforce various degrees of substitution-invariance. By choosing objects with dif-
ferent substitution actions, one can control the required amount of substitution-
invariance.

In one extreme, a normal set S can be represented by the constant presheaf
∆S with ∆S(Ψ) = S and ∆S(σ) = id for all Ψ and σ. The substitution action
is trivial. As a consequence, a morphism ∆S → ∆T amounts to a function
from set S to set T , since the trivial choice of the substitution action makes the
naturality condition vacuous.

The Yoneda embedding represents the other extreme. For any object Φ of D,
the presheaf y(Ψ) : Dop → Set is defined by y(Φ)(Ψ) = D(Ψ, Φ), which is the
set of morphisms from Ψ to Φ in D. The functor action is pre-composition. The
presheaf y(Φ) should be understood as the type of all domain-level substitutions
with codomain Φ. An important example is Tm := y(tm). In this case, Tm(Ψ) is the
set of all morphisms of type Ψ → tm in D. By the definition of D, these correspond
to domain-level terms of type tm in context Ψ . In this way, the presheaf Tm
represents the domain-level terms of type tm.

The Yoneda embedding does in fact embed D into D̂ fully and faithfully. The
Yoneda embedding becomes a functor y : D → D̂ if one defines the morphism
action to be post-composition. This means that y maps a morphism σ : Ψ → Φ
in D to the natural transformation y(σ) : y(Ψ) → y(Φ) that is defined by post-

composing with σ. This definition makes y into a functor y : D → D̂ that is
moreover full and faithful: its action on morphisms is a bijection from D(Ψ, Φ)

to D̂(y(Ψ), y(Φ)) for any Ψ and Φ. This is because a natural transformation
f : y(Ψ) → y(Φ) is, by naturality, uniquely determined by fΨ (id), where id ∈
D(Ψ, Ψ) = y(Ψ)(Ψ), and fΨ (id) is an element of y(Φ)(Ψ) = D(Ψ, Φ).

Since D embeds into D̂ fully and faithfully, the term model of the domain
language is available in D̂. Consider for example Tm = y(tm). Since y is full and

faithful, the morphisms from Tm to Tm in D̂ are in one-to-one correspondence
with the morphisms from tm to tm in D. These, in turn, are defined to be substi-
tutions and correspond to simply-typed (domain-level) lambda terms with one
free variable. This shows that substitution invariance cuts down the morphisms
from Tm to Tm in D̂ just as much as one would like for HOAS encodings.

But D̂ contains not just a term model of the domain language. It can also
represent computations about the domain-level syntax and computations that
are not substitution-invariant. For example, arbitrary functions on terms can
be represented as morphisms from the constant presheaf ∆(Tm(1)) to Tm. Recall
that 1 is the empty context, so that Tm(1) is the set D(1, tm), by definition, which
is isomorphic to the set of closed domain-level terms of type tm. The morphisms
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from ∆(Tm(1)) to Tm in D̂ correspond to arbitrary functions from closed terms
to closed terms, without any restriction of substitution invariance.

The restriction to the constant presheaf of closed terms can be generalised to
arbitrary presheaves. The closed sections functor [ : D̂→ D̂ is defined by letting
[F be the constant presheaf ∆(F (1)), i.e. [F (Ψ) = F (1) and [F (σ) = id. Thus,
[ restricts any presheaf to the set of its closed elements. The functor [ defines a
comonad where the counit εF : [F → F and the comultiplication νF : [F → [[F
are the obvious inclusion and the identity respectively.

3 Internal Language

To explain how D̂ models higher-order abstract syntax and contextual types,
we need to expose more of its structure. Most of the structure that we need is
standard. Defining it directly in terms of functors and natural transformations
is somewhat laborious and the technical details may obscure the basic idea of
our approach.

We therefore use the internal type theory of D̂ as a meta-language for work-
ing with its structure. The structure of D̂ furnishes a model of a dependent
type theory that supports dependent products, dependent sums and extensional
identity types, among others, in a standard way [9]. We use Agda notation for
the types and terms of this internal type theory. We write (x:S) → T for a
dependent function type and write hx:S.m and m n for the associated lambda-
abstractions and applications. As usual, we will sometimes also write S → T for
(x:S)→ T if x does not appear in T . However, to make it easier to distinguish
the function spaces at various levels, we will write (x:S) → T by default even
when x does not appear in T . We use let x = m in n as an abbreviation for
(hx:T.n) m, as usual. For two terms m:T and n:T , we write m =T n or just
m = n for the associated identity type. Our notation is similar to Agda’s, since
the internal type theory can be seen as a fragment of Agda’s type theory. Agda
has been useful as a tool for type-checking our constructions in the internal type
theory3.

In the spirit of Martin-Löf type theory, we will define basic types and terms
successively as they are needed. In the Agda development this corresponds to
postulating constants that are justified by the interpretation in D̂. In the follow-
ing sections, we will expose the structure of D̂ step by step until we have enough
to interpret contextual types.

While much of the structure of D̂ can be captured by adding rules and con-
stants to standard Martin-Löf type theory, the comonad [ is not easily added in
this way. To account for the comonad, we follow the approach of Shulman [24],
Licata et al. [13] and others to refine the internal type theory into a modal type
theory in which [ appears as a necessity modality. Agda has recently gained
support for such a [-modality [26].

