
Bidirectional Elaboration of Dependently Typed Programs

Francisco Ferreira Brigitte Pientka
McGill University

{fferre8,bpientka}@cs.mcgill.ca

Abstract
Dependently typed programming languages allow programmers to
express a rich set of invariants and verify them statically via type
checking. To make programming with dependent types practical,
dependently typed systems provide a compact language for pro-
grammers where one can omit some arguments, called implicit,
which can be inferred. This source language is then usually elab-
orated into a core language where type checking and fundamen-
tal properties such as normalization are well understood. Unfor-
tunately, this elaboration is rarely specified and in general is ill-
understood. This makes it not only difficult for programmers to un-
derstand why a given program fails to type check, but also is one
of the reasons that implementing dependently typed programming
systems remains a black art known only to a few.

In this paper, we specify the design of a source language for a
dependently typed programming language where we separate the
language of programs from the language of types and terms occur-
ring in types. We then give a bi-directional elaboration algorithm to
translate source terms where implicit arguments can be omitted to
a fully explicit core language and prove soundness of our elabora-
tion. Our framework provides post-hoc explanation for elaboration
found in the programming and proof environment, Beluga.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords dependent types, type reconstruction

1. Introduction
Dependently typed programming languages such as Agda [Norell
2007], Epigram [McBride and McKinna 2004] or Idris [Brady
2013] allow programmers to express a rich set of properties and
statically verify them via type checking. To make programming
with dependent types practical, all these systems provide a source
language where programmers can omit (implicit) arguments which
can be reasonably easy inferred and elaborate the source language
into a well-understood core language, an idea going back to Pol-
lack [1990]. However, this elaboration is rarely specified formally
for dependently typed languages which support recursion and pat-
tern matching. For Agda, Norrel [2007] for example describes a
bi-directional type inference algorithm, but does not treat recur-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

sion and pattern matching. For Idris, Brady [2013] describes the
elaboration between source and target, but no theoretical properties
such as soundness are established. A notable exception is the work
by Asperti et.al [2012] on describing a sound bi-directional elab-
oration algorithm for the Calculus of (Co)Inductive Constructions
(CCIC) implemented in Matita.

In this paper, we investigate the design of a source language for
dependently typed programming where we separate the language of
programs from the language of types and terms occurring in types
similar to indexed type systems (see [Zenger 1997; Xi and Pfenning
1999]); however, unlike these aforementioned systems, we allow
pattern matching on index objects. As a consequence, we cannot
simply erase our implicit arguments and obtain a program which is
simply typed. Specifically, our source language is inspired by the
Beluga language [Pientka 2008; Pientka and Dunfield 2010; Cave
and Pientka 2012] where we specify formal systems in the logical
framework LF [Harper et al. 1993] (our index language) and write
recursive programs about LF objects using pattern matching. The
main contribution of this paper the design of a source language
for dependently typed programs where we omit implicit arguments
together with a sound bi-directional elaboration algorithm from the
source language to a fully explicit core language. Throughout our
development, we will keep the index language abstract and state
abstractly our requirements such as decidability of equality and
typing. This will make our framework applicable to any language
satisfying our stated requirements.

A central question when elaborating dependently typed lan-
guages is what arguments may the programmer omit. In dependently-
typed systems such as Agda or Coq, the programmer declares con-
stants of a given (closed) type and labels arguments that can be
freely omitted when subsequently using the constant. Both, Coq
and Agda, give the user the possibility to locally override the im-
plicit arguments and provide instantiations explicitly.

In contrast, we follow here a simple, lightweight recipe which
comes from the implementation of the logical framework Elf [Pfen-
ning 1989] and its successor Twelf [Pfenning and Schürmann
1999]: programmers may leave some index variables free when
declaring a constant of a given type; elaboration of the type will
abstract over these free variables at the outside; when subsequently
using this constant, the user must omit passing arguments for those
index variables which were left free in the original declaration.
Following this recipe, elaboration of terms and types in the logical
framework has been described in Pientka [2013]. Here, we will
consider a dependently typed functional programming language
which supports pattern matching on index objects.

The key challenge in elaborating recursive programs which sup-
port case-analysis is that pattern matching in the dependently typed
setting refines index arguments and hence refines types. In contrast
to systems such as Coq and Agda, where we must annotate case-
expressions with an invariant, i.e. the type of the scrutinee, and the
return type, our source language does not require such annotations.
Instead we will infer the type of the scrutinee and for each branch,

we infer the type of the pattern and compute how the pattern re-
fines the type of the scrutinee. This makes our source language
lightweight. Our elaboration of source expressions to target expres-
sions is type-directed, inferring omitted arguments and producing
a closed well-typed target program. Finallly, we prove soundness
of our elaboration, i.e. if elaboration succeeds our resulting pro-
gram type checks in our core language. Our framework provides
post-hoc explanation for elaboration found in the programming and
proof environment, Beluga [Pientka 2008; Cave and Pientka 2012],
where we use as the index domain terms specified in the logical
framework LF [Harper et al. 1993].

The paper is organized as follows: We first give the grammar
of our source language. Showing two example programs, we ex-
plain informally what elaboration does. We then revisit our core
language, describe the elaboration algorithm formally and prove
soundness. We conclude with a discussion of related and future
work.

2. Source language
We consider here a dependently typed language where types are in-
dexed by terms from an index domain. Our language is similar to
Beluga [Pientka and Dunfield 2010], a dependently typed program-
ming environment where we specify formal systems in the logical
framework LF and we can embed LF objects into computation-
level types and computation-level programs which analyze and pat-
tern match on LF objects. However, in our description, as in for
example [Cave and Pientka 2012], we will keep the index domain
abstract, but only assume that equality in the index domain is de-
cidable and unification algorithms exist. This will allow us to focus
on the essential challenges when elaborating a dependently typed
language in the presence of pattern matching.

We describe the source language that allows programmers to
omit some arguments in Fig. 1. As a convention we will use low-
ercase c to refer to index level objects, lowercase u for index level
types, and upper case letters X,Y for index-variables. Index ob-
jects can be embedded into computation expressions by writing [c].
Our language supports functions (fnx⇒e), dependent functions
(λX⇒e), function application (e1 e2), dependent function appli-
cation (e1 [c]), and case-expressions. We also support writing un-
derscore () instead of providing explicitly the index argument in a
dependent function application (e). Note that we are overloading
syntax: we write e [c] to describe the application of the expression e
of type [u]→ t to the expression [c]; we also write e [c] to describe
the dependent application of the expression e of type {X:u}t to the
(unboxed) index object c.

We may write type annotations anywhere in the program (e:t
and in patterns pat:t); type annotations are particularly useful to
make explicit the type of a sub-expression and name index variables
occurring in the type. This allows us to resurrect index variables
which are kept implicit. In patterns, type annotations are useful
since they provide hints to type elaboration regarding the type of
pattern variables.

A program signature Σ consists of type declarations (a:k and
c:t) and declaration of recursive functions (rec f :t = e). This can
be extended to allow mutual recursive functions in a straightfor-
ward way.

One may think of our source language as the language obtained
after parsing after where for example let-expressions have been
translated into case-expression with one branch.

Types for computations include non-dependent function types
(t1 → t2) and dependent function types ({X:u}t); we can also
embed index types into computation types via [u] and index
computation-level types by an index domain written as a

−→
[c]. We

also include the grammar for computation-level kinds which em-

Kinds k ::= ctype | {X:u}K
Atomic Types p ::= a

−→
[c]

Types t ::= p | [u] | {X:u} t | t1 → t2

Expressions e ::= fnx⇒e | λX⇒e | x | c | [c] |
e1 e2 | e1 [c] | e | case e of~b | e:t

Branches ~b ::= b | (b | ~b)
Branch b ::= pat 7→ e

Pattern pat ::= x | [c] | c−→pat | pat:t
Declarations d ::= rec f :t = e | c:t | a:k

Figure 1. Grammar of Source Language

phasizes that computation-level types can only be indexed by terms
from an index domain u. We write ctype (i.e. computation-level
type) for the base kind, since we will use type for kinds of the index
domain.

We note that we do only support one form of dependent func-
tion type {X:u}t; the source language does not provide any means
for programmers to mark a given dependently typed variable as im-
plicit as for example in Agda. Instead, we will allow programmers
to leave some index variables occurring in computation-level types
free; elaboration will then infer their types and abstract over them
explicitly at the outside. The programmer must subsequently omit
providing instantiation for those “free” variables. We will explain
this idea more concretely below.

2.1 Well-formed source expressions
Before elaborating source expressions, we state when a given
source expression is accepted as a well-formed expression. In par-
ticular, it will highlight that free index variables are only allowed
in declarations when specifying kinds and declaring the type of
constants and recursive functions. We use δ to describe the list of
index variables and γ the list of program variables. We rely on two
judgments from the index language:

δ ` c wf Index object c is well formed and closed with respect to δ
δ `f c wf Index object c is well formed with respect to δ

and may contain free index variables

We describe declaratively the well-formedness of declarations
and source expressions in Fig. 2. For brevity, we omit the full defi-
nition of well-formedness for kinds and types which is as expected
and straightforward.

In branches, pattern variables from γ must occur linearly while
we put no such requirement on variables from our index language
listed in δ.

2.2 Some example programs
2.2.1 Translating untyped terms to intrinsically typed terms
We implement a program to translate a simple language with
numbers, booleans and some primitive operations to its typed
counterpart to illustrate declaring an index domain, using index
computation-level types, and explaining the use and need to pat-
tern match on index objects. We first define the untyped version
of our language by the recursive datatype UTm. Note use of the
keyword ctype to define a computation-level recursive data-type.

datatype UTm : ctype =
| UNum : Nat→UTm
| UPlus : UTm→UTm→UTm
| UTrue : UTm
| UFalse: UTm

` d wf Declaration d is well-formed

·; f ` e wf · `f t wf
` rec f :t = e wf

wf-rec
· `f t wf
` c : t wf

wf-types
· `f k wf
` a : k wf

wf-kinds

δ; γ ` e wf Expression e is well-formed in context δ and γ

δ; γ, x ` e wf
δ; γ ` fnx⇒e wf

wf-fn
δ,X; γ ` e wf

δ; γ ` λX⇒e wf
wf-mlam

δ; γ ` e1 wf δ; γ ` e2 wf
δ; γ ` e1 e2 wf

wf-app

δ; γ ` e1 wf δ ` c wf
δ; γ ` e [c] wf

wf-app-explicit
δ; γ ` e1 wf
δ; γ ` e1 wf

wf-apph
δ ` c wf

δ; γ ` [c] wf
wf-box

δ; γ ` e wf for all bn in~b . δ; γ ` bn wf

δ; γ ` case e of~b wf
wf-case

x ∈ γ
δ; γ ` x wf

wf-var
δ; γ ` e wf δ ` t wf

δ; γ ` e:t wf
wf-ann

δ; γ ` pat 7→ e wf Branch is well-formed in δ and γ

δ′; γ′ ` pat wf δ, δ′; γ, γ′ ` e wf
δ; γ ` pat 7→ e wf

wf-branch

δ; γ ` pat wf Pattern pat is well-formed synthesizing a context δ for index variables and a context γ for pattern variables

