
Programming Languages:
Theory and Practice

Robert Harper
Carnegie Mellon University

(WORKING DRAFT OF MARCH 9, 2005)

Copyright c© 2005. All Rights Reserved.

Preface

This is a collection of lecture notes for Computer Science 15–312 Program-
ming Languages. This course has been taught by the author in the Spring of
1999 and 2000 at Carnegie Mellon University, and by Andrew Appel in the
Fall of 1999, 2000, and 2001 at Princeton University. I am grateful to An-
drew for his advice and suggestions, and to our students at both Carnegie
Mellon and Princeton whose enthusiasm (and patience!) was instrumental
in helping to create the course and this text.

What follows is a working draft of a planned book that seeks to strike
a careful balance between developing the theoretical foundations of pro-
gramming languages and explaining the pragmatic issues involved in their
design and implementation. Many considerations come into play in the de-
sign of a programming language. I seek here to demonstrate the central role
of type theory and operational semantics in helping to define a language
and to understand its properties.

Comments and suggestions are most welcome. Enjoy!

iv

WORKING DRAFT MARCH 9, 2005

Contents

Preface iii

I Preliminaries 1

1 Inductive Definitions 3
1.1 Relations and Judgements . 3
1.2 Rules and Derivations . 3
1.3 Examples of Inductive Definitions 5
1.4 Rule Induction . 6
1.5 Iterated and Simultaneous Inductive Definitions 6
1.6 Examples of Rule Induction 7
1.7 Admissible and Derivable Rules 8
1.8 Defining Functions by Rules 9
1.9 Foundations . 10

2 Transition Systems 13
2.1 Transition Systems . 13
2.2 Exercises . 14

II Defining a Language 15

3 Concrete Syntax 17
3.1 Strings . 17
3.2 Context-Free Grammars . 18
3.3 Ambiguity . 19
3.4 Exercises . 22

v

vi CONTENTS

4 Abstract Syntax Trees 23
4.1 Abstract Syntax Trees . 23
4.2 Structural Induction . 24
4.3 Parsing . 25
4.4 Exercises . 27

5 Abstract Binding Trees 29
5.1 Names . 29
5.2 Abstract Syntax With Names 30
5.3 Abstract Binding Trees . 30
5.4 Renaming . 31
5.5 Structural Induction . 33

6 Static Semantics 35
6.1 Static Semantics of Arithmetic Expressions 35
6.2 Exercises . 36

7 Dynamic Semantics 37
7.1 Structured Operational Semantics 37
7.2 Evaluation Semantics . 40
7.3 Relating Transition and Evaluation Semantics 41
7.4 Exercises . 42

8 Relating Static and Dynamic Semantics 43
8.1 Preservation for Arithmetic Expressions 43
8.2 Progress for Arithmetic Expressions 44
8.3 Exercises . 44

III A Functional Language 45

9 A Minimal Functional Language 47
9.1 Syntax . 47

9.1.1 Concrete Syntax . 47
9.1.2 Abstract Syntax . 48

9.2 Static Semantics . 48
9.3 Properties of Typing . 50
9.4 Dynamic Semantics . 52
9.5 Properties of the Dynamic Semantics 54
9.6 Exercises . 55

WORKING DRAFT MARCH 9, 2005

CONTENTS vii

10 Type Safety 57
10.1 Defining Type Safety . 57
10.2 Type Safety . 58
10.3 Run-Time Errors and Safety 61

IV Control and Data Flow 65

11 Abstract Machines 67
11.1 Control Flow . 68
11.2 Environments . 75

12 Continuations 81
12.1 Informal Overview of Continuations 82
12.2 Semantics of Continuations 85
12.3 Coroutines . 89
12.4 Exercises . 93

13 Exceptions 95
13.1 Exercises . 100

V Imperative Functional Programming 103

14 Mutable Storage 105
14.1 References . 105

15 Monads 111
15.1 A Monadic Language . 112
15.2 Reifying Effects . 114
15.3 Exercises . 115

VI Cost Semantics and Parallelism 117

16 Cost Semantics 119
16.1 Evaluation Semantics . 119
16.2 Relating Evaluation Semantics to Transition Semantics . . . 120
16.3 Cost Semantics . 121
16.4 Relating Cost Semantics to Transition Semantics 122
16.5 Exercises . 123