We summarise here the typing rules for the [-modality which we will rely on.
To control the modality, one uses two kinds of variables. In addition to standard

3 Our Agda sources are available from: http://github.com/uelis/contextual

http://github.com/uelis/contextual
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variables x:T , one has a second kind of so-called crisp variables x::T . Typing
judgements have the form ∆ | Θ ` m:T , where ∆ collects the crisp variables
and Θ collects the ordinary variables. In essence, a crisp variable x::T represents
an assumption of the form x: [T . The syntactic distinction is useful, since it leads
to a type theory that is well-behaved with respect to substitution, see [4,24].

The typing rules are closely related to those in modal type systems [4,15],
where ∆ is the typing context for modal (global) assumptions and Θ for (local)
assumptions, and type systems for linear logic [2], where ∆ is the typing context
for non-linear assumptions and Θ for linear assumptions.

∆,u::T,∆′ | Θ ` u:T ∆ | Θ, x:T,Θ′ ` x:T

∆ | · ` m : T

∆ | Θ ` box m : [T

∆ | Θ ` m : [T ∆, x::T | Θ ` n : S

∆ | Θ ` let box x = m in n : S

Given any term m : T which only depends on modal variable context ∆, we can
form the term box m : [T . We have a let-term let box x = m in n that takes
a term m : [T and binds it to a variable x::T . The rules maintain the invariant
that the free variables in a type [T or a term box m are all crisp variables from
the crisp context ∆.

The other typing rules do not modify the crisp context. For examples, the
rules for dependent products are:

∆ | Θ, x:T ` m:S

∆ | Θ ` hx:T.m : (x:T )→ S

∆ | Θ ` m: (y:T )→ S ∆ | Θ ` n:T

∆ | Θ ` m n: [n/y]S

When the context of crisp variables ∆ is empty, we shall write just Θ ` m:T
for ∆ | Θ ` m:T .

4 From Presheaves to Contextual Types

Armed with the internal type theory, we can now explore the structure of D̂
further.

4.1 Yoneda Universe

For our purposes, the main feature of D̂ is that it embeds D fully and faithfully
via the Yoneda embedding. In type theoretic terms, one may think of D as a
universe in D̂.

The set of objects of D can be represented in the internal type theory of D̂
by a type Obj. We have seen above that any set can be represented as a presheaf
with trivial substitution action, and Obj is one such example. Particular objects
of D then appear as terms of type Obj. The cartesian closed structure of D gives
us terms unit, times, arrow for the terminal object 1, finite products × and the
exponential (function type). We also have a term for the domain-level type tm.

` Obj type ` tm : Obj ` times : (a: Obj)→ (b: Obj)→ Obj

` unit : Obj ` arrow : (a: Obj)→ (b: Obj)→ Obj
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Subsequently, we sometimes talk about objects of D when we intend to describe
terms of type Obj (and vice versa).

The morphisms of D could similarly be encoded as a constant presheaf with
many term constants, but it is easier to view Obj as a type-theoretic universe:

x: Obj ` Elx type

In essence, El is syntax for the Yoneda embedding. The interpretation in D̂ is
such that, for any object A of D, the type ElA is interpreted by the presheaf y(A).
As a consequence, one can think of ElA as the type of all morphisms of type Ψ →
A in D for arbitrary Ψ . Recall from above that a morphism of type Ψ → A in D
amounts to a domain-level term of type A that may refer to variables in Ψ . In
this sense, one should think of ElA as a type of domain-level terms of type A,
both closed and open ones.

In Sec. 2, we have recalled that the Yoneda embedding is full and faithful.
For the universe El, this means that the type (x: ElA) → ElB represents the
morphisms of type A → B in D. Any closed term of type (x : ElA) → ElB
corresponds to such a morphism and vice versa. This is because the naturality
requirements in D̂ enforce substitution-invariance, as outlined in Sec. 2. The
type (x : ElA) → ElB thus does not represent arbitrary functions from terms
of type A to terms of type B, but only substitution-invariant ones. If a function
of this type maps a domain-level variable x:A (encoded as an element of ElA)
to some term M :B (encoded as an element of ElB), then it must map any other
N :A to [N/x]M .

We note that the type dependency in El is easy to work with. A term of
type (a: Obj) → (b: Obj) → (x: El a) → El b corresponds to a family of terms
(x: ElA)→ ElB indexed by objects A and B in D. This is because Obj is just a

set, so that the naturality constraints of D̂ are vacuous for functions out of Obj.
To summarise, in the internal type theory, the Yoneda embedding appears

as a universe El that gives us access to D. The following lemmas state that the
embedding preserves terminal object, binary products and the exponential.

Lemma 1. The internal type theory of D̂ has a term ` terminal : El unit, such
that x = terminal holds for any x : El unit.

Lemma 2. The internal type theory of D̂ justifies the terms below, such that
fst (pair x y) = x and snd (pair x y) = y and z = pair (fst z) (snd z) holds
for all x, y and z.

c: Obj, d: Obj ` fst : (z : El (times c d))→ El c

c: Obj, d: Obj ` snd : (z : El (times c d))→ El d

c: Obj, d: Obj ` pair : (x : El c)→ (y : El d)→ El (times c d)

Lemma 3. The internal type theory of D̂ has terms

c: Obj, d: Obj ` arrow-e : (x: El (arrow c d))→ (y: El c)→ El d

c: Obj, d: Obj ` arrow-i : (y: (El c→ El d))→ El (arrow c d)

satisfying arrow-i (arrow-e f) = f and arrow-e (arrow-i g) = g for all f, g.
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4.2 Higher-Order Abstract Syntax

The last lemma in the previous section states that ElA → ElB is isomorphic
to El (arrow A B). This is particularly useful to lift HOAS-encodings from D
to D̂. For instance, the domain-level term constant lam: (tm → tm) → tm gives
rise to an element of El (arrow (arrow tm tm) tm). But this type is isomorphic to
(El tm→ El tm)→ El tm, by the lemma.