δ;x ` x wf
wf-p-var

δ ` c wf
δ; · ` [c] wf

wf-p-i
for all pi in

−−→
Pat. δ; γi ` pi wf

δ; γ1, . . . , γn ` c
−−→
Pat wf

wf-p-con δ; γ ` pat wf δ ` t wf
δ; γ ` pat:t wf

wf-p-ann

Figure 2. Well-formed source expressions

| UNot : UTm→UTm
| UIf : UTm→UTm→UTm→UTm;

Terms can be of type nat for numbers or bool for booleans. Our
goal is to define our language of typed terms using a computation-
level type family Tm which is indexed by objects nat and bool
which are constructors of our index type tp. Note that tp is de-
clared as having the kind type which implies that this type lives at
the index level and that we will be able to use it as an index for
computation-level type families.

datatype tp : type =
| nat : tp
| bool : tp;

Using indexed families we can now define the type Tm that
specifies only type correct terms of the language, by indexing terms
by their type using the index level type tp.

datatype Tm : [tp]→ctype =
| Num : Nat →Tm [nat]
| Plus : Tm [nat] →Tm [nat]→Tm [nat]
| True : Tm [bool]
| False : Tm [bool]
| Not : Tm [bool] →Tm [bool]
| If : Tm [bool] →Tm [T]→Tm [T]→Tm [T];

When the Tm family is elaborated, the free variable T in the If
constructor will be abstracted over by an implicit Π-type, as in the
Twelf [Pfenning and Schürmann 1999] tradition. Because T was
left free by the programmer, the elaboration will add an implicit
quantifier; when we use the constant If, we now must omit passing
an instantiation for T. For example, we must write (If True (Num
3) (Num 4)) and elaboration will infer that T must be nat.

One might ask how we can provide the type explicitly - this
is possible indirectly by providing type annotations. For example,

writing If e (e1:TM[nat]) e2 will fix the type of e1 to be Tm
[nat].

Our goal is to write a program to translate an untyped term UTm
to its corresponding typed representation. Because this operation
might fail for ill-typed UTm terms we need an option type to reflect
the possibility of failure.

datatype TmOpt : ctype =
| None : TmOpt
| Some : {T : tp}Tm [T] → TmOpt;

A value of type TmOpt will either be empty (i.e. None) or some
term of type T. We chose to make T explicit here by quantifying
over it explicitly using the curly braces. When returning a Tm term,
the program must now provide the instantiation of T in addition to
the actual term.

So far we have declared types and constructors for our language.
These declarations will be available in a global signature. The next
step is to declare a function that will take untyped terms into typed
terms if possible. Notice that for the function to be type correct it
has to respect the specification provided in the declaration of the
type Tm. We only show a few interesting cases below.

rec tc : UTm → TmOpt = fn e ⇒ case e of ...
| UNum n ⇒ Some [nat] (Num n)
| UNot e ⇒ (case tc e of
| Some [bool] x ⇒ Some [bool] (Not x)
| other ⇒ None)

| UIf c e1 e2 ⇒ (case tc c of
| Some [bool] c’ ⇒ (case (tc e1 , tc e2) of

| (Some [T] e1’ , Some [T] e2’) ⇒
Some [T] (If c’ e1’ e2’)

| other ⇒ None)
| other ⇒ None)

;

In the tc function the first four cases are completely straight-
forward. The case for negation (i.e. constructor UNot) is important
because we need to pattern match on the result of type-checking the
sub-expression e to refine it to type bool otherwise we cannot con-
struct the intrinsically typed term, i.e. the constructor Not requires
a boolean term. Additionally the case for UIf is also interesting
because we not only need a boolean condition but we also need to
have both branches of the UIf term to be of the same type. Again
we use pattern matching on the indices to verify that the condition
is of type bool but notably we use non-linear pattern matching to
ensure that the type of the branches coincides (and to refine the
types so we are able to construct a typed term with the constructor
If that requires both branches to be of the same type). We note that
If has an implicit argument which will be inferred during elabora-
tion.

In the definition of type TmOpt we chose to explicitly quantify
over T, however another option would have been to leave it implicit.
When pattern matching on Some e, we would need to resurrect the
type of the argument e to be able to inspect it and check whether it
has the appropriate type. Again we employ type annotations in the
code below to constrain the type of e.

| UIf c e1 e2 ⇒ (case tc c of
| Some (c’:Tm [bool]) ⇒ (case (tc e1, tc e2) of
| (Some (e1’:Tm [T]), Some (e2’:Tm [T])) ⇒

Some (If c’ e1’ e2’)
| other ⇒ None)

| other ⇒ None)

2.2.2 Type-preserving evaluation
Our previous program used dependent types sparingly; most no-
tably there were no dependent types in the type declaration given
to the function tc. We now discuss the implementation of an eval-
uator, which evaluates type correct programs to values of the same
type, to highlight writing dependently typed functions. Because we
need to preserve the type information, we index the values by their
types in the following manner:

datatype Val : [tp] → ctype =
| VNum : Nat → Val [nat]
| VTrue : Val [bool]
| VFalse: Val [bool];

We define a type preserving evaluator below; again, we only
show some interesting cases.

rec eval : Tm [T] → Val [T] = fn e ⇒ case e of ...
| Num n ⇒ VNum n
| Plus e1 e2 ⇒ (case (eval e1 , eval e2) of

| (VNum x , VNum y) ⇒ VNum (add x y))
| Not e ⇒ (case eval e of

| VTrue ⇒ VFalse
| VFalse ⇒ VTrue)

| If e e1 e2 ⇒ (case eval e of
| VTrue ⇒ eval e1
| VFalse ⇒ eval e2)

;

First, we specify the type of the evaluation function as Tm [T]
→ Val [T] where T remains free. As a consequence, elaboration
will infer its type and abstract over T at the outside. We now
elaborate the body of the function against ΠeT:tp. Tm [T] →
Val [T]. Elaboration translate the given program into a program
in our core language which has type ΠeT:tp. Tm [T] → Val
[T]. It will first need to introduce the appropriate dependent

function abstraction in the program before we introduce the non-
dependent function fnx⇒e. Moreover, we need to infer omitted
arguments in the pattern in addition to inferring the type of pattern

Kinds K ::= ΠeX:U.K | ΠiX:U.K |
ctype

Atomic Types P ::= a ~C
Types T ::= ΠeX:U. T | ΠiX:U. T

P | [U] | T1 → T2

Expressions E ::= fnx⇒E | λX⇒E
| E1 E2 | E1 [C] | [C] |
caseE of ~B | x | E:T | c

Branches ~B ::= B | (B | ~B)
Branch B ::= Π∆; Γ.Pat:θ 7→ E

Pattern Pat ::= x | [C] | c
−−→
Pat

Declarations D ::= c:T | a:K | rec f :T = E

Context Γ ::= · | Γ, x:T
Index-Var-Context ∆ ::= · | ∆, X:U
Refinement θ ::= · | θ, C/X | θ,X/X

Figure 3. Target language

variables. Since T was left free in the type given to eval, we must
also infer the omitted argument in the recursive calls to eval.
Finally, we need to keep track of refinements the pattern match
induces: our scrutinee has type Tm [T]; pattern matching against
Plus e1 e1 which has type Tm [nat] refines T to nat.

We will come back to this example and discuss the fully elabo-
rated program in the next section.

3. Target language
The target language is similar to the computational language de-
scribed in Cave and Pientka [2012] which has a well developed
meta-theory including descriptions of coverage [Dunfield and Pien-
tka 2009] and termination [Pientka et al. 2014]. The target language
(see Fig. 3), which is similar to our source language, is indexed
by fully explicit terms of the index level language; we use C for
fully explicit index level objects, and U for elaborated index types;
index-variables occurring in the target language will be represented
by capital letters such as X,Y . Moreover, we rely on a substitution
which replaces index variables X with index objects. For conve-
nience, we also allow explicit identity substitutions X/X , since
not in all index languages X may be a well-defined term1.

3.1 Typing of target language
The main difference between the source and target language is in
the description of branches. In each branch, we make the type of
the pattern variables (see context Γ) and variables occurring in
index objects (see context ∆) explicit. Moreover, we associate each
pattern with a refinement substitution θ which specifies how the
given pattern refines the type of the scrutinee. The typing rules for
our core language are given in Fig. 4. We again omit the rules for
types and kind which are given in Cave and Pientka [2012].

We use a bidirectional type system for the target language which
is similar to the one in Cave and Pientka [2012] but we simplify the
presentation by omitting recursive types and instead we assume that
constructors together with their types are declared in a signature Σ.

We rely on the fact that our index domain comes with rules
which check that a given index object is well-typed. This is de-
scribed by the judgment: ∆ ` C : U .

1 When choosing as an index language, contextual LF for example, all index
variables X are associated with a post-poned substitution.

` D wf Target declaration D is well-formed

· ` T ⇐ ctype · ; f :T ` E ⇐ T

` rec f :T = E wf
t-rec

· ` T ⇐ ctype

` c:T wf
t-type · ` K ⇐ kind

` a:K wf
t-kind

∆; Γ ` E ⇒ T E synthesizes type T

∆; Γ ` E1 ⇒ S → T ∆; Γ ` E2 ⇐ S

∆; Γ ` E1 E2 ⇒ T
t-app

∆; Γ ` E ⇒ Π∗X:U. T ∗ = {i, e} ∆ ` C ⇐ U

∆; Γ ` E [C]⇒ [C/X]T
t-app-index

Γ(x) = T

∆; Γ ` x⇒ T
t-var

∆; Γ ` E ⇐ T

∆; Γ ` E:T ⇒ T
t-ann

∆; Γ ` E ⇐ T E type checks against type T

∆; Γ ` E ⇒ T

∆; Γ ` E ⇐ T
t-syn

∆; Γ, x:T1 ` E ⇐ T2

∆; Γ ` (fnx⇒E)⇐ T1 → T2
t-fn

∆, X:U ; Γ ` E ⇐ T ∗ = {i, e}
∆; Γ ` (λX⇒E)⇐ Π∗X:U. T

t-mlam
∆; Γ ` E ⇒ S ∆; Γ `

−→
B ⇐ S → T

∆; Γ ` caseE of
−→
B ⇐ T

t-case

∆; Γ ` Π∆′; Γ′.Pat:θ 7→ E ⇐ T Branch B = Π∆′; Γ′.Pat:θ 7→ E checks against type T

∆′ ` θ:∆ ∆′; Γ′ ` Pat⇐ [θ]S ∆′; [θ]Γ,Γ′ ` E ⇐ [θ]T

∆; Γ ` Π∆′; Γ′.Pat:θ 7→ E ⇐ S → T
t-branch

∆; Γ ` Pat⇐ T Pattern Pat checks against T

∆ ` C ⇐ U
∆; Γ ` [C]⇐ [U]

t-pindex
Γ(x) = T

∆; Γ ` x⇐ T
t-pvar

Σ(c) = T ∆; Γ `
−−→
Pat⇐ T 〉 S

∆; Γ ` c
−−→
Pat⇐ S

t-pcon

∆; Γ `
−−→
Pat⇐ T 〉 S Pattern spine

−−→
Pat checks against T and has result type S

∆ ` C ⇐ U ∆; Γ `
−−→
Pat⇐ [C/X]T 〉 S

∆; Γ ` [C]
−−→
Pat⇐ ΠeX:U. T 〉 S

t-spi
∆; Γ ` Pat⇐ T1 ∆; Γ `

−−→
Pat⇐ T2 〉 S

∆; Γ ` Pat
−−→
Pat⇐ T1 → T2 〉 S

t-sarr
∆; Γ ` · ⇐ S 〉 S t-snil

Figure 4. Typing of computational expressions

The introductions, functions fnx⇒e and dependent functions
λx⇒e, check against their respective type. Their corresponding
eliminations, application E1 E2 and dependent application E [C],
synthesize their type. We rely in this rule on the index-level substi-
tution operation and we assume that it is defined in such a way that
normal forms are preserved2.