MARCH 9, 2005 WORKING DRAFT

viii CONTENTS

17 Implicit Parallelism 125
17.1 Tuple Parallelism . 125
17.2 Work and Depth . 127
17.3 Vector Parallelism . 130

18 A Parallel Abstract Machine 135
18.1 A Simple Parallel Language 135
18.2 A Parallel Abstract Machine 137
18.3 Cost Semantics, Revisited . 139
18.4 Provable Implementations (Summary) 140

VII Data Structures and Abstraction 143

19 Aggregate Data Structures 145
19.1 Products . 145
19.2 Sums . 147
19.3 Recursive Types . 148

20 Polymorphism 151
20.1 A Polymorphic Language . 152
20.2 ML-style Type Inference . 158
20.3 Parametricity . 159

20.3.1 Informal Discussion 160
20.3.2 Relational Parametricity 163

21 Data Abstraction 169
21.1 Existential Types . 170

21.1.1 Abstract Syntax . 170
21.1.2 Correspondence With ML 170
21.1.3 Static Semantics . 172
21.1.4 Dynamic Semantics . 173
21.1.5 Safety . 174

21.2 Representation Independence 174

VIII Lazy Evaluation 179

22 Lazy Types 181
22.1 Lazy Types . 183

22.1.1 Lazy Lists in an Eager Language 185

WORKING DRAFT MARCH 9, 2005

CONTENTS ix

22.1.2 Delayed Evaluation and Lazy Data Structures 191

23 Lazy Languages 195
23.0.3 Call-by-Name and Call-by-Need 197
23.0.4 Strict Types in a Lazy Language 199

IX Dynamic Typing 201

24 Dynamic Typing 203
24.1 Dynamic Typing . 205
24.2 Implementing Dynamic Typing 206
24.3 Dynamic Typing as Static Typing 208

25 Featherweight Java 211
25.1 Abstract Syntax . 211
25.2 Static Semantics . 214
25.3 Dynamic Semantics . 216
25.4 Type Safety . 218
25.5 Acknowledgement . 219

X Subtyping and Inheritance 221

26 Subtyping 223
26.1 Adding Subtyping . 223
26.2 Varieties of Subtyping . 225

26.2.1 Arithmetic Subtyping 225
26.2.2 Function Subtyping 226
26.2.3 Product and Record Subtyping 228
26.2.4 Reference Subtyping 229

26.3 Type Checking With Subtyping 230
26.4 Implementation of Subtyping 232

26.4.1 Coercions . 232

27 Inheritance and Subtyping in Java 237
27.1 Inheritance Mechanisms in Java 237

27.1.1 Classes and Instances 237
27.1.2 Subclasses . 239
27.1.3 Abstract Classes and Interfaces 240

27.2 Subtyping in Java . 242

MARCH 9, 2005 WORKING DRAFT

x CONTENTS

27.2.1 Subtyping . 242
27.2.2 Subsumption . 243
27.2.3 Dynamic Dispatch . 244
27.2.4 Casting . 245

27.3 Methodology . 247

XI Concurrency 249

28 Concurrent ML 251

XII Storage Management 253

29 Storage Management 255
29.1 The A Machine . 255
29.2 Garbage Collection . 259

WORKING DRAFT MARCH 9, 2005

Part I

Preliminaries

1

Chapter 1

Inductive Definitions

Inductive definitions are an indispensable tool in the study of program-
ming languages. In this chapter we will develop the basic framework of
inductive definitions, and give some examples of their use.

1.1 Relations and Judgements

We take as given the notion of an n-place, or n-ary, relation, R, among n ≥ 1
objects. A unary (i.e., 1-ary) relation is called a predicate, or a class.

If R is an n-ary relation and ~x is an n-tuple of objects, the assertion that
the objects ~x stand in the relation R, written R (x1, . . . , xn) or (x1, . . . , xn) R,
is called a judgement. The relation R itself is called a judgement form, and the
tuple ~x is an instance of that judgement form.

If X and Y are classes, then a function from X to Y is a binary relation, f ,
such that for every x such that X x there exists a unique y such that Y y and
f x, y. A partial function from X to Y is a relation such that if X x, then there
is at most one y such that y Y and f x, y.

1.2 Rules and Derivations

An inductive definition of an n-ary relation R consists of a collection of infer-
ence rules of the form

~x1 R · · · ~xk R
~x R .