This means that the higher-order abstract syntax constants lift to D̂:

app : (m: El tm)→ (n: El tm)→ El tm lam : (m: (El tm→ El tm))→ El tm

Once one recognises ElA as y(A), the adequacy of this higher-order abstract

syntax encoding lifts from D to D̂ as in [10]. For example, an argument M to
lam has type El tm → El tm, which is isomorphic to El (arrow tm tm). But this
type represents (open) domain-level terms t : tm → tm. The term lam M : El tm
then represents the domain-level term lam t : tm, so it just lifts the domain-level.

4.3 Closed Objects

One should think of [T as the type of ‘closed’ elements of T . In particular,
[(ElA) represents morphisms of type 1→ A in D, recall the definition of [ from
Sec. 2 and that ElA corresponds to yA. In the term model D, the morphisms
1→ A correspond to closed domain-language terms of type A. Thus, while ElA
represents both open and closed domain-level terms, [(ElA) represents only the
closed ones.

This applies also to the type ElA→ ElB. We have seen above that ElA→
ElB is isomorphic to El (arrow A B) and may therefore be thought of as contain-
ing the terms of type B with a distinguished variable of type A. But, these terms
may contain other free domain language variables. The type [(ElA→ ElB), on
the other hand, contains only terms of type B that may contain (at most) one
variable of type A.

Restricting to closed object with the modality is useful because it disables
substitution-invariance. For example, the internal type theory for D̂ justifies a
function is-lam : (x:[(El tm)) → bool that returns true if and only if the argu-
ment represents a domain language lambda abstraction. Such a function cannot
be defined with type El tm → bool, since it would not be invariant under sub-
stitution. Its argument ranges over terms that may be open; which particularly
includes domain-level variables. The function would have to return false for
them, since a domain-level variable is not a lambda-abstraction. But after sub-
stituting a lambda-abstraction for the variable, it would have to return true, so
it could not be substitution-invariant.

We note that the type Obj consists only of closed elements, so that we can
consider Obj and [Obj as definitionally equal types.

4.4 Contextual Objects

Using function types and the modality, it is now possible to work with contex-
tual objects that represent domain level terms in a certain context, much like
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in [17,18]. A contextual type is a boxed function type of the form [(ElΨ → ElA).
It represents domain-level terms of type A with variables from Ψ . Here, we con-
sider the domain-level context Ψ as a term that encodes it. The interpretation
will make this precise.

For example, domain-level terms with up to two free variables now appear
as terms of type [(El ((times (times unit tm) tm) → El tm), as the following
example illustrates.

box (hu: El ((times (times unit tm) tm). let x1 = snd (fst u) in
let x2 = snd u in

app (lam (hx: tm. app x1 x)) x2 )

The context variables x1 and x2 are bound at the meta level.
This representation integrates substitution as usual. For example, given crisp

variables m::El (times c tm) → tm and n::El c → tm for contextual terms, the
term box (hu: El c.m (pair u (n u))) represents substitution of n for the last
variable in the context of m.

For working with contextual objects, it is convenient to lift the constants app
and lam to contextual types.

c: Obj ` app′ : [(El c→ El tm)→ [(El c→ El tm)→ [(El c→ tm)

c:Obj ` lam′ : [(El (times c tm)→ El tm)→ [(El c→ tm)

These terms are defined by:

app′ := hm,n. let box m′ = m kwin let box n′ = n in
box (hu: El c. app (m′ u) (n′ u))

lam′ := hm. let box m′ = m in box (hu: El c. lam (hx: El tm. m′ (pair u x)))

A contextual type for domain-level variables (as opposed to arbitrary terms)
can be defined by restricting the function space in [(ElΨ → ElA) to consist
only of projections. Projections are functions of the form snd ◦ fstk, where
we write fstk for the k-fold iteration fst ◦ · · · ◦ fst. Let us write S →v T
for the subtype of S → T consisting only of projections. The contextual type
[(ElΨ →v ElA) is then a subtype of [(ElΨ → ElA).

With these definitions, we can express a primitive recursion scheme for con-
textual types. We write it in its general form where the result type A can possibly
depend on x. This is only relevant for the dependently typed case; in the simply
typed case, the only dependency is on c.

Lemma 4. Let c: Obj, x: [(El c→ El tm) ` A c x type and define:

Xvar := (c: Obj)→ (x: [(El c→v El tm))→ A c x

Xapp := (c: Obj)→ (x, y: [(El c→ El tm))→ A c x→ A c y → A c (app′ x y)

Xlam := (c: Obj)→ (x: [(El (times c tm)→ El tm))→ A (times c tm) x→ A c (lam′ x)
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Then, D̂ justifies a term

` rec : Xvar → Xapp → Xlam → (c: Obj)→ (x: [(El c→ El tm))→ A c x

such that the following equations are valid.

rec tvar tapp tlam Φ x = tvar Φ x if x: [(ElΦ→v El tm)
rec tvar tapp tlam Φ (app′ s t) = tapp Φ s t
rec tvar tapp tlam Φ (lam′ s) = tlam Φ s

Proof (outline). To outline the proof idea, note first that a function of type

(c: Obj) → (x: [(El c → El tm)) → A c x in D̂, corresponds to an inhabitant of
A Φ t for each concrete object Φ of D and each inhabitant t : [(ElΦ→ El tm). This
is because naturality constraints for boxed types are vacuous (and Obj = [Obj).
Next, note that inhabitants of [(ElΦ→ El tm) correspond to domain-level terms
of type tm in context Φ up to αβη-equality. We can perform a case-distinction on
whether it is a variable, abstraction or application and depending on the result
use tvar, tapp or tlam to define the required inhabitant of A Φ t.