To type-check a case-expressions caseE of ~B against T , we
synthesize a type S for E and then check each branch against
S → T . A branch Π∆′; Γ′.Pat:θ 7→ E checks against S → T ,
if: 1) θ is a refinement substitution mapping all index variables
declared in ∆ to a new context ∆′, 2) the pattern Pat is compatible
with the type S of the scrutinee, i.e.Pat has type [θ]S, and the body
E checks against [θ]T in the index context ∆′ and the program
context [θ]Γ,Γi. Note that the refinement substitution effectively
performs a context shift.

We present the typing rules for patterns in spine format which
will simplify our elaboration and inferring types for pattern vari-

2 In Beluga, this is for example achieved by relying hereditary substitu-
tions[Cave and Pientka 2012].

ables. We start checking a pattern against a given type and check in-
dex objects and variables against the expected type. If we encounter
c
−−→
Pat we look up the type T of the constant c in the signature and

continue to check the spine
−−→
Pat against T with the expected return

type S. Pattern spine typing succeeds if all patterns in the spine−−→
Pat have the corresponding type in T and yields the return type S.

3.2 Elaborated examples
We show here the result of elaboration for the type-preserving
evaluator given in Section 2.2.2.

rec eval: Πi. T:tp.Tm [T]→Val [T] = λ T ⇒ fn e ⇒
case e of ...
| . ; e1:Tm [nat], e2:Tm [nat] .
Plus e1 e2 : nat/T ⇒
case (eval [nat] e1 , eval [nat] e2) of
|. ;x:Tm [nat],y:Tm [nat]. (VNum x, VNum y) : .

⇒ VNum (add x y)

| T:tp ; e:Tm [bool], e1:Tm [T], e2:Tm [T].
If [T] e e1 e2 : T/T⇒

case eval [bool] e of
| T:tp ; . VTrue : T/T ⇒ eval [T] e1
| T:tp ; . VFalse : T/T ⇒ eval [T] e2

To elaborate a recursive declaration we start by reconstructing
the type annotation. In this case the user left the variable T free
which becomes an implicit argument and we abstract over this
variable with Πi. T:Tp marking it implicit. Next, elaborate the
function body given the fully elaborated type. First, we therefore
add the corresponding abstraction λ T⇒ .

Elaboration proceeds recursively on the term. We reconstruct
the case-expression, considering the scrutinee e and we infer its
type as Tm [T]. We elaborate the branches next. Recall that each
branch in the source language consists of a pattern and a body.
Moreover, the body can refer to any variable in the pattern or vari-
ables introduced in outer patterns. However, in the target language
branches abstract over the context ∆; Γ and add a refinement sub-
stitution θ. The body of the branch, refers to variables declared in
the branch contexts only. In each branch, we list explicitly the in-
dex variables and pattern variables. For example in the branch for
If we added T:tp to the index context ∆ of the branch and e:Tm
[bool], e1:Tm [T], e2:Tm [T] to computational context Γ.

The refinement substitution moves terms from the outer context to
the branch context, refining the appropriate index variables as ex-
pressed by the pattern. For example in the Plus branch, the substi-
tution refines the type T to nat.

As we mentioned before, elaboration added an implicit param-
eter to the type of function eval, and the user is not allowed to
directly supply an instantiation for it. Implicit parameters have to
be inferred by elaboration. In the recursive calls to eval, we add
the parameter that represents the type of the term being evaluated.

The output of the elaboration process is a target language term
that can be type checked with the rules from figure 4. If elaboration
fails it can either be because the source level program describes
a term that would be ill-typed when elaborated, or in some cases,
elaboration fails because it cannot infer all the implicit parameters.
In this case, the user can add type annotations to simplify the job of
elaboration.

4. Description of elaboration
Elaboration of our source-language to our core target language is
bi-directional and guided by the expected target type. Recall that
we mark in the target type argument which are implicitly quantified
(see ΠiX:U. T). This annotation is added when we elaborate a
source type with free variables. If we check a source expression
against ΠiX:U. T we insert the appropriate λ-abstraction in our
target. If we have synthesized the type ΠiX:U. T for an expression,
we insert hole variables for the omitted argument of type U . When
we switch between synthesizing a type S for a given expression and
checking an expression against an expected type T , we will rely on
unification to make them equal. A key challenge is how to elaborate
case-expressions where we pattern match on a dependently typed
expression and we might pattern in the branches might refine it. Our
elaboration is parametric in the index domain, hence we keep our
definitions of holes, instantiation of holes and unification abstract
and only state their definitions and properties.

4.1 Elaboration of index objects
To elaborate a source expression, we insert holes for omitted index
arguments and elaborate index objects which occur in it. We hence
make a few requirements about our index domain. We assume

1. A function genHole (?Y : ∆.U) that generates a term standing
for a hole of type U in the context ∆, i.e. its instantiation may
refer to the index variables in ∆. If the index language is first-

order, then we can characterize holes for example by meta-
variables [Nanevski et al. 2008]. If our index language is higher-
order, for example if we choose contextual LF as in Beluga,
we characterize holes using meta2-variables as described in
Boespflug and Pientka [2011].

2. A typing judgment for guaranteeing that index objects with
holes are well-typed:

Θ; ∆ ` C : U Index object C has index type U in context ∆
and all holes in C are declared in Θ

3. Unification algorithm which finds the most general unifier for
two index objects. In Beluga, we rely on higher-order pattern
unification [Miller 1991; Dowek et al. 1996]. We characterize
here abstractly the unification judgement for computation-level
types, which in turn will rely on unifying index-level terms;
technically, we in fact rely on two unification judgments: one
finding instantiations for holes, the other finding most general
instantiations for index variables such that two index terms be-
come equal. We use the first one during elaboration, the sec-
ond one is used to make two index objects equal as for exam-
ple during matching or when computing the type refinement in
branches.

Θ; ∆ ` C1
.
= C2/Θ

′; ρ where: Θ′ ` ρ:Θ
∆ ` C1

.
= C2/∆

′; θ where: ∆′ ` θ:∆

where ρ describes the instantiation for holes in Θ. If unification
succeeds, then we have JρKC1 = JρKC2 and [θ]C1 = [θ]C2

respectively.

4. Elaboration of index objects themselves. If the index language
is simply typed, the elaboration has nothing to do; however,
if as in Beluga, our index objects are objects described in the
logical framework LF, then we need to elaborate them and infer
omitted arguments following [Pientka 2013]. There are two
related forms of elaboration for index objects we use:

Θ; ∆ ` c : U C/Θ′; ∆′; ρ
Θ; ∆ ` Hc ; θI : U C/Θ′; ρ

The first judgment reconstructs the index object c by checking
it against U . We thread through a context Θ of holes and a
context of index variables ∆, we have seen so far. The object
c however may contain additional free index variables whose
type we infer during elaboration. All variables occurring in C
will be eventually declared with their corresponding type in
∆′. As we elaborate c, we may refine holes and add additional
holes. ρ describes the mapping between Θ and Θ′, i.e. it records
refinement of holes. Finally, we know that ∆′ = JρK∆,∆0,
i.e. ∆′ is an extension of ∆. We use the first judgment in
elaborating patterns and type declarations in the signature.
The second judgment is similar to the first, but does not allow
free index variables in c. We elaborate c together with a refine-
ment substitution θ, which records refinements obtained from
earlier branches. When we encounter an index variable, we look
up what it is mapped to in θ and return it. Given a hole context
Θ and a index variable context ∆, we elaborate an index term
c against a given type U . The result is two fold: a context Θ′

of holes is related to the original hole context Θ via the hole
instantiation ρ. We use the second judgment to elaborate index
objects embedded into target expressions.

·; · | · ` t T/Θ; ∆; · ∆i ` ε : Θ

` c : t Πi(∆i, JεK∆). JεKT
el-typ

·; · | · ` k K/Θ; ∆; · ∆i ` ε : Θ

` a : k Πi(∆i, JεK∆). JεKK
el-kind

·; · | · ` t T/Θ; ∆; · ∆i ` ε : Θ ·; f :Πi∆i, JεK∆. T ` He ; ·I : Πi(∆i, JεK∆). JεKT E/·; ·
` rec f :t = e rec f :Πi(∆i, JεK∆). JεKT = E

el-rec

Figure 5. Elaborating declarations

4.2 Elaborating declarations
We begin our discussion of elaborating source programs in a top-
down manner starting with declarations. Types and kinds in decla-
rations may contain free variables and there are two different tasks:
we need to fill in omitted arguments, infer the type of free variables
and abstract over the free variables and holes which are left over in
the elaborated type / kind. We rely here on the fact that the index
language provides a way of inferring the type of free variables.

To abstract over holes in a given type T , we employ a lifting
operation: ∆ ` ε : Θ which mpas each hole to a fresh index
variable.

· ` · : ·
∆ ` ε : Θ

∆, X : U ` ε, (.X)/X : Θ, X : (.U)

If holes do not have atomic type U this lifting fails. Removing
this restriction would require us to be able to allow higher-order
index variables, i.e. X Y , which we currently do not support3.

To elaborate a constant declarations c : t we elaborate the type
t to a target type T where free index variables are listed in ∆ and
the remaining holes in T are described in Θ. We then lift all the
holes in Θ to proper declarations in ∆i via the lifting substitution ε.
The final elaborated type of the constant c is: Πi(∆i, JεK∆). JεKT .
Note that both the free variables in the type t and the lifted holes
described in ∆i form the implicit arguments and are marked with
Πi. The elaboration of kinds follows the same principle.

To elaborate recursive function declarations, we first elaborate
the type t abstracting over all the free variables and lifting the
remaining holes to obtain Πi(∆i, JεK∆). JεKT . Second, we as-
sume f of this type and elaborate the body e checking it against
Πi(∆i, JεK∆). JεKT . We note that we always elaborate a source
expression e together with a possible refinement substitution θ. In
the beginning, θ will be empty. We describe elaboration of source
expressions in the next section.