Here ~x and each ~x1 . . . ,~xk are n-tuples of objects, and R is the relation being
defined. The judgements above the horizontal line are called the premises

3

4 1.2 Rules and Derivations

of the rule, and the judgement below is called the conclusion of the rule. If
a rule has no premises (i.e., n = 0), the rule is called an axiom; otherwise it
is a proper rule.

A relation P is closed under a rule

~x1 R · · · ~xk R
~x R

iff ~x P whenever ~x1 P, . . . , ~xk P. The relation P is closed under a set of such
rules iff it is closed under each rule in the set. If S is a set of rules of the
above form, then the relation, R, inductively defined by the rule set, S , is the
strongest (most restrictive) relation closed under S . This means that R is
closed under S , and that if P is also closed under S , then ~x R implies ~x P.

If R is inductively defined by a rule set SR, then ~x R holds if and only if
it has a derivation consisting of a composition of rules in SR, starting with
axioms and ending with ~x R. A derivation may be depicted as a “stack” of
rules of the form

...
D1

~x1 R · · ·

...
Dk

~xk R
~x R

where
~x1 R · · · ~xk R

~x R

is an inference rule, and each Di is a derivation of ~xi R.
To show that a judgement is derivable we need only find a derivation

for it. There are two main methods for finding a derivation, called forward
chaining and backward chaining. Forward chaining starts with the axioms
and works forward towards the desired judgement, whereas backward
chaining starts with the desired judgement and works backwards towards
the axioms.

More precisely, forward chaining search maintains a set of derivable
judgements, and continually extends this set by adding to it the conclusion
of any rule all of whose premises are in that set. Initially, the set is empty;
the process terminates when the desired judgement occurs in the set. As-
suming that all rules are considered at every stage, forward chaining will
eventually find a derivation of any derivable judgement, but it is impos-
sible (in general) to decide algorithmically when to stop extending the set
and conclude that the desired judgement is not derivable. We may go on

WORKING DRAFT MARCH 9, 2005

1.3 Examples of Inductive Definitions 5

and on adding more judgements to the derivable set without ever achiev-
ing the intended goal. It is a matter of understanding the global properties
of the rules to determine that a given judgement is not derivable.

Forward chaining is undirected in the sense that it does not take ac-
count of the end goal when deciding how to proceed at each step. In
contrast, backward chaining is goal-directed. Backward chaining search
maintains a set of current goals, judgements whose derivations are to be
sought. Initially, this set consists solely of the judgement we wish to de-
rive. At each stage, we remove a judgement from the goal set, and consider
all rules whose conclusion is that judgement. For each such rule, we add
to the goal set the premises of that rule. The process terminates when the
goal set is empty, all goals having been achieved. As with forward chain-
ing, backward chaining will eventually find a derivation of any derivable
judgement, but there is no algorithmic method for determining in general
whether the current goal is derivable. Thus we may futilely add more and
more judgements to the goal set, never reaching a point at which all goals
have been satisfied.

1.3 Examples of Inductive Definitions

Let us now consider some examples of inductive definitions. The following
set of rules, SN , constitute an inductive definition of the judgement form
nat:

zero nat
x nat

succ(x) nat

The first rule states that zero is a natural number. The second states that if
x is a natural number, so is succ(x). Quite obviously, the judgement x nat
is derivable from rules SN iff x is a natural number. For example, here is a
derivation of the judgement succ(succ(zero)) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat

The following set of rules, ST, form an inductive definition of the judge-
ment form tree:

empty tree

x tree y tree

node(x, y) tree

The first states that an empty tree is a binary tree. The second states that a
node with two binary trees as children is also a binary tree.

MARCH 9, 2005 WORKING DRAFT

6 1.4 Rule Induction

Using the rules ST, we may construct a derivation of the judgement

node(empty, node(empty, empty)) tree

as follows:

empty tree

empty tree empty tree

node(empty, empty) tree

node(empty, node(empty, empty)) tree

1.4 Rule Induction

Suppose that the relation R is inductively defined by the rule set SR. The
principle of rule induction is used to show ~x P, whenever ~x R. Since R is the
strongest relation closed under SR, it is enough to show that P is closed
under SR. Specifically, for every rule

~x1 R · · · ~xk R
~x R

in SR, we must show ~x P under the assumptions ~x1 P, . . . , ~xk P. The as-
sumptions ~x1 P, . . . , ~xk P are the inductive hypotheses, and the conclusion is
called the inductive step, corresponding to that rule.