As a simple example for rec, we can define the function is-lam discussed
above by rec (hc, x. false) (hc, x, y, rx, ry. false) (hc, x, rx. true).

5 Simple Contextual Modal Type Theory

We have outlined informally how the internal dependent type theory of D̂ can
model contextual types. In this section, we make this precise by giving the in-
terpretation of Cocon [20], a contextual modal type theory where we can work

with contextual HOAS trees and computations about them, into D̂. We will
focus here on a simply-typed version of Cocon where we use a simply-typed
domain-language and also only allow computations about HOAS trees, but do
not consider, for example, universes. Concentrating on a stripped down, simply-
typed version of Cocon will allow us to focus on the essential aspects, namely
how to interpret domain-level contexts and domain-level contextual objects and
types semantically. The generalisation to a dependently typed domain-level such
as LF in Sec. 6 will be conceptually straightforward, although more technical.
Handling also universes is an orthogonal issue (see also [13]).

We first define our simply-typed domain-level with the type tm the term
constants lam and app (see Fig. 1). Following Cocon, we allow computations to
be embedded into domain-level terms via unboxing. The intuition is that if a
program t promises to compute a value of type dx:tm, y:tm ` tme, then we can
embed t directly into a domain-level object writing lam λx.lam λy.app btc x,
unboxing t. Domain-level objects (resp. types) can be packaged together with
their domain-level context to form a contextual object (resp. type). Domain-level
contexts are formed as usual, but may contain context variables to describe a
yet unknown prefix. Last, we include domain-level substitutions that allow us to
move between domain-level contexts. The compound substitution σ,M extends
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Domain-level types A,B ::= tm | A→ B
Domain-level terms M,N ::= λx.M |M N | x | lam | app | btcσ
Domain-level contexts Ψ,Φ ::= · | ψ | Ψ, x:A

Domain-level context (erased) Ψ̂ , Φ̂ ::= · | ψ | Ψ̂ , x
Domain-level substitutions σ ::= · | wkΨ̂ | σ,M

Contextual types T ::= Ψ ` A | Ψ v̀ A

Contextual objects C ::= Ψ̂ `M

Domain of discourse τ̆ ::= τ | ctx
Types and Terms τ, I ::= dT e | (y : τ̆1)⇒ τ2

t, s ::= y | dCe | recI B Ψ t | fn y ⇒ t | t1 t2
Branches B ::= Γ 7→ t
Contexts Γ ::= · | Γ, y : τ̆

Fig. 1. Syntax of Cocon with a fixed simply-typed domain tm

the substitution σ with domain Ψ̂ to a substitution with domain Ψ̂ , x, where
M replaces x. Following [15,20], we do not store the domain (like Ψ̂) in the
substitution, it can always be recovered before applying the substitution. We
also include weakening substitution, written as wkΨ̂ , to describe the weakening

of the domain Ψ to Ψ,
−−→
x:A. Weakening substitutions are necessary, as they allow

us to express the weakening of a context variable ψ.

We summarize the typing rules for domain-level terms and types in Fig. 2. We
also include typing rules for domain-level contexts. Note that since we restrict
ourselves to a simply-typed domain-level, we simply check that A is a well-formed
type. We defer the reduction and expansion rules to the appendix and only
remark here that equality for domain-level terms and substitution is modulo βη.
In particular, bdΦ̂ ` Necσ reduces to [σ]N .

In our grammar, we distinguish between the contextual type Ψ ` A and the
more restricted contextual type Φ v̀ A which characterizes only variables of type
A from the domain-level context Φ. We give here two sample typing rules for
Φ v̀ A which are the ones used most in practice to illustrate the main idea. We
embed contextual objects into computations via the modality. Computation-level
types include boxed contextual types, dΦ ` Ae, and function types, written as (y :
τ̆1)⇒ τ2. We overload the function space and allow as domain of discourse both
computation-level types and the schema ctx of domain-level context, although
only in the latter case y can occur in τ2. We use fn y ⇒ t to introduce functions
of both kinds. We also overload function application t s to eliminate function
types (y : τ1) ⇒ τ2 and (y : ctx) ⇒ τ2, although in the latter case s stands
for a domain-level context. We separate domain-level contexts from contextual
objects, as we do not allow functions that return a domain-level context.

The recursor is written as recI B Ψ t. Here, t describes a term of type
dΨ ` tme that we recurse over and B describes the different branches that we
can take depending on the value computed by t. As is common when we have
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Γ ;Ψ `M : A Term M has type A in domain-level context Ψ and context Γ