4.3 Elaborating source expressions
We elaborate source expressions bi-directionally. Expressions such
as non-dependent functions and dependent functions are elaborated
by checking the expression against a given type; expressions such
as application and dependent application are elaborated to a cor-
responding target expression and at the same time synthesize the
corresponding type.

Synthesizing: Θ; ∆; Γ ` He ; θI E:T/Θ′; ρ
Checking: Θ; ∆; Γ ` He ; θI : T E /Θ′; ρ

We first explain the judgment for elaborating a source expres-
sion e by checking it against T given holes in Θ, index variables
∆, and program variables Γ. Because of pattern matching, index
variables in ∆ may get refined to concrete index terms. Abusing
slightly notation, we write θ for the map of free variables occur-
ring in e to their refinements and consider a source expression e

3 In our implementation of elaboration in Beluga, we did not find this
restriction to matter in practice.

together with the refinement map θ, written as He ; θI. The result
of elaborating He ; θI is a target expression E, a new context of
holes Θ′, and a hole instantiation ρ which instantiates holes in Θ,
i.e. Θ′ ` ρ : Θ. The result E has type JρKT .

The result of elaboration in synthesis mode is similar; we return
the target expression E together with its type T , a new context of
holes Θ′ and a hole instantiation ρ, s.t. Θ′ ` ρ : Θ. The result is
well-typed, i.e. E has type T .

We give the rules for elaborating source expressions in checking
mode in Fig. 6 and in synthesis mode in Fig. 7. To elaborate a func-
tion (see rule el-fn) we simple elaborate the body extending the
context Γ. There are two cases when we elaborate an expression
of dependent function type. In the rule el-mlam, we elaborate a
dependent function λX⇒e against ΠeX:U. T by elaborating the
body e extending the context ∆with the declaration X:U . In the
rule el-mlam-i, we elaborate an expression e against ΠiX:U. T
by elaborating e against T extending the context ∆ with the decla-
rationX:U . The result of elaborating e is then wrapped in a depen-
dent function.

When switching to synthesis mode, we elaborate He ; θI and
obtain the corresponding target expression E and type T ′ together
with an instantiation ρ for holes in Θ. We then unify the synthesized
type T ′ and the expected type JρKT obtaining an instantiation ρ′

and return the composition of the instantiation ρ and ρ′. When
elaborating an index object [c] (see rule el-box), we resort to
elaborating c in our indexed language which we assume.

One of the key cases is the one for case-expressions. In the
rule el-case, we elaborate the scrutinee synthesizing a type S; we
then elaborate the branches. Note that we verify that S is a closed
type, i.e. it is not allowed to refer to holes. To put it differently, the
type of the scrutinee must be fully known. This is done to keep a
type refinement in the branches from influencing the type of the
scrutinee. For a similar reason, we enforce that the type T , the
overall type of the case-expression, is closed; were we to allow
holes in T , we would need to reconcile the different instantiations
found in different branches.

When elaborating a constant, we look up its type Tc in the sig-
nature Σ and then insert holes for the arguments marked implicit
in its type (see Fig. 7). Recall that all implicit arguments are quan-
tified at the outside, i.e. Tc = ΠiXn:Un. . . .Π

eX1:U1. S where
S does not contain any implicit dependent types Πi. We generate
for each implicit declaration Xk:Uk a new hole which can depend
on the currently available index variables ∆. When elaborating a
variable, we look up its type in Γ and because the variable can cor-
respond to a recursive function with implicit parameters we insert
holes for the arguments marked as implicit as in the constant case.

Elaboration of applications in the synthesis mode threads
through the hole context and its instantiation, but is otherwise
straightforward. In each of the application rules, we elaborate the
first argument of the application obtaining a new hole context Θ1

together with a hole instantiation ρ1. We then apply the hole instan-
tiation ρ1 to the context ∆ and Γ and to the refinement substitution
θ, before elaborating the second part.

Θ; ∆; Γ ` He ; θI : T E/Θ′; ρ Elaborate source He ; θI to target expression E checking against type T

Θ; ∆ ` Hc ; θI : U C/Θ′; ρ

Θ; ∆; Γ ` H[c] ; θI : [U] [C]/Θ′; ρ
el-box

Θ; ∆; Γ, x:T1 ` He ; θI : T2 E/Θ′; ρ

Θ; ∆; Γ ` Hfnx⇒e ; θI : T1 → T2 fnx⇒E/Θ′; ρ
el-fn

Θ; ∆, X:U ; Γ ` He ; θ,X/XI : T E/Θ′; ρ

Θ; ∆; Γ ` He ; θI : ΠiX:U. T λX⇒E/Θ′; ρ
el-mlam-i

Θ; ∆, X:U ; Γ ` He ; θ,X/XI : T E/Θ′; ρ

Θ; ∆; Γ ` HλX⇒e ; θI : ΠeX:U. T λX⇒E/Θ′; ρ
el-mlam

Θ; ∆; Γ ` He ; θI E:S/·; ρ JρK∆; JρKΓ ` H~b ; JρKθI : S → JρKT ~B

Θ; ∆; Γ ` Hcase e of~b ; θI : T caseE of ~B/·; ρ
el-case

Θ; ∆; Γ ` He ; θI E:T1/Θ1; ρ Θ1; JρK∆ ` T1
.
= JρKT/Θ2; ρ′

Θ; ∆; Γ ` He ; θI : T Jρ′KE/Θ2; ρ′ ◦ ρ
el-syn

Figure 6. Elaboration of Expressions (Checking Mode)

Θ; ∆ ` E : T E′ : T ′/Θ′ Apply E to holes for representing omitted arguments based on T obtaining a term E′ of type T ′

genHole (?Y :∆.U) = C (Θ, ?Y :∆.U); ∆ ` E [C] : [C/X]T E′:T ′ / Θ′

Θ; ∆ ` E : ΠiX:U. T E′:T ′ / Θ′
el-impl

S 6= ΠiX:U. T

Θ; ∆ ` E:S E:S / Θ
el-impl-done

Θ; ∆; Γ ` He ; θI E:T/Θ′; ρ Elaborate source He ; θI to target E and synthesize type T

Γ(x) = T Θ; ∆; Γ ` x:T E′:T ′/Θ′

Θ; ∆; Γ ` Hx ; θI E′:T ′ / Θ′; id(Θ′)
el-var

Σ(c) = Tc Θ; ∆ ` c : Tc E : T / Θ′

Θ; ∆; Γ ` Hc ; θI E : T / Θ′; id(Θ′)
el-const

Θ; ∆; Γ ` He1 ; θI E1:S → T / Θ1; ρ1 Θ1; Jρ1K∆; Jρ1KΓ ` He2 ; Jρ1KθI : JρK1S E2 / Θ2; ρ2

Θ; ∆; Γ ` He1 e2 ; θI E1 E2 : Jρ2KT / Θ2; ρ2 ◦ ρ1

el-app

Θ; ∆; Γ ` He ; θI E1:ΠeX:U. T/Θ1; ρ1 Θ1; Jρ1K∆ ` Hc ; Jρ1KθI : U C/Θ2; ρ2

Θ; ∆; Γ ` He [c] ; θI E1 [C]:[C/X](Jρ2KT)/Θ2; ρ2 ◦ ρ1

el-mapp

Θ; ∆; Γ ` He ; θI E:ΠeX:U. T/Θ1; ρ genHole (?Y : (JρK∆).U) = C

Θ; ∆; Γ ` He ; θI E [C] : [C/X]T / Θ1, ?Y :(Jρ1K∆).U ; ρ
el-mapp-underscore

Θ; ∆ ` Ht ; θI T/Θ1; ρ1 Θ1; JρK∆; JρK∆ ` He ; JρKθI : T E/Θ2; ρ2

Θ; ∆; Γ ` He:t ; θI (E:T):T/Θ2; ρ2 ◦ ρ1
el-annotated

Figure 7. Elaborating of Expressions (Synthesizing Mode)

4.3.1 Elaborating branches
We give the rules for elaborating branches in Fig. 8. Recall that a
branch pat 7→ e consists of the pattern pat and the body e. We
elaborate a branch under the refinement θ, because the body e may
contain index variables declared earlier and which might have been
refined in earlier branches.

Intuitively, to elaborate a branch, we need to elaborate the pat-
tern and synthesize the type of index and pattern variables bound
inside of it. In the dependently typed setting, pattern elaboration
needs to do however a bit more work: we need to infer implicit ar-
guments which were omitted by the programmer and we need to
establish how the synthesized type of the pattern refines the type of
the scrutinee.

Moreover, there is a mismatch between the variables the body
e may refer to (see rule wf-branch in Fig. 2) and the context the
elaborated body E is meaningful (see rule t-branch in Fig. 4).
While our source expression e possibly can refer to index variables

declared prior, the elaborated body E is not allowed to refer to
any index variables which were declared at the outside; those index
variables are replaced by their corresponding refinements. To ac-
count for these additional refinements, we not only return an elabo-
rated pattern Π∆r; Γr.Pat:θr when elaborating a pattern pat (see
rule el-subst in Fig. 8), but in addition return a map θe between
source variables declared explicitly outside to their refinements.

Technically, elaborating a pattern is done in three steps.

1. First, given pat we elaborate it to a target pattern Pat together
with its type Sp synthesizing the type of index variables ∆p

and the type of pattern variables Γp together with holes (Θp)
which denote omitted arguments. This is accomplished by the
first premise of the rule el-subst:

·; · ` pat Π∆p; Γp.Pat : S1/Θp; ·

Our pattern elaboration judgment threads through the hole con-
text and the context of index variables, both of which are empty

∆; Γ ` Hb ; θI : S → T B Elaborate source branch Hb ; θI to target branch B

∆ ` pat : S Π∆r; Γr.Pat : θr | θe ·; ∆r; [θr]Γ,Γr ` He ; θr ◦ θ, θeI : [θr]T E/·; ·
∆; Γ ` Hpat 7→ e ; θI : S → T Π∆r; Γr.Pat:θr 7→ E

el-branch

∆ ` pat : T Π∆r; Γr.Pat : θr | θe

·; · ` pat Π∆p; Γp.Pat : Sp/Θp; · ∆′p ` ρ : Θp ∆, (∆′p, JρK∆p) ` JρKSp + S/∆r; θR

∆ ` pat : S Π∆r; [θp]JρKΓp.[θp]JρKPat : θr | θe
el-subst

where θR = θr, θp s.t. ∆r ` θp : (∆′p, JρK∆p) and θp = θi, θe s.t. ∆r ` θi : ∆′p

Figure 8. Branches and patterns

in the beginning. Because program variables occur linearly, we
do not thread them through but simply combine program vari-
able contexts when needed. The result of elaborating pat is a
pattern Pat in our target language where ∆p describes all in-
dex variables in Pat, Γp contains all program variables and
Θp contains all holes, i.e. most general instantiations of omit-
ted arguments. We describe pattern elaboration in detail in Sec-
tion 4.3.2.