Rule induction is also called induction on derivations, for if ~x R holds,
then there must be some derivation of it from the rules in SR. Consider the
final rule in the derivation, whose conclusion is ~x R and whose premises
are ~x1 R, . . . , ~xk R. By induction we have ~x1 P, . . . , ~xk P, and hence to show
~x P, it suffices to show that ~x1 P, . . . , ~xk P imply ~x P.

1.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive defini-
tion builds on top of another. For example, the following set of rules, SL,
defines the predicate list, which expresses that an object is a list of natural
numbers:

nil list

x nat y list

cons(x, y) list

Notice that the second rule makes reference to the judgement nat defined
earlier.

WORKING DRAFT MARCH 9, 2005

1.6 Examples of Rule Induction 7

It is also common to give a simultaneous inductive definition of several
relations, R1, . . . , Rk, by a single set of rules, SR1,...,Rk . Each rule in the set
has the form

~x1 Ri1 · · · ~xm Rim

~x Ri

where 1 ≤ ij ≤ k for each 1 ≤ j ≤ k.
The principle of rule induction for such a simultaneous inductive def-

inition gives a sufficient condition for a family P1, . . . , Pk of relations such
that ~x Pi whenever ~x Ri, for each 1 ≤ i ≤ k. To show this, it is sufficient to
show for each rule

~x1 Ri1 · · · ~xm Rim

~x Ri

if ~x1 Pi1 , . . . , ~xm Rim , then ~x Ri.
For example, consider the rule set, Seo, which forms a simultaneous

inductive definition of the judgement forms x even, stating that x is an even
natural number, and x odd, stating that x is an odd natural number.

zero even
x odd

succ(x) even

x even
succ(x) odd

These rules must be interpreted as a simultaneous inductive definition be-
cause the definition of each judgement form refers to the other.

1.6 Examples of Rule Induction

Consider the rule set SN defined earlier. The principle of rule induction for
SN states that to show x P whenever x nat, it is enough to show

1. zero P;

2. if y P, then succ(y) P.

This is just the familiar principal of mathematical induction.
The principle of rule induction for ST states that if we are to show that

x P whenever x tree, it is enough to show

1. empty P;

2. if x1 P and x2 P, then node(x1, x2) P.

MARCH 9, 2005 WORKING DRAFT

8 1.7 Admissible and Derivable Rules

This is sometimes called the principle of tree induction.
The principle of rule induction naturally extends to simultaneous in-

ductive definitions as well. For example, the rule induction principle cor-
responding to the rule set Seo states that if we are to show x P whenever
x even, and x Q whenever x odd, it is enough to show

1. zero P;

2. if x P, then succ(x) Q;

3. if x Q, then succ(x) P.

These proof obligations are derived in the evident manner from the rules
in Seo.

1.7 Admissible and Derivable Rules

Let SR be an inductive definition of the relation R. There are two senses in
which a rule

~x1 R · · · ~xk R
~x R

may be thought of as being “valid” for SR: it can be either derivable or ad-
missible.

A rule is said to be derivable iff there is a derivation of its conclusion from
its premises. This means that there is a composition of rules starting with
the premises and ending with the conclusion. For example, the following
rule is derivable in SN :

x nat
succ(succ(succ(x))) nat.

Its derivation is as follows:
x nat

succ(x) nat

succ(succ(x)) nat

succ(succ(succ(x))) nat.

A rule is said to be admissible iff its conclusion is derivable from no
premises whenever its premises are derivable from no premises. For ex-
ample, the following rule is admissible in SN :

succ(x) nat
x nat .

WORKING DRAFT MARCH 9, 2005

1.8 Defining Functions by Rules 9

First, note that this rule is not derivable for any choice of x. For if x is zero,
then the only rule that applies has no premises, and if x is succ(y) for some
y, then the only rule that applies has as premise y nat, rather than x nat.
However, this rule is admissible! We may prove this by induction on the
derivation of the premise of the rule. For if succ(x) nat is derivable from
no premises, it can only be by second rule, which means that x nat is also
derivable, as required. (This example shows that not every admissible rule
is derivable.)