Γ ` Ψ : ctx x:A ∈ Ψ
Γ ;Ψ ` x : A

Γ ` Ψ : ctx
Γ ;Ψ ` lam : (tm→ tm)→ tm

Γ ` Ψ : ctx
Γ ;Ψ ` app : tm→ tm→ tm

Γ ;Ψ `M : A→ B Γ ;Ψ ` N : A

Γ ;Ψ `M N : B

Γ ;Ψ, x:A `M : B

Γ ;Ψ ` λx.M : A→ B

Γ ` t : dΦ ` Ae Γ ;Ψ ` σ : Φ

Γ ;Ψ ` btcσ : A

Γ ;Φ ` σ : Ψ Substitution σ provides a mapping from the (domain) context Ψ to Φ

Γ ` Ψ,
−−→
x:A : ctx

Γ ;Ψ,
−−→
x:A ` wkΨ̂ : Ψ

Γ ` Φ : ctx
Γ ;Φ ` · : ·

Γ ;Φ ` σ : Ψ Γ ;Φ `M : A

Γ ;Φ ` σ,M : Ψ, x:A

Γ ` Ψ : ctx Domain-level context Ψ is a well-formed

Γ ` · : ctx
Γ (y) = ctx

Γ ` y : ctx
Γ ` Ψ : ctx

Γ ` Ψ, x:A : ctx

Fig. 2. Typing Rules for Domain-level Terms, Substitutions, Contexts

dependencies, we annotate the recursor with the typing invariant I. Here, we
consider only the recursor over domain-level terms of type tm. Hence, we annotate
it with I = (ψ : ctx)⇒ (y : dψ ` tme)⇒ τ . To check that the recursor recI B Ψ t
has type [Ψ/ψ]τ , we check that each of the three branches has the specified type
I. In the base case, we may assume in addition to ψ : ctx that we have a variable
p : dψ v̀ tme and check that the body has the appropriate type. If we encounter
a contextual object built with the domain-level constant app, then we choose
the branch bapp. We assume ψ: ctx, m: dψ ` tme, n: dψ ` tme, as well as fn and
fm which stand for the recursive calls on m and n respectively. We then check
that the body tapp is well-typed. If we encounter a domain object built with the
domain-level constant lam, then we choose the branch blam. We assume ψ: ctx
and m: dψ, x:tm ` tme together with the recursive call fm on m in the extended
LF context ψ, x:tm. We then check that the body tlam is well-typed. The typing
rules for computations are given in Fig. 3. We omit the reduction rules here and
refer the interested reader to the appendix.

5.1 Interpretation

We now give an interpretation of simply-typed Cocon in a presheaf model with a
cartesian closed Yoneda universe. Let us first extend the internal dependent type
theory with the constant tm for modelling the domain-level type constant tm and
with the constants app : El tm→ El tm→ El tm and lam : (El tm→ El tm)→ El tm
to model the corresponding domain-level constants app and lam.
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Γ ` C : T Contextual object C has contextual type T

Γ ;Ψ `M : A

Γ ` (Ψ̂ `M) : (Ψ ` A)

Γ ` Ψ : ctx x:A ∈ Ψ
Γ ` (Ψ̂ ` x) : (Ψ v̀ A)

x:dΦ v̀ Ae ∈ Γ Γ ;Ψ ` wkΨ̂ : Φ

Γ ` (Ψ̂ ` bxcwk
Ψ̂

) : (Ψ v̀ A)

Γ ` t : τ Term t has computation type τ
y : τ̆ ∈ Γ
Γ ` y : τ̆

Γ ` C : T
Γ ` dCe : dT e

Γ ` t : (y : τ̆1)⇒ τ2 Γ ` s : τ̆1

Γ ` t s : [s/y]τ2

Γ, y : τ̆1 ` t : τ2 Γ ` (y : τ̆1)⇒ τ2 : type

Γ ` fn y ⇒ t : (y : τ̆1)⇒ τ2

Recursor over domain-level terms I = (ψ : ctx)⇒ (y : dψ ` tme)⇒ τ

Γ ` t : dΨ ` tme Γ ` I : u Γ ` bv : I Γ ` bapp : I Γ ` blam : I
Γ ` recI(bv | bapp | blam) Ψ t : [Ψ/ψ]τ

Branch for Variable
Γ, ψ : ctx, p : dψ v̀ tme ` tv : τ

Γ ` (ψ, p 7→ tv) : I

Branch for Application app
Γ, ψ : ctx,m:dψ ` tme, n:dψ ` tme, fm:τ, fn:τ ` tapp : τ

Γ ` (ψ,m, n, fn, fm 7→ tapp) : I

Branch for Function lam
Γ, φ : ctx,m:dφ, x:tm ` tme, fm:[(φ, x:tm)/ψ]τ ` tlam : [φ/ψ]τ

Γ ` ψ,m, fm 7→ tlam : I

Fig. 3. Typing Rules for Contextual Objects and Computations

We can now translate domain-level and computation-level types of Cocon into
the internal dependent type theory for D̂. We do so by interpreting the domain-
level terms, types, substitutions, and contexts (see Fig. 4). All translations are on
well-typed terms and types. Domain-level types are interpreted as the terms of
type Obj in the internal dependent type theory that represent them. Domain-level
contexts are also interpreted as terms of type Obj by JΓ ` Ψ : ctxK. For example,
a domain-level context x:tm, y:tm is interpreted as times (times unit tm) tm : Obj.
A domain-level substitution with domain Ψ and codomain Φ becomes a term of
type El e′ that is parametrised by an element u: El e, where e = JΓ ` Φ : ctxK and
e′ = JΓ ` Ψ : ctxK. As e′ is some product, for example times (times unit tm) tm,
the domain-level substitution is translated into an n-ary tuple. A weakening
substitution Γ ;Ψ, x:tm ` wkΨ : Ψ is interpreted as fst u where u: El (times e tm)
and e = JΓ ` Ψ : ctxK. More generally, when we weaken a context Ψ by n

declarations, i.e.
−−→
x:A, we interpret wkΨ as fstn u.

A well-typed domain-level term, Γ ;Φ ` M : A, is mapped to an object of
type El JAK that depends on u:El JΓ ` Ψ : ctxK.