2. Second, we abstract over the hole variables in Θp by lifting all
holes to fresh index variables from ∆′p. This is accomplished
by the second premise of the rule el-subst.

3. Finally, we compute the refinement substitution θr which en-
sures that the type of the pattern JρKSp is compatible with the
type S of the scrutinee. We note that the type of the scrutinee
could also force a refinement of holes in the pattern. This is
accomplished by the judgment:

∆, (∆′p, JρK∆p) ` JρKS1 + T1/∆r; θR θR = θr, θp

We note because θR maps index variables from ∆, (∆′p, JρK∆p)
to ∆r , it contains two parts: θr provides refinements for vari-
ables ∆ in the type of the scrutinee; θp provides possible refine-
ments of the pattern forced by the scrutinee. This can happen, if
the scrutinee’s type is more specific than the type of the pattern.

4.3.2 Elaborating patterns
Pattern elaboration is bi-directional. The judgements for elaborat-
ing patterns by checking them against a given type and synthesizing
their type are:

Synthesizing: Θ; ∆`pat Π∆′; Γ.Pat:T / Θ′; ρ
Checking: Θ; ∆`pat : T Π∆′; Γ.Pat / Θ′; ρ

As mentioned earlier, we thread through a hole context Θ to-
gether with the hole substitution ρ that relates: Θ′ ` ρ:Θ. Recall
that as our examples show index-level variables in patterns need
not to be linear and hence we accumulate index variables and thread
them through as well. Program variables on the other hand must oc-
cur linearly, and we can simply combine them. In synthesis mode,
elaboration returns a reconstructed pattern Pat, a type T where ∆′

describes the index variables in Pat and Γ′ contains all program
variables occurring in Pat. The hole context Θ′ describes the most
general instantiations for omitted arguments which have been in-
serted into Pat. In checking mode, we elaborate pat given a type
T to the target expression Pat and index variable context ∆′, pat-
tern variable context Γ′ and the hole context Θ′.

Pattern elaboration starts in synthesis mode, i.e. either elaborat-
ing an annotated pattern (e : t) (see rule el-pann) or a pattern

c −→pat (see rule el-pcon). To reconstruct patterns that start with a
constructor we first look-up the constructor in the signature Σ to
get its fully elaborated type Tc and then elaborate the arguments−→
pat against Tc. Elaborating the spine of arguments is guided by the
type Tc. If Tc = ΠiX:U. T , then we generate a new hole for the
omitted argument of type U . If Tc = T1 → T2, then we elaborate
the first argument in the spine pat

−→
pat against T1 and the remaining

arguments
−→
pat against T2. If Tc = ΠeX:U. T , then we elaborate

the first argument in the spine [c]
−→
pat against U and the remaining

arguments
−→
pat against [C/X]T . When the spine is empty, denoted

by ·, we simply return the final type and check that constructor was
fully applied by ensuring that the type S we reconstruct against is
either of index level type, i.e. [U], or a recursive type, i.e. a

−→
[C].

For synthesizing the patterns with a type annotation, first we
elaborate the type t in an empty context using a judgement that
returns the reconstructed type T , its holes and index variables
(contexts Θ′ and ∆′). Once we have the type we elaborate the
pattern checking against the type T .

To be able to synthesize the type of pattern variables and return
it, we check variables against a given type T during elaboration
(see rule el-pvar). For index level objects, rule el-pindexwe de-
fer to the index level elaboration that the index domain provides4.
Finally, when elaborating a pattern against a given type it is possi-
ble to switch to synthesis mode using rule el-psyn, where first we
elaborate the pattern synthesizing its type S and then we make sure
that S unifies against the type T it should check against.

5. Soundness of elaboration
We establish soundness of our elaboration: if we start with a well-
formed source expression, we obtain a well-typed target expression
E which may still contain some holes and E is well-typed for
any ground instantiation of these holes. In fact, our final result of
elaborating a recursive function and branches must always return a
closed expression.

Theorem 1 (Soundness).

1. If Θ; ∆; Γ ` He ; θI : T E/Θ′; ρ
then for any grounding hole instantiation ρ′ s.t. · ` ρ′ : Θ′ and
ρ0 = ρ′ ◦ ρ, we have Jρ0K∆; Jρ0KΓ ` Jρ′KE ⇐ Jρ0KT .

4 Both, elaboration of pattern variables and of index objects can be general-
ized by for example generating a type skeleton in the rule el-substgiven
the scrutinee’s type. This is in fact what is done in the implementation of
Beluga.

Pattern (synthesis mode) Θ; ∆ ` pat Π∆′; Γ.Pat:T / Θ′ ; ρ

Σ(c) = T Θ; ∆ ` −→pat : T Π∆′; Γ.
−−→
Pat 〉 S / Θ′; ρ

Θ; ∆ ` c−→pat Π∆′; Γ.c
−−→
Pat:S / Θ′; ρ

el-pcon

·; · ` Ht ; ·I T/Θ′; ∆′; · (Θ,Θ′) ; (∆,∆′) ` pat : T Π∆′′; Γ.Pat / Θ′′; ρ′

Θ; ∆ ` (pat:t) Π∆′′; Γ.Pat:Jρ′KT / Θ′′; ρ′
el-pann

Pattern (checking mode) Θ; ∆ ` pat : T Π∆′; Γ.Pat / Θ′; ρ

Θ; ∆ ` x : T Π∆ ; x:T.x / Θ; id(Θ)
el-pvar

Θ; ∆ ` c : U C/Θ′; ∆′; ρ

Θ; ∆ ` [c] : [U] Π∆′; · . [C]/Θ′ ; ρ
el-pindex

Θ; ∆ ` pat Π∆′; Γ.Pat:S / Θ′; ρ Θ′; ∆′ ` S .
= JρKT / ρ′; Θ′′

Θ; ∆ ` pat : T ΠJρ′K∆′; Jρ′KΓ . JρKPat / Θ′′ ; ρ′ ◦ ρ
el-psyn

Pattern Spines Θ; ∆ ` −→pat : T Π∆′; Γ.
−−→
Pat 〉 S / Θ′; ρ

either T = [U] or T = a
−→
[C]

Θ; ∆ ` · : T Π∆; · . · 〉 T / Θ; id(Θ)
el-sp-empty

Θ; ∆ ` pat : T1 Π∆′; Γ.Pat/Θ′; ρ Θ′; ∆′ ` −→pat : JρKT2 Π∆′′; Γ′.
−−→
Pat 〉 S / Θ′′; ρ′

Θ; ∆ ` pat −→pat : T1 → T2 Π∆′′; (Γ,Γ′) . (Jρ′KPat)
−−→
Pat 〉 S / Θ′′; ρ′ ◦ ρ

el-sp-cmp

Θ; ∆ ` c : U C/Θ′; ∆′; ρ Θ′; ∆′ ` −→pat : [C/X]JρKT Π∆′′; Γ.
−−→
Pat 〉 S / Θ′′; ρ′

Θ; ∆ ` [c]
−→
pat : ΠeX:U. T Π∆′′; Γ . (Jρ′K[C])

−−→
Pat 〉 S / Θ′′; ρ′ ◦ ρ

el-sp-explicit

genHole (?Y :∆.U) = C Θ, ?Y :∆.U ; ∆ ` −→pat : [C/X]T Π∆′; Γ.
−−→
Pat 〉 S / Θ′; ρ

Θ; ∆ ` −→pat : ΠiX:U. T Π∆′; Γ.(JρKC)
−−→
Pat 〉 S / Θ′; ρ

el-sp-implicit

Figure 9. Elaboration of patterns and pattern spines

2. If Θ; ∆; Γ ` He ; θI E:T/Θ1; ρ
then for any grounding hole instantiation ρ′ s.t. · ` ρ′ : Θ2 and
ρ0 = ρ′ ◦ ρ, we have Jρ0K∆; Jρ0KΓ ` Jρ′KE′ ⇒ Jρ′KT ′.

3. If ∆; Γ ` Hpat 7→ e ; θI : S → T Π∆′; Γ′.Pat : θ′ 7→ E
then ∆; Γ ` Π∆′; Γ′.Pat : θ′ 7→ E ⇐ S → T .

To establish soundness of elaboration of case-expressions and
branches, we rely on pattern elaboration which abstracts over the
variables in patterns as well as over the holes which derive from
most general instantiations inferred for omitted arguments. We
abstract over these holes using a lifting substitution ε. In practice,
we need a slightly more general lemma than the one stated below
which takes into account the possibility that holes in Pat are
further refined (see Appendix).

Lemma 2 (Pattern elaboration).

1. If Θ; ∆ ` pat Π∆1; Γ1.Pat:T/Θ1; ρ1 and
ε is a ground lifting substitution, such as ∆i ` ε:Θ1

then ∆i, JεK∆1; JεKΓ1 ` JεKPat⇐ JεKT .

2. If Θ; ∆ ` pat : T Π∆1; Γ1.Pat/Θ1; ρ1 and
ε is a ground lifting substitution, such as ∆i ` ε:Θ1

then ∆i, JεK∆1; JεKΓ1 ` JεKPat⇐ JεKJρ1KT .

3. If Θ; ∆ ` −→pat : T Π∆1; Γ1.
−−→
Pat 〉 S/Θ1; ρ1 and

ε is a ground lifting substitution, such as ∆i ` ε:Θ1

then ∆i, JεK∆1; JεKΓ1 ` JεK
−−→
Pat⇐ JεKJρ1KT 〉 JεKS.

6. Related work
Our language contains indexed families of types that are related to
Zenger’s work [Zenger 1997] and the Dependent ML (DML) [Xi
2007] and Applied Type System (ATS) [Xi 2004; Chen and Xi
2005]. The objective in these systems is: a program that is typable
in the extended indexed type system is already typable in ML. By
essentially erasing all the type annotations necessary for verifying
the given program is dependently typed, we obtain a simply typed
ML-like program. In contrast, our language supports pattern match-
ing on index objects. Our elaboration, in contrast to the one given in
Xi [2007], inserts omitted arguments producing programs in a fully
explicit dependently typed core language. This is different from
DML-like systems which treat all index arguments as implicit and
do not provide a way for programmers to manipulate and pattern
match directly on index objects. Allowing users to explicitly access
and match on index arguments changes the game substantially.

Elaboration from implicit to explicit syntax for dependently
typed systems has first been mentioned by Pollack [1990] al-
though no concrete algorithm to reconstruct omitted arguments
was given. Luther [Luther 2001] refined these ideas as part of the
TYPELab project. He describes an elaboration and reconstruction

for the calculus of constructions without treating recursive func-
tions and pattern matching. There is in fact little work on elab-
orating dependently-typed source language supporting recursion
and pattern matching. For example, Agda’s the bi-directional type
inference algorithm described in [Norell 2007] concentrates on a
core dependently typed calculus enriched with dependent pairs, but
omits the rules for its extension with recursion and pattern match-
ing. Idris, a dependently typed language developed by Brady [2013]
uses a different technique. Idris starts by adding holes for all the
implicit variables and it tries to instantiate these holes using unifi-
cation. However, the language uses internally a tactic based elabo-
rator that is exposed to the user who can interactively fill the holes
using tactics. He does not prove soundness of the elaboration, but
conjectures that given a type correct program its elaboration fol-
lowed by a reverse elaboration produces a matching source level
program.