The distinction between admissible and derivable rules can be hard to
grasp at first. One way to gain intuition is to note that if a rule is derivable
in a rule set S , then it remains derivable in any rule set S ′ ⊇ S . This is
because the derivation of that rule depends only on what rules are avail-
able, and is not sensitive to whether any other rules are also available. In
contrast a rule can be admissible in S , but inadmissible in some extension
S ′ ⊇ S ! For example, suppose that we add to SN the rule

succ(junk) nat.

Now it is no longer the case that the rule

succ(x) nat
x nat .

is admissible, for if the premise were derived using the additional rule,
there is no derivation of junk nat, as would be required for this rule to be
admissible.

Since admissibility is sensitive to which rules are absent, as well as to
which are present, a proof of admissibility of a non-derivable rule must, at
bottom, involve a use of rule induction. A proof by rule induction contains
a case for each rule in the given set, and so it is immediately obvious that
the argument is not stable under an expansion of this set with an additional
rule. The proof must be reconsidered, taking account of the additional rule,
and there is no guarantee that the proof can be extended to cover the new
case (as the preceding example illustrates).

1.8 Defining Functions by Rules

A common use of inductive definitions is to give an inductive definition
of its graph, a relation, which we then prove is a function. For example,

MARCH 9, 2005 WORKING DRAFT

10 1.9 Foundations

the following rules constitute a definition of the addition function on the
natural numbers:

m nat
A (m, zero, m)

A (m, n, p)
A (m, succ(n), succ(p))

These rules constitute an inductive definition of a three-place relation. But
is it a function?

We prove that if m nat and n nat, then there exists a unique p such that
A (m, n, p) by rule induction. There are two cases:

1. From m nat and zero nat, show that there exists a unique p such that
A (m, n, p). Taking p to be m, it is easy to see that A (m, n, p).

2. From m nat and succ(n) nat and the assumption that there exists a
unique p such that A (m, n, p), we are to show that there exists a
unique q such that A (m, succ(n), q). Taking q = succ(p) does the
job.

Given this, we are entitled to write A (m, n, p) as the equation m + n = p.
Often the rule format for defining functions illustrated above can be a

bit unwieldy. In practice we often present such rules in the more conve-
nient form of recursion equations. For example, the addition function may
be defined by the following recursion equations:

m + zero =df m
m + succ(n) =df succ(m + n)

These equations clearly define a relation, namely the three-place relation
given above, but we must prove that they constitute an implicit definition
of a function.

1.9 Foundations

The foregoing account of inductive definitions leaves unsaid just what sorts
of objects may occur in judgements and rules. For example, the induc-
tive definition of binary trees makes use of empty and node(−,−) without
saying precisely what these things really are. More importantly, one may
naturally wonder just what sorts of objects are permissible in an inductive
definition. This is a matter of foundations that we will only touch on briefly
here.

WORKING DRAFT MARCH 9, 2005

1.9 Foundations 11

One approach is to simply take as given that the constructions we have
mentioned so far are intuitively acceptable, and require no further justifi-
cation or explanation. More generally, one might permit any form of “fini-
tary” construction, whereby finite entities are built up from other such fi-
nite entities by finitely executable processes in some intuitive sense. This is
the attitude that we shall adopt in the sequel. We will simply assume with-
out further comment that the constructions we describe are self-evidently
meaningful, and do not require further justification.

Another approach is to build on a widely accepted foundation, such
as set theory. While this leads to a mathematically satisfactory account, it
ignores the very real question of whether and how our constructions can
be justified on computational grounds. After all, the study of program-
ming languages is all about things we can implement on a machine! Con-
ventional set theory makes it difficult to discuss such matters. A standard
halfway point is to insist that all work take place in the universe of hered-
itarily finite sets, which are finite sets of finite sets of . . . of finite sets. Any
construction that can be carried out in this universe is taken as meaningful,
and tacitly assumed to be effectively executable on a machine.

An alternative is to work over a universe of well-founded, finitely branch-
ing trees (which are therefore finite, by König’s Lemma). These can be seen
as “pictures” of hereditarily finite sets, so there is no essential difference
between the two approaches. More radically, one may dispense with the
well-foundedness requirement, and permit finitely branching trees of po-
tentially infinite height. Such structures are pictures of hereditarily finite,
non-well-founded sets, which may be used to model self-referential struc-
tures.