Hence the translation of a well-typed domain-level term is indexed by u that
stands for the term-level interpretation of a domain-level context Φ. Initially, u
is simply a variable. However, when we translate Γ ;Φ ` λx.M : A → B given
u: El e where JΓ ` Ψ : ctxK = e, we need to recursively translate M in the
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Interpretation of domain-level types

JtmK = tm
JA→ BK = arrow JAK JBK

Interpretation of domain-level contexts

JΓ ` ψ : ctxK = ψ

JΓ ` · : ctxK = unit

JΓ ` (Ψ, x:A) : ctxK = times e JAK where JΓ ` Ψ : ctxK = e

Interpretation of domain-level terms where u: El e and JΓ ` Ψ : ctxK = e

JΓ ;Ψ ` x : AKu = snd (fstk u) where Ψ = Ψ0, x:A, yk:Ak, . . . , y1:A1

JΓ ;Ψ ` λx.M : A→ BKu = arrow-i (hx:El JAK. e′)
where JΓ ;Ψ, x:A `M : BK(pair u x) = e′

JΓ ;Ψ `M N : BKu = arrow-e e1 e2 where JΓ ;Ψ `M : A→ BKu = e1
and JΓ ;Ψ ` N : AKu = e2

JΓ ;Ψ ` btcσ : AKu = let box x = e1 in x e2 where JΓ ` t : dΦ ` AeK = e1
and JΓ ;Ψ ` σ : ΦKu = e2

JΓ ;Ψ ` app : tm→ tm→ tmKu = arrow-i(hx:El tm. arrow-i (hy:El tm. app x y))

JΓ ;Ψ ` lam : (tm→ tm)→ tmKu = arrow-i(hf :El (arrow tm tm).
lam (hx:El tm. arrow-e f x))

Interpretation of domain-level substitutions where u: El e and JΓ ` Φ : ctxK = e

JΓ ;Ψ ` · : ·Ku = terminal

JΓ ;Ψ ` (σ,M) : Φ, x:AKu = pair e1 e2 where JΓ ;Ψ ` σ : ΦKu = e1
and JΓ ;Ψ `M : AKu = e2

JΓ ;Ψ,
−−→
x:A ` wkΦ̂ : ΦKu = fstn u where n = |

−−→
x:A|

Fig. 4. Interpretation of Domain-level Types and Terms

extended domain-level context Ψ, x:A and hence we also need to build a term
pair u x that inhabits El (times e JAK). The translation of Γ ;Φ, x:A ` M : A
will return a term e that may contain x. However, note that x will eventually
be bound in arrow-i (hx:El JAK. e) When we translate a variable x where Φ =
Φ0, x:A, yk:Ak, . . . , y1:A1, we return fstk (snd u). We translate Γ ;Φ ` btcσ : A
directly using let box-construct where the domain-level substitution σ is simply
translated into a pair. As the computation t has the contextual type dΨ ` tme
its translation will be of type [(El e → El tm) where e = JΓ ` Ψ : ctxK. Hence
we simply can extract a function x:(El e → El tm) using let box construct and
pass to it the interpretation of σ. The translation of domain-level applications
and domain-level constants app and lam is straightforward.

The interpretation of a contextual types dΨ ` Ae makes explicit the fact that
they correspond to functions El e→ El JAK where e = JΓ ` Ψ : ctxK (see Fig. 5).

Consequently, the corresponding contextual object (Φ̂ ` M) is interpreted as a
function. Similarly, dΨ v̀ Ae is mapped to the restricted function space denoted
by →v, which describes functions with bodies that only contain projections.
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Interpretation of contextual objects (C)

JΓ ` (Φ̂ `M) : (Φ ` A)K = hu: El e. e′ where JΓ ` Φ : ctxK = e
and JΓ ;Φ `M : AKu = e′

JΓ ` (Φ̂ `M) : (Φ v̀ A)K = hu: El e. e′ where JΓ ` Φ : ctxK = e
and JΓ ;Φ `M : AKu = e′

Interpretation of contextual types (T )

JΓ ` (Φ ` A)K = (u:El e)→ El JAK where JΓ ` Φ : ctxK = e

JΓ ` (Φ v̀ A)K = (u:El e)→v El JAK where JΓ ` Φ : ctxK = e

Fig. 5. Interpretation of Contextual Objects and Types

Last, we give the interpretation of computation-level types, contexts and
terms (see Fig. 6). It is mostly straightforward, as we simply map dT e to [JT K
and dCe is simply interpreted as boxed term.

Interpretation of computation-level types (τ̆)

JdT eK = [JT K
J(x:τ̆1)⇒ τ2K = (x:Jτ̆1K)→ Jτ2K
JctxK = Obj

Computation-level typing contexts (Γ )

J·K = ·
JΓ, x: τ̆K = JΓ K, x: Jτ̆K

Interpretation of computations (Γ ` t : τ ; without recursor)

JΓ ` dCe : dT eK = box e where JΓ ` C : T K = e

JΓ ` t1 t2 : τK = e1 e2 where JΓ ` t1 : (x:τ̆2)⇒ τK = e1
and JΓ ` t2 : τ̆2K = e2

JΓ ` fn x⇒ t : (x:τ̆1)⇒ τ2K = hx: Jτ̆1K. e where JΓ, x:τ̆1 ` t : τ2K = e

JΓ ` x : τK = x

Fig. 6. Interpretation of Computation-level Types and Terms – without recursor

The interpretation of the recursor is also straightforward now (see Fig. 7). In
Lemma 4, we expressed a primitive recursion scheme in our internal type theory
and defined a term rec together with its type. We now interpret every branch of
our recursor in the computation-level as a function of the required type in our
internal type theory. While this is somewhat tedious, it is straightforward.