A notable example, is the work by [Asperti et al. 2012] on
describing a bi-directional elaboration algorithm for the Calculus of
(Co)Inductive Constructions (CCIC) implemented in Matita. Their
setting is very different from ours: CCIC is more powerful than
our language since the language of recursive programs can occur
in types and there is no distinction between the index language and
the programming language itself. Moreover in Matita, we are only
allowed to write total programs and all types must be positive. For
these reasons their source and target language is more verbose than
ours and refinement, i.e. the translation of the source to the target,
is much more complex than our elaboation. The difference between
our language and Matita particularly comes to light when writing
case-expressions. In Matita as in Coq, the programmer needs to
supply an invariant for the scrutinee and the overall type of the case
expression as a type annotion. Each branch then is checked against
the type given in the invariant. In contrast, our case-expressions
require no type annotations and we refine each branch according
to refinement imposed by the pattern in each branch. This makes
our source and target language more light-weight and closer to a
standard simply typed functional language.

Finally, refinement in Matita may leave some holes in the final
program which then can be refined further by the user using for
example tactics. We support no such interaction; in fact, we fail, if
holes are left-over and the programmer is asked to provide more
information.

Agda, Idris, Matita and Coq require users to abstract over all
variables occurring in a type and the user statically labells argu-
ments the user can freely omit. To ease the requirement of declar-
ing all variables occurring in type, many of these systems such as
Agda supports simply listing the variables occurring in a declara-
tion without the type. This however can be brittle since it requires
that the user chose the right order. Moreover, the user has the pos-
sibility to locally override the implicit arguments mechanism and
provide instantiations for implicit arguments explicitly. This is in
contrast to our approach where we guide elaboration using type an-
notations and omit arguments based on the free variables occurring
in the declared type.

7. Conclusion and future work
In this paper we describe a surface language for writing depen-
dently typed programs where we separate the language of types and
index objects from the language of programs. Our programming
language supports indexed data-types, dependent pattern matching
and recursion. Programmers can leave index variables free when
declaring the type of a constructor or recursive program as a way of
stating that arguments for these free variables should be inferred by
the type-directed elaboration. This offers a lightweight mechanism
for writing compact programs which resemble their ML counter-
parts and information pertaining index arguments can be omitted.

In particular, our handling of case-expressions does not require pro-
grammers to specify the type invariants the patterns and their bod-
ies must satisfy. This is achieved by computing refinement substi-
tutions. Moreover, we support nested pattern matching inside func-
tion (as opposed to languages such as Agda or Idris that only do
pattern matching at the level of function declarations).

To guide elaboration and type inference, we allow type annota-
tions which indirectly refine the type of sub-expressions; type an-
notations in patterns are also convenient to name index variables
which do not occur explicitly in a pattern.

We prove our elaboration sound, in the sense that if elabora-
tion produces a fully explicit term, this term will be well-typed.
Finally, our elaboration is implemented in Beluga, where we use
as the index domain contextual LF, and has been shown practical
(see for example the implementation of a type-preserving compiler
[Belanger et al. 2013]). We believe our work sheds some light into
how to design and implement a dependently typed language where
we have a separate index language.

In the future work, we would like to explore an appropriate
notion of completeness of elaboration. This would provide stronger
guarantees for programmers stating that all terms in the target
language can be written as terms in the source language such that
elaboration succeeds. Moreover, we would like to explore more
powerful type-systems for the computational language, such as
polymorphism.

References
A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. A bi-directional refine-

ment algorithm for the calculus of (co)inductive constructions. Logical
Methods in Computer Science, 8:1–49, 2012.

O. S. Belanger, S. Monnier, and B. Pientka. Programming type-safe trans-
formations using higher-order abstract syntax. In G. Gonthier and
M. Norrish, editors, Third International Conference on Certified Pro-
grams and Proofs (CPP’13), Lecture Notes in Computer Science (LCNS
8307), pages 243–258. Springer, 2013.

M. Boespflug and B. Pientka. Multi-level contextual modal type the-
ory. In G. Nadathur and H. Geuvers, editors, 6th International Work-
shop on Logical Frameworks and Meta-languages: Theory and Practice
(LFMTP’11), Electronic Proceedings in Theoretical Computer Science
(EPTCS), 2011.

E. Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Program-
ming, 23:552–593, 9 2013.

A. Cave and B. Pientka. Programming with binders and indexed data-
types. In 39th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’12), pages 413–424. ACM
Press, 2012.

C. Chen and H. Xi. Combining programming with theorem proving. In
O. Danvy and B. C. Pierce, editors, 10th International Conference on
Functional Programming, pages 66–77, 2005.

G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit
substitutions: The case of higher-order patterns. In M. Maher, editor,
Joint International Conference and Symposium on Logic Programming,
pages 259–273. MIT Press, Sept. 1996.

J. Dunfield and B. Pientka. Case analysis of higher-order data. In Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP’08), volume 228 of Electronic Notes in Theoreti-
cal Computer Science (ENTCS), pages 69–84. Elsevier, June 2009.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

M. Luther. More on implicit syntax. In R. Gore, A. Leitsch, and T. Nipkow,
editors, First International Joint Conference on Automated Reasoning
(IJCAR’01), Lecture Notes in Artificial Intelligence (LNAI) 2083, pages
386–400. Springer, 2001.

C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, 2004.

D. Miller. Unification of simply typed lambda-terms as logic programming.
In 8th International Logic Programming Conference, pages 255–269.
MIT Press, 1991.

A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–49, 2008.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, Sept. 2007. Technical Report
33D.

F. Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Sci-
ence, pages 313–322, Pacific Grove, California, June 1989. IEEE Com-
puter Society Press.

F. Pfenning and C. Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, 16th
International Conference on Automated Deduction (CADE-16), Lecture
Notes in Artificial Intelligence (LNAI 1632), pages 202–206. Springer,
1999.

B. Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’08), pages 371–382. ACM Press, 2008.

B. Pientka. An insider’s look at LF type reconstruction: Everything you
(n)ever wanted to know. Journal of Functional Programming, 1(1–37),
2013.

B. Pientka and J. Dunfield. Beluga: a framework for programming and
reasoning with deductive systems (System Description). In J. Giesl and
R. Haehnle, editors, 5th International Joint Conference on Automated
Reasoning (IJCAR’10), Lecture Notes in Artificial Intelligence (LNAI
6173), pages 15–21. Springer-Verlag, 2010.

B. Pientka, S. S. Ruan, and A. Abel. Structural recursion over contextual
objects. Technical report, School of Computer Science, McGill, January
2014.

R. Pollack. Implicit syntax. Informal Proceedings of First Workshop on
Logical Frameworks, Antibes, 1990.

H. Xi. Applied type system. In TYPES 2003, volume 3085 of Lecture Notes
in Computer Science, pages 394–408. Springer, 2004.

H. Xi. Dependent ml an approach to practical programming with dependent
types. Journal of Functional Programming, 17:215–286, 3 2007.

H. Xi and F. Pfenning. Dependent types in practical programming. In
26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’99), pages 214–227. ACM Press, 1999.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–
165, 1997.

A. Index language
We summarize here our requirements on the index domain. We
denote index terms in the source language with c and index types
in the source language as u.

Well-formedness of index objects (source) First, we define re-
quirements on well-formedeness.

δ ` c wf Index object c is well formed and closed with respect to δ
δ `f c wf Index object c is well formed with respect to δ

and may contain free index variables

Well-typed index objects (target)

∆ ` C : U Index object C has index type U in context ∆

Substitution C/X in an index object C′ is defined as [C/X]C′.

Well-typed index objects with holes

Θ; ∆ ` C : U Index object C has index type U in context ∆
and all holes in C are well-typed wrt Θ

Hole types ::= ∆.U
Hole Contexts Θ ::= · | Θ, ?X:∆.U
Hole Inst. ρ ::= · | ρ,∆.C/?X

When we insert hole variables for omitted arguments in a given
context ∆, we rely on the abstract function genHole (?Y : ∆.U)
which returns an index term containing a new hole variable.

genHole (?Y : ∆.U) = C where C describes a hole.

Unification of index objects The notion of unification that elab-
oration needs depends on the index level language. As we men-
tioned, we require that equality on our index domain is decidable;
for elaboration, we also require that there is a decidable unifica-
tion algorithm which makes two terms equal. In fact, we need two
forms: one which allows us to infer instantiations for holes and an-
other which unifies two index objects finding most general instan-
tiations for index variables such that the two objects become equal.
We use the first one during elaboration, the second one is used to
make two index objects equal as for example during matching.

Θ; ∆ ` C1
.
= C2/Θ

′; ρ where: Θ′ ` ρ:Θ
∆ ` C1

.
= C2/∆

′; θ where: ∆′ ` θ:∆
where ρ describes the instantiation for holes in Θ. If unification

succeeds, then we have JρKC1 = JρKC2 and [θ]C1 = [θ]C2

respectively.

Elaboration of index objects Elaboration of index objects them-
selves. If the index language is simply typed, the elaboration has
nothing to do; however, if as in Beluga, our index objects are ob-
jects described in the logical framework LF, then we need to elab-
orate them and infer omitted arguments following [Pientka 2013].
There are two related forms of elaboration for index objects we use:

Θ; ∆ ` c : U C/Θ′; ∆′; ρ
Θ; ∆ ` Hc ; θI : U C/Θ′; ρ

The first judgment elaborates the index object c by checking it
against U . We thread through a context Θ of holes and a context
of index variables ∆, we have seen so far. The object c however
may contain additional free index variables whose type we infer
during elaboration. All variables occurring in C will be eventually
declared with their corresponding type in ∆′. As we elaborate c, we
may refine holes and add additional holes. ρ describes the mapping
between Θ and Θ′, i.e. it records refinement of holes. Finally, we
know that ∆′ = JρK∆,∆0, i.e. ∆′ is an extension of ∆. We use
the first judgment in elaborating patterns and type declarations in
the signature.

The second judgment is similar to the first, but does not allow
free index variables in c. We elaborate c together with a refinement
substitution θ, which records refinements obtained from earlier
branches. When we encounter an index variable, we look up what it
is mapped to in θ and return it. Given a hole context Θ and a index
variable context ∆, we elaborate an index term c against a given
type U . The result is two fold: a context Θ′ of holes is related to
the original hole context Θ via the hole instantiation ρ. We use the
second judgment to elaborate index objects embedded into target
expressions.

B. Elaborating kinds and types in declarations
Recall that programmers may leave index variables free in type
and kind decarations. Elaboration must infer the type of the free
index variables in addition to reconstructing omitted arguments.