MARCH 9, 2005 WORKING DRAFT

12 1.9 Foundations

WORKING DRAFT MARCH 9, 2005

Chapter 2

Transition Systems

Transition systems are used to describe the execution behavior of programs
by defining an abstract computing device with a set, S, of states that are
related by a transition relation, 7→. The transition relation describes how the
state of the machine evolves during execution.

2.1 Transition Systems

A transition system consists of a set S of states, a subset I ⊆ S of initial states,
a subset F ⊆ S of final states, and a binary transition relation 7→ ⊆ S× S. We
write s 7→ s′ to indicate that (s, s′) ∈ 7→. It is convenient to require that s 6 7→
in the case that s ∈ F.

An execution sequence is a sequence of states s0, . . . , sn such that s0 ∈ I,
and si 7→ si+1 for every 0 ≤ i < n. An execution sequence is maximal iff
sn 6 7→; it is complete iff it is maximal and, in addition, sn ∈ F. Thus every
complete execution sequence is maximal, but maximal sequences are not
necessarily complete.

A state s ∈ S for which there is no s′ ∈ S such that s 7→ s′ is said to
be stuck. Not all stuck states are final! Non-final stuck states correspond to
run-time errors, states for which there is no well-defined next state.

A transition system is deterministic iff for every s ∈ S there exists at most
one s′ ∈ S such that s 7→ s′. Most of the transition systems we will consider
in this book are deterministic, the notable exceptions being those used to
model concurrency.

The reflexive, transitive closure, ∗7→, of the transition relation 7→ is induc-

13

14 2.2 Exercises

tively defined by the following rules:

s ∗7→ s
s 7→ s′ s′ ∗7→ s′′

s ∗7→ s′′

It is easy to prove by rule induction that ∗7→ is indeed reflexive and transi-
tive.

The complete transition relation, !7→ is the restriction to ∗7→ to S× F. That

is, s !7→ s′ iff s ∗7→ s′ and s′ ∈ F.
The multistep transition relation, n7−→, is defined by induction on n ≥ 0

as follows:

s 07−→ s

s 7→ s′ s′ n7−→ s′′

s n+17−→ s′′

It is easy to show that s ∗7→ s′ iff s n7−→ s′ for some n ≥ 0.
Since the multistep transition is inductively defined, we may prove that

P(e, e′) holds whenever e 7→∗ e′ by showing

1. P(e, e).

2. if e 7→ e′ and P(e′, e′′), then P(e, e′′).

The first requirement is to show that P is reflexive. The second is often
described as showing that P is closed under head expansion, or closed under
reverse evaluation.

2.2 Exercises

1. Prove that s ∗7→ s′ iff there exists n ≥ 0 such that s n7−→ s′.

WORKING DRAFT MARCH 9, 2005

Part II

Defining a Language

15

Chapter 3

Concrete Syntax

The concrete syntax of a language is a means of representing expressions as
strings, linear sequences of characters (or symbols) that may be written on a
page or entered using a keyboard. The concrete syntax usually is designed
to enhance readability and to eliminate ambiguity. While there are good
methods (grounded in the theory of formal languages) for eliminating am-
biguity, improving readability is, of course, a matter of taste about which
reasonable people may disagree. Techniques for eliminating ambiguity in-
clude precedence conventions for binary operators and various forms of
parentheses for grouping sub-expressions. Techniques for enhancing read-
ability include the use of suggestive key words and phrases, and establish-
ment of punctuation and layout conventions.

3.1 Strings

To begin with we must define what we mean by characters and strings.
An alphabet, Σ, is a set of characters, or symbols. Often Σ is taken implicitly
to be the set of ASCII or UniCode characters, but we shall need to make
use of other character sets as well. The judgement form char is inductively
defined by the following rules (one per choice of c ∈ Σ):

(c ∈ Σ)
c char

The judgment form stringΣ states that s is a string of characters from Σ.
It is inductively defined by the following rules:

ε stringΣ

c char s stringΣ
c · s stringΣ

17

18 3.2 Context-Free Grammars

In most cases we omit explicit mention of the alphabet, Σ, and just write
s string to indicate that s is a string over an implied choice of alphabet.

In practice strings are written in the usual manner, abcd instead of the
more proper a · (b · (c · (d · ε))). The function s1ˆs2 stands for string concate-
nation; it may be defined by induction on s1. We usually just juxtapose two
strings to indicate their concatentation, writing s1 s2, rather than s1ˆs2.