We can now show that all well-typed domain-level and computation-level
objects are translated into well-typed constructions in our internal type theory.
As a consequence, we can show that equality in Cocon is equivalent to the
corresponding equivalence in our internal type theoretic interpretation.
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Interpretation of recursor for I = (ψ : ctx)⇒ (y : dψ ` tme)⇒ τ :

JΓ ` recI(bv | bapp | blam) Ψ t : [Ψ/ψ, t/y]τK = rec ev eapp elam ec e
where JΓ ` bv : IK = ev, JΓ ` bapp : IK = eapp, JΓ ` blam : IK = elam,

JΓ ` Ψ : ctxK = ec and JΓ ` t : dΨ ` tmeK = e

Interpretation of Variable Branch

JΓ ` (ψ, x 7→ tv) : IK = hψ: Obj. h x: [(Elψ →v El tm). e
where JΓ, ψ : ctx, x : dψ v̀ tme ` tv : [x/y]τK = e

Interpretation of Application Branch

JΓ ` (ψ,m, n, fn, fm 7→ tapp) : IK = hψ: Obj. hm,n: [(Elψ → El tm).
hfm: J[m/y]τK. h fn: J[n/y]τK. e

where JΓ, ψ:ctx,m:dψ ` tme, n:dψ ` tme ` tapp : [dψ ` app bmc bnce/y]τK = e

Interpretation of Lambda-Abstraction Branch

JΓ ` (ψ,m, fm 7→ tlam) : IK = hψ: Obj.hm: [(El (times ψ tm)→ El tm).
hfm:τm.e

where J[(ψ, x:tm)/ψ, m/y]τK = τm,
JΓ, ψ:ctx,m:dψ, x:tm ` tme ` tapp : [dψ ` lam λx.bmce/y]τK = e

Fig. 7. Interpretation of Recursor

Lemma 5. The interpretation maintains the following typing invariants:

– If Γ ` Ψ : ctx then JΓ ` Ψ : ctxK : Obj.
– If Γ ; Ψ `M : A then JΓ K, u: El JΓ ` Ψ : ctxK ` JΓ ;Ψ `M : AKu : El JAK.
– If Γ ; Ψ ` σ : Ψ then JΓ K, u: El JΓ ` Ψ : ctxK ` JΓ ;Ψ ` σ : ΨKu : El JΨK.
– If Γ ` C : T then JΓ K ` JΓ ` C : T K : JT K.
– If Γ ` t : τ then JΓ K ` JΓ ` t : τK : JτK.

The proof goes by induction on derivations.

Proposition 1 (Soundness). The following are true.

– If Γ ; Ψ `M ≡ N : A then
JΓ K, u: El JΨK ` JΓ ; Ψ `M : AKu = JΓ ; Ψ ` N : AKu : El JAK.

– If Γ ;Ψ ` σ ≡ σ′ : Φ then
JΓ K, u: El JΨK ` JΓ ;Ψ ` σ : ΦKu = JΓ ;Ψ ` σ′ : ΦKu : El JΦK.

– If Γ ` t1 ≡ t2 : τ then JΓ K ` JΓ ` t1 : τK = JΓ ` t2 : τK : JτK.

6 Presheaves on a Small Category with Attributes

To explain the core of our approach as simply as possible, we have concentrated
on a simply-typed domain language. In the remaining space, we outline how our
approach generalises to dependent domain languages like LF.

We follow the same approach as above. We start from a term model D of the
domain language and then interpret contextual types in the presheaf category D̂.
In the simply-typed case above, D was a small cartesian closed category. In the
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dependent case, D is a small Category with Attributes. Categories with attributes
(CwAs) [9] are a general notion of model for dependent type theories that is
suitable for modelling dependent domain languages like LF.

With this change, we follow essentially the same approach as above. The
main is that the Yoneda universe now makes available the CwA-structure of D
instead of the cartesian closed structure. The following section outlines this in
analogy to Sec. 4.1.

6.1 Yoneda CwA

In a Yoneda CwA we again have a type for the objects of D, which we now
denote Ctx. In the term model for LF, these would be the LF contexts. The
type Ty c represents (possibly dependent) LF types in context c. Contexts can
be built with the constants nil and cons.

` Ctx type ` nil : Ctx

c: Ctx ` Ty c type ` cons : (c: Ctx)→ (a: Ty c)→ Ctx

Both Ctx and Ty c are constant presheaves, i.e. [Ctx = Ctx and [(Ty c) = Ty c.
As in Sec. 4.1, we consider the contexts as codes of a universe El.

c: Ctx ` El c type

The type El c has the same interpretation as before and is essentially just the
Yoneda embedding. The morphisms c→ d of the CwA D thus appear as functions
of type El c→ El d.

The axioms of a CwA can be stated using terms and equations in the inter-
nal language of D̂. For example, substitution on types and context projection
morphisms are given by the following constants.

c, d: Ctx ` sub : (a: Ty d)→ (f : El c→ El d)→ Ty c

c: Ctx, a: Ty c ` p : El (cons c a)→ El c

The other components of a CwA are added similarly and the CwA-axioms [9]
are in terms of equations for these constants.