Θ; ∆f | ∆ ` k K/Θ′; ∆′f ; ρ′ Elaborate kind k to target kind K

Θ; ∆f | ∆ ` ctype ctype/Θ; ∆f ; id(Θ)
el-k-ctype

Θ; ∆f | ∆ ` u U/Θ′; ∆′f ; ρ′ Θ′; ∆′f | ∆, X:U ` k K/Θ′′; ∆′′f ; ρ′′

Θ; ∆f | ∆ ` {X:u} k ΠeX:(Jρ′KU).K/Θ′′; ∆′′f ; ρ′′ ◦ ρ′
el-k-pi

Θ; ∆f | ∆ ` t T/Θ′; ∆′f ; ρ′ Elaborate type t to target type T

Θ; ∆f | ∆ ` t1 T1/Θ
′; ∆′f ; ρ′ Θ′; ∆′f | ∆ ` t2 T2/Θ

′′; ∆′′f ; ρ′′

Θ; ∆f | ∆ ` t1 → t2 (Jρ′′KT1)→ T2/Θ
′′; ∆′′f ; ρ′′ ◦ ρ′

el-t-arr
Θ; ∆f | ∆ ` u U/Θ′; ∆′f ; ρ′

Θ; ∆f | ∆ ` [u] [U]/Θ′; ∆′f ; ρ′
el-t-idx

Θ; ∆f | ∆ ` u U/Θ′; ∆′f ; ρ′ Θ′; ∆′f | ∆, X:U ` t T/Θ′′; ∆′′f ; ρ′′

Θ; ∆f | ∆ ` {X:u} t ΠeX:(Jρ′KU). T/Θ′′; ∆′′f ; ρ′′ ◦ ρ′
el-t-pi

Σ(a) = K Θ; ∆f | ∆ `
−→
[c] : K

−→
[C]/Θ′; ∆′f ; ρ′

Θ; ∆f | ∆ ` a
−→
[c] a

−→
C/Θ′; ∆′f ; ρ′

el-t-con

Θ; ∆f | ∆ `
−→
[c] : K

−→
[C]/Θ′; ∆′f ; ρ′ Elaborate fully applied spine

−→
[c] checking against kind K to target spine

−→
[C]

Θ; ∆f | ∆ ` c : U C/Θ′; ∆′f ; ρ′ Θ′; ∆′f | ∆ `
−→
[c] : [C/X]K

−→
[C]/Θ′′; ∆′′f ; ρ′′

Θ; ∆f | ∆ ` [c]
−→
[c] : ΠeX:U.K (Jρ′K[C])

−→
[C]/Θ′′; ∆′′f ; ρ′′ ◦ ρ′

el-t-sp-explicit

genHole (?Y :(∆f ,∆).U) = C Θ; ∆f | ∆ ` −→c : [C/X]K
−→
C/Θ′; ∆′f ; ρ′

Θ; ∆f | ∆ ` −→c : ΠiX:U.K (Jρ′KC)
−→
C/Θ′; ∆′f ; ρ′

el-t-sp-implicit

Θ; ∆f | ∆ ` · : ctype ·/Θ; ∆f ; id(Θ)
el-t-sp-empty

Figure 10. Elaborating kinds and types in declarations

We require that the index language provides us with the following
judgments:

Θ; ∆f | ∆ ` u U/Θ′; ∆′f ; ρ′

Θ; ∆ ` Hu ; θI U/Θ′; ρ′

Hence, we assume that the index language knows how to infer
the type of free variables, for example. In Beluga where the index
language is LF, we fall back to the ideas described in [Pientka
2013].

The first judgment collects free variables in ∆f that later in
elaboration will become implicit parameters. The context ∆f is
threaded through in addition to the hole context Θ.

The judgments for elaborating computation-level kinds and
types are similar:

1. Θ; ∆f | ∆ ` k K/Θ′; ∆′f ; ρ′

2. Θ; ∆f | ∆ ` t T/Θ′; ∆′f ; ρ′

3. Θ; ∆f | ∆ `
−→
[c] : K

−→
[C]/Θ′; ∆′f ; ρ′

We again collect free index variables in ∆f which are threaded
through together with the holes context Θ (see Figure 5 and Fig-
ure 10).

C. Soundness proof
Theorem 3 (Soundness).

1. If Θ; ∆; Γ ` He ; θI : T E/Θ1; ρ1 then for any grounding hole instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ ρ1, we have
Jρ0K∆; Jρ0KΓ ` JρgKE ⇐ Jρ0KT .

2. If Θ; ∆; Γ ` He ; θI E:T/Θ1; ρ1 then for any grounding hole instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ ρ1, we have
Jρ0K∆; Jρ0KΓ ` JρgKE ⇒ JρgKT .

3. If ∆; Γ ` Hpat 7→ e ; θI : S → T Π∆′; Γ′.Pat : θ′ 7→ E then ∆; Γ ` Π∆′; Γ′.Pat : θ′ 7→ E ⇐ S → T .

Proof. By simultaneous induction on the first derivation.

For (1):

Case D : Θ; ∆; Γ ` Hcase e of
−→
b ; θI : T caseE of

−→
B/Θ′; ρ

Θ; ∆; Γ ` He ; θI E:S/·; ρ by inversion on el-case

JρK∆; JρKΓ ` H
−→
b ; JρKθI : S → JρKT

−→
B by inversion on el-case

for any grounding hole inst. ρ′ we have JρK∆; JρKΓ ` E ⇒ S by I.H. noting ρ′ = · and ρ′ ◦ ρ = ρ

[ρ]∆; [ρ]Γ ` B:S → [ρ]T for every branch by (3)

[ρ]∆; [ρ]Γ ` caseE of
−→
B ⇐ JρKT by t-case

Note that because E is ground then the only grounding hole inst. is the empty substitution.

Case D : Θ; ∆; Γ ` Hfnx⇒e ; θI : T1 → T2 fnx⇒E/Θ1; ρ1

Θ; ∆; Γ, x:T1 ` He ; θI : T2 E/Θ1; ρ1 by assumption

for any grounding hole inst. ρg we have: Jρ0K∆; JρoK(Γ, x:T1) ` JρgKE ⇐ Jρ0KT2 by i.h. (1) with ρ0 = ρg ◦ ρ1

Jρ0K∆; (JρoKΓ), x:(Jρ0KT1) ` JρgKE ⇐ Jρ0KT2 by properties of substitution

Jρ0K∆; JρoKΓ) ` fnx⇒(JρgKE)⇐ (Jρ0KT1)→ (Jρ0KT2) by t-fn

Jρ0K∆; JρoKΓ) ` JρgK(fnx⇒E)⇐ Jρ0K(T1)→ T2) by properties of substitution

which is what we wanted to show

Case D : Θ; ∆; Γ ` HλX⇒e ; θI : ΠeX:U. T λX⇒E/Θ1; ρ1

Θ; ∆, X:U ; Γ ` He ; θ,X/XI : T E/Θ1; ρ1 by assumption

for any grounding hole inst. ρg we haveJρ0K(∆, X:U); Jρ0KΓ ` JρgKE ⇐ JρoKT by i.h.(1) with ρ0 = ρg ◦ ρ1

JρoK∆, X:(Jρ0KU); Jρ0KΓ ` JρgKE ⇐ JρoKT by properties of subst

JρoK∆; Jρ0KΓ ` λX⇒JρgKE ⇐ ΠeX:Jρ0KU. (JρoKT) by t-mlam

JρoK∆; Jρ0KΓ ` JρgKλX⇒E ⇐ Jρ0KΠeX:U. T by properties of substitution

which is what we wanted to show

Case D : Θ; ∆; Γ ` He ; θI : ΠiX:U. T λX⇒E/Θ1; ρ1

this case follows the same structure as the previous

Case D : Θ; ∆; Γ ` H[c] ; θI : [U] [C]/Θ1; ρ1

Θ; ∆ ` Hc ; θI : U C/Θ1; ρ1 by assumption

for any grounding inst. ρg we have Jρ0K∆; Jρ0KΓ ` JρgKC ⇐ Jρ0KU by properties of the index language and ρ0 = ρg ◦ ρ1

Jρ0K∆; Jρ0KΓ ` JρgK[C]⇐ Jρ0K[U] by t-box and properties of subst.

which is what we wanted to show

Case D : Θ; ∆; Γ ` He ; θI : T Jρ2KE/Θ2; ρ2 ◦ ρ1

Θ; ∆; Γ ` He ; θI E:T1/Θ1; ρ1

Θ1; Jρ1K∆ ` T1
.
= Jρ1KT/Θ2; ρ2 by assumption

for any grounding inst. ρg we have JρoK∆; Jρ0KΓ ` JρgKE ⇒ JρgKT1 by i.h. (2) where ρo = ρg ◦ ρ1[*]

for any grounding inst. ρ′g we have Jρ′g ◦ ρ2KT1 = Jρ′g ◦ ρ2 ◦ ρ1KT by prop of unification and applying a grounding subst [**]

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE ⇒ Jρ′g ◦ ρ2KT1 from [*] using ρg = ρ′g ◦ ρ2

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE ⇒ Jρ′g ◦ ρ2 ◦ ρ1KT by [**]

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE ⇐ Jρ′g ◦ ρ2 ◦ ρ1KT by t-syn

which is what we wanted to show

For(2):

Case E : Θ; ∆; Γ ` He [c] ; θI E1 [C]:[C/X](Jρ2KT)/Θ2; ρ2 ◦ ρ1

Θ; ∆; Γ ` He ; θI E1:ΠeX:U. T/Θ1; ρ1

Θ1; Jρ1K∆ ` Hc ; Jρ1KθI : U C/Θ2; ρ2 by assumption

for any grounding instantiation ρg s.t. · ` ρg:Θ1 we have Jρg ◦ ρ1K∆; Jρg ◦ ρ1KΓ ` JρgKE1 ⇒ JρgKΠeX:U. T by i.h. (2)[*]

for any grounding instantiation ρ′g s.t. · ` ρ′g:Θ2 we have Jρ′g ◦ ρ2 ◦ ρ1K∆ ` Jρ′gKC ⇐ Jρ′g ◦ ρ2KU by soundness of index reconstruction

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE1 ⇒ Jρ′g ◦ ρ2KΠeX:U. T Note that in [*] · ` ρg:Θ1 so we can instantiate ρg = ρ′g ◦ ρ2

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE1 ⇒ ΠeX:(Jρ′g ◦ ρ2KU). (Jρ′g ◦ ρ2KT) by properties of substitutions

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` (Jρ′g ◦ ρ2KE1) Jρ′gKC ⇒ [Jρ′gKC}/X](Jρ′g ◦ ρ2KT) by t-app-index

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′gK((Jρ2KE1)C)⇒ Jρ′gK([C/X](Jρ2KT) by properties of substitutions

which is what we wanted to show.