3.2 Context-Free Grammars

The standard method for defining concrete syntax is by giving a context-free
grammar (CFG) for the language. A grammar consists of three things:

1. An alphabet Σ of terminals.

2. A finite set N of non-terminals that stand for the syntactic categories.

3. A set P of productions of the form A : : = α, where A is a non-terminal
and α is a string of terminals and non-terminals.

Whenever there is a set of productions

A : : = α1
...

A : : = αn.

all with the same left-hand side, we often abbreviate it as follows:

A : : = α1 | · · · | αn.

A context-free grammar is essentially a simultaneous inductive defini-
tion of its syntactic categories. Specifically, we may associate a rule set R
with a grammar according to the following procedure. First, we treat each
non-terminal as a label of its syntactic category. Second, for each produc-
tion

A : : = s1 A1 s2 . . . sn−1 An sn

of the grammar, where A1, . . . , An are all of the non-terminals on the right-
hand side of that production, and s1, . . . , sn are strings of terminals, add a
rule

t1 A1 . . . tn An
s1 t1 s2 . . . sn−1 tn sn A

WORKING DRAFT MARCH 9, 2005

3.3 Ambiguity 19

to the rule set R. For each non-terminal A, we say that s is a string of syntactic
category A iff s A is derivable according to the rule set R so obtained.

An example will make these ideas clear. Let us give a grammar defining
the syntax of a simple language of arithmetic expressions.

Digits d : : = 0 | 1 | · · · | 9
Numbers n : : = d | n d
Expressions e : : = n | e+e | e*e

A number n is a non-empty sequence of decimal digits. An expression e is
either a number n, or the sum or product of two expressions.

Here is this grammar presented as a simultaneous inductive definition:

0 digit · · · 9 digit (3.1)

d digit

d number

n number d digit

n d number
(3.2)

n number
n expr (3.3)

e1 expr e2 expr
e1+e2 expr (3.4)

e1 expr e2 expr
e1*e2 expr (3.5)

Each syntactic category of the grammar determines a judgement form.
For example, the category of expressions corresponds to the judgement
form expr, and so forth.

3.3 Ambiguity

Apart from subjective matters of readability, a principal goal of concrete
syntax design is to eliminate ambiguity. The grammar of arithmetic ex-
pressions given above is ambiguous in the sense that some strings may
be thought of as arising in several different ways. For example, the string
1+2*3 may be thought of as arising by applying the rule for multiplication
first, then the rule for addition, or vice versa. The former interpretation cor-
responds to the expression (1+2)*3; the latter corresponds to the expression
1+(2*3).

MARCH 9, 2005 WORKING DRAFT

20 3.3 Ambiguity

The trouble is that we cannot simply tell from the generated string
which reading is intended. This causes numerous problems. For exam-
ple, suppose that we wish to define a function eval that assigns to each
arithmetic expression e its value n ∈ N. A natural approach is to use rule
induction on the rules determined by the grammar of expressions.

We will define three functions simultaneously, as follows:

evaldig(0) =df 0
...

evaldig(9) =df 9

evalnum(d) =df evaldig(d)
evalnum(n d) =df 10× evalnum(n) + evaldig(d)

evalexp(n) =df evalnum(n)
evalexp(e1+e2) =df evalexp(e1) + evalexp(e2)
evalexp(e1*e2) =df evalexp(e1)× evalexp(e2)

The all-important question is: are these functions well-defined? The an-
swer is no! The reason is that a string such as 1+2*3 arises in two differ-
ent ways, using either the rule for addition expressions (thereby reading
it as 1+(2*3)) or the rule for multiplication (thereby reading it as (1+2)*3).
Since these have different values, it is impossible to prove that there exists
a unique value for every string of the appropriate grammatical class. (It is
true for digits and numbers, but not for expressions.)

What do we do about ambiguity? The most common methods to elimi-
nate this kind of ambiguity are these:

1. Introduce parenthesization into the grammar so that the person writ-
ing the expression can choose the intended intepretation.

2. Introduce precedence relationships that resolve ambiguities between
distinct operations (e.g., by stipulating that multiplication takes prece-
dence over addition).

3. Introduce associativity conventions that determine how to resolve
ambiguities between operators of the same precedence (e.g., by stip-
ulating that addition is right-associative).

WORKING DRAFT MARCH 9, 2005

3.3 Ambiguity 21

Using these techniques, we