The inhabitants of a type can then be captured by the dependent type

c: Ctx, a: Ty c, u: El c ` I a u type

defined by I a u := Σv: El (cons c a). (p v) = u. This type contains all values in
El (cons c a) whose first projection is u. If one considers u: El c as a dependent
tuple of LF terms (one term for each variable in the context represented by c),
then I a u represents all the terms that can be appended to this tuple to make
it into one of type El (cons c a). Indeed, one can define a pairing operation by
pair := λu. λ〈v, p〉. v.

c: Ctx, a: (Ty c) ` pair : (u: El c)→ I a u→ El (cons c a)
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With these definitions, we can represent dependent contextual types much
like the simply-typed ones. Recall that we had interpreted Φ ` A by El JΦK →
El JAK where both JΦK and JAK were terms of type Obj. In the depend case, A may
depend on Φ. The interpretation of Φ is a term JΦK : Ctx, much as before. The
interpretation of A takes the dependency into account: u: El JΦK ` JAKu : Ty u.
The interpretation of the contextual type Φ ` A will then be:

(u: El JΦK)→ I JAKu u

It may be interesting to note that (u: El c)→ I a u is isomorphic to the type of
sections of p : El (cons c a)→ El c.

Object-level term constants in LF can be lifted using I. Consider, for example,
an encoding of the simply-typed lambda-calculus in LF. It represents only well-
typed terms by means of the constants app : Πa, b: ty. tm (arr a b)→ tm a→ tm b
and lam : Πa, b: ty. (tm a→ tm b)→ tm (arr a b). Therein, the type tm of object-
level terms is dependent on an object-level type ty, which may be built using a
constant o : ty for a base type and a constant arr : ty → ty → ty for function
types. This encoding lifts to the Yoneda CwA as in simply-typed case:

c: Ctx ` ty : Ty c Γ ` o : I ty u

c: Ctx ` tm : Ty (cons c ty) Γ ` arr : I ty u→ I ty u→ I ty u

∆ ` app : I tm (pair u (arr a b))→ I tm (pair u a)→ I tm (pair u b)

` lam : (I tm (pair u a)→ I tm (pair u b))→ I tm (pair u (arr a b))

Here, Γ abbreviates c: Ctx, u: (El c) and ∆ abbreviates Γ, a, b: (I ty u). Notice
how lam uses higher-order abstract syntax at the meta level.

With these definitions, the interpretation of Cocon is essentially just as be-
fore. For working with the dependencies in a Yoneda CwA, we found it very
useful to type-check our definitions in Agda, see our sources3.

7 Conclusion

We have given a rational reconstruction of contextual type theory in presheaf
models of higher-order abstract syntax. This provides a semantical way of un-
derstanding the invariants of contextual types independently of the algorithmic
details of type checking. At the same time, we identify the contextual modal type
theory, Cocon, which is known to be normalizing, as a syntax for presheaf mod-
els of HOAS. Considering the Yoneda embedding as a type-theoretic universe
provides a manageable way of constructing contextual types in the model, espe-
cially in the dependent case. While various forms of universes are being studied
in the context of functor categories, e.g. [1,13], we are not aware of previous uses
of presheaves over CwAs or similar.

In future work, one may consider using the model as a way of compiling
contextual types, by implementing the semantics. In another direction, it may be
interesting to apply the syntax of contextual types to other presheaf categories.
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Appendix

Γ ;Ψ `M ≡ N : A Domain-level term M is definitionally equal to domain-level term N at type A

Γ ;Ψ `M : A→ B

Γ ;Ψ `M ≡ λx.M x : AB

Γ ;Ψ, x:A `M1 : B Γ ;Ψ `M2 : A

Γ ;Ψ ` (λx.M1) M2 ≡ [M2/x]M1 : B

Γ ;Φ ` N : A Γ ;Ψ ` σ : Φ

Γ ;Ψ ` bdΦ̂ ` Necσ ≡ [σ]N : A

Γ ;Ψ ` σ ≡ σ′ : Φ Domain-level subst. σ is definitionally equal to domain-level subst. σ′

Γ ` Ψ : ctx
Γ ;Ψ ` wk(·) ≡ · : ·

Γ ` Φ, x:A,
−−→
y:B : ctx

Γ ;Φ, x:A,
−−→
y:B ` wkΦ̂,x ≡ (wkΦ, x) : (Φ, x:A)

Fig. 8. Reduction and Expansion for Domain-level Terms and Substitutions

Γ ` fn y ⇒ t : (y:τ̆1)⇒ τ2 Γ ` s : τ̆1

Γ ` (fn y ⇒ t) s ≡ [s/y]t : [s/y]τ2

Γ ` t : dΨ ` Ae

Γ ` t ≡ dΨ̂ ` btcwk
Ψ̂
e : dΨ ` Ae

let B = (ψ, p 7→ tp | ψ,m, n, fm, fn 7→ tapp | ψ,m, fm 7→ tlam) and I = (ψ : ctx)⇒ (y : dψ ` tme)⇒ τ

Γ ` Ψ : ctx Γ ;Ψ, x:tm `M : tm Γ ` I : u

Γ ` recI B Ψ dΨ̂ ` lam λx.Me ≡ [θ]tlam : [Ψ/ψ]τ

where θ = Ψ/ψ, dΨ̂ , x `Me/m, recI B (Ψ, x:tm) dΨ̂ , x `Me/fm

Γ ` Ψ : ctx Γ ;Ψ `M : tm Γ ;Ψ ` N : tm Γ ` I : u

Γ ` recI B ΨdΨ̂ ` app M Ne ≡ [θ]tapp : [Ψ/ψ]τ

where θ = Ψ/ψ, dΨ̂ `Me/m, dΨ̂ ` Ne/n, recI B Ψ dΨ̂ `Me/fm, recI B Ψ dΨ̂ ` Ne/fn

x:tm ∈ Ψ Γ ` Ψ : ctx Γ ` I : u

Γ ` recI B Ψ dΨ̂ ` xe ≡ [Ψ/ψ, dΨ̂ ` xe/p]tp : [Ψ/ψ]τ

Fig. 9. Definitional Equality for Computations
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