Case E : Θ; ∆; Γ ` Hx ; θI E1:T1 / Θ1; id(Θ1)

Γ(x) = T

Θ; ∆; Γ ` x:T E1:T1/Θ1 by assumption

∆; Γ ` x⇒ T by rule t-var[*]

for any grounding inst. ρg s.t. · ` Θ1 we have:
Jρg ◦ ρ1K∆; Jρg ◦ ρ1KΓ ` JρgKE1:JρgKT1 by [*], weakening and lemma 4 with ρ1 = id(Θ1)

which is what we wanted to show

For (3):

Case F : ∆; Γ ` Hpat 7→ e ; θI : S → T Π∆r; Γr.Pat
′:θ 7→ E

∆ ` pat : S Π∆r; Γr.Pat:θr | θe by assumption

·; · ` pat Pat : S′/Θp; ∆p; Γp | ·
∆′p ` ρ : Θp and Γr = [θp]JρKΓp, Pat′ = [θp]JρKPat by inversion on el-subst

∆′p, JρK∆p; JρKΓp ` JρKPat⇐ JρKS′ by pattern elaboration lemma

∆,∆′p, JρK∆p ` JρKS′ + S/∆r, θ by inversion on el-subst

where we can split θ as θ = θr, θi, θe so that:

 ∆r ` θr:∆
∆r ` θi:∆′p
∆r ` θi, θe:∆′p, JρK∆p

let θp = θi, θe

[θi, θe︸ ︷︷ ︸
θp

]JρKS′ = [θr]S by soundness of unification and the fact that ∆ and ∆′p, JρK∆p are distinct

∆r; [θp]JρKΓp ` [θp]JρKPat⇐ [θp]JρKS′ by substitution lemma

∆r; [θp]JρKΓp︸ ︷︷ ︸
Γr

` [θp]JρKPat︸ ︷︷ ︸
Pat′

⇐ [θr]S by [θ]JρKS′ = [θr]S

·; ∆r; [θr]Γ,Γr ` He ; θr ◦ θ, θeI : [θr]T E/·; · by assumption

∆r; [θr]Γ,Γr ` E ⇐ [θr]T by (1)

∆; Γ ` Π∆r; Γr.Pat
′:θr 7→ E ⇐ S → T by t-branch

which is what we wanted to show.

Lemma 4 (Implicit parameter instantiation). Let’s consider the judgement: Θ; ∆; Γ ` E:T E1:T1/Θ1, where Θ1 is a weakening of Θ.
We want to prove that, if ρg is a grounding instantiation such as · ` ρg:Θ1 where we split ρg = ρ′g, ρ

′′
g and · ` ρ′g:Θ and

·; Jρ′gK∆; Jρ′gKΓ ` Jρ′gKE:Jρ′gKT then ·; JρgK∆; JρgKΓ ` JrhogKE1:JρgKT1.

Proof. The proof follows by induction on the rules of the judgment where the base case for el-impl-done is trivial and the inductive step
for el-impl has also a very direct proof.

Lemma 5 (Pattern elaboration).

1. If Θ; ∆ ` pat Π∆1; Γ1.Pat:T/Θ1; ρ1 and ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and ε is a ground lifting
substitution, such as ∆i ` ε:Θ1 then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrKPat⇐ JεKJρrKT .

2. If Θ; ∆ ` pat : T Π∆1; Γ1.Pat/Θ1; ρ1 and ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and ε is a ground lifting
substitution, such as ∆i ` ε:Θ1 then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrKPat⇐ JεKJρr ◦ ρ1KT .

3. If Θ; ∆ ` −→pat : T Π∆1; Γ1.
−−→
Pat 〉 S/Θ1; ρ1 and ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and ε is a ground lifting

substitution, such as ∆i ` ε:Θ1 then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1KT 〉 JεKJρrKS.

Proof. By simultaneous induction on the first derivation.

For (1):

Case D : Θ; ∆ ` c−→pat Π∆1; Γ1.c
−−→
Pat:S/Θ1; ρ1

Σ(c) = T

Θ; ∆ ` −→pat : T Π∆1; Γ1.
−−→
Pat 〉 S/Θ1; ρ1 by assumption

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1KT 〉 JεKJρrKS by i.h. (3)

Note that types in the signature (i.e. Σ) are ground so JεKJρr ◦ ρ1KT = T

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` c (JεKJρrK
−−→
Pat)⇐ JεKJρrKS by t-pcon.

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK(c
−−→
Pat)⇐ JεKJρrKS by properties of substitution

which is what we wanted to show.

For (2):

Case E : Θ; ∆ ` x : T Π∆1 ; x:T︸︷︷︸
Γ1

.x / Θ; id(Θ)

Γ1(x) = T by x being the only variable in Γ1

JεKJρrKΓ1 = JεKJρrKΓ1T by applying ε and ρr to ∆1, Γ1 and T

JεKJρrK∆1; JεKJρrKΓ1 ` x⇐ JεKJρrKT by rule t-pvar

which is what we wanted to prove

For (3):

Case F : Θ; ∆ ` pat −→pat : T1 → T2 Π∆2; Γ1,Γ2.(Jρ′KPat)
−−→
Pat 〉 S/Θ2; ρ2 ◦ ρ1

Θ; ∆ ` pat : T1 Π∆1; Γ1.Pat/Θ1; ρ1

Θ1; ∆1 `
−→
pat : JρKT2 Π∆2; Γ2.

−−→
Pat 〉 S/Θ2; ρ2 by assumption

Θ2 ` ρ2:Θ1 by invariant of rule

Θ3 ` ρ3 ◦ ρ2:Θ1 (further refinement substitution) by composition

∆i ` ε:Θ3 lifting substitution

∆i, JεKJρ3 ◦ ρ2K∆1; JεKJρ3 ◦ ρ2KΓ1 ` JεKJρ3 ◦ ρ2KPat⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT1 by i.h. on (1). [*]

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K
−−→
Pat⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT2 〉 JεKJρ3KS by i.h. on (2)

we note that in pattern elaboration we have:

∆2 = Jρ2K∆1,∆
′
2 ∆2 is the context ∆1 with the hole instantiation applied and some extra assumptions(i.e. ∆′2).

and Γ2 = Jρ2KΓ1,Γ
′
2 Γ2 is the context Γ1 with the hole instantiation applied and some extra assumptions(i.e. Γ′2).

and we can weaken [*] to:

∆i, JεKJρ3 ◦ ρ2K∆1, JεKJρ3K∆′2; JεKJρ3 ◦ ρ2KΓ1, JεKJρ3KΓ′2 ` JεKJρ3 ◦ ρ2KPat⇐ JρKJρ3 ◦ ρ2 ◦ ρ1KT1

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` (JεKJρ3 ◦ ρ2KPat)(JεKJρ3K
−−→
Pat)⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT1 → JεKJρ3 ◦ ρ2 ◦ ρ1KT2 〉 JεKJρ3KS by t-sarr.

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K(Jρ2KPat
−−→
Pat)⇐ JεKJρ3 ◦ ρ2 ◦ ρ1K(T1 → T2) 〉 JεKJρ3KS by properties of substitution

which is what we wanted to show.

Case F : Θ; ∆ ` [c]
−→
pat : ΠeX:U. T Π∆2; Γ2.(Jρ1K[C])

−−→
Pat 〉 S/Θ2; ρ2 ◦ ρ1

Θ; ∆ ` c : U C/Θ1; ∆1; ρ1

Θ1; ∆1 `
−→
pat : [C/X]Jρ1KT Π∆2; Γ2.

−−→
Pat 〉 S/Θ2; ρ2 by assumption

Θ2 ` ρ2:Θ1 by invariant of rule

Θ3 ` ρ3 ◦ ρ2:Θ1 (further refinement substitution) by composition

∆i ` ε:Θ3 lifting substitution

∆i, JεKJρ3 ◦ ρ2K∆1 ` JεKJρ3 ◦ ρ2KC ⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KU by property of the index language[*]

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K
−−→
Pat⇐ JεKJρ3 ◦ ρ2K([C/X]Jρ1KT) 〉 JεKJρ3KS by i.h. (3)

as before, we note that:

∆2 = Jρ2K∆1,∆
′
2 ∆2 is the context ∆1 with the hole instantiation applied and some extra assumptions(i.e. ∆′2).

and we can weaken [*] to:

∆i, JεKJρ3 ◦ ρ2K∆1, JεKJρ3K∆′2 ` JεKJρ3 ◦ ρ2KC ⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KU

Note that JεKJρ3 ◦ ρ2K([C/X]Jρ1KT) = [(JεKJρ3 ◦ ρ2KC)/X](JεKJρ3 ◦ ρ2 ◦ ρ1KT) by properties of substitution

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` [JεKJρ3 ◦ ρ2KC] (JεKJρ3K
−−→
Pat)⇐ ΠeX:(JεKJρ3 ◦ ρ2 ◦ ρ1KU). (JεKJρ3 ◦ ρ2 ◦ ρ1KT) 〉 JεKJρ3KS by t-spi

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K([Jρ2KC]
−−→
Pat))⇐ JεKJρ3 ◦ ρ2 ◦ ρ1K(ΠeX:U. T) 〉 JεKJρ3KS by properties of substitution

which is what we wanted to show.

Case F : Θ; ∆ ` −→pat : ΠiX:U. T Π∆1; Γ1.(Jρ1KC)
−−→
Pat 〉 S/Θ1; ρ1

genHole (?Y : ∆.U) = C

Θ, ?Y :∆.U ; ∆ ` −→pat : [C/X]T Π∆′; Γ′.
−−→
Pat/Θ′; ρ 〉 S by assumption

Θ, ?Y :∆.U ; ∆ ` C ⇐ U by genhole invariant

∆i, JεKJρr ◦ ρ1K∆ ` JεKJρr ◦ ρ1KC ⇐ JεKJρr ◦ ρ1KU applying substitutions ε, ρrandρ1

noting that ∆1 = Jρ1K∆,∆′1
∆i, JεKJρrK(Jρ1K∆,∆′1) ` JεKJρr ◦ ρ1KC ⇐ JεKJρr ◦ ρ1KU by weakening

∆i, JεKJρrK∆1; JεKJρrKΓ′ ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1K[C/X]T 〉 JεKJρrKS by i.h. (3)

∆i, JεKJρrK∆1; JεKJρrKΓ′ ` JεKJρrK
−−→
Pat⇐ [JεKJρr ◦ ρ1KC/X](JεKJρr ◦ ρ1KT) 〉 JεKJρrKS by properties of substitution

∆i, JεKJρrK∆1; JεKJρrKΓ′ ` [JεKJρr ◦ ρ1KC] JεKJρrK
−−→
Pat⇐ ΠiX:JεKJρr ◦ ρ1KU. (JεKJρr ◦ ρ1KT) 〉 JεKJρrKS by t-spi

∆i, JεKJρrK∆1; JεKJρrKΓ′ ` JεKJρrK[Jρ1KC]
−−→
Pat⇐ JεKJρr ◦ ρ1K(ΠiX:U. T) 〉 JεKJρrKS by properties of substitution

which is what we wanted to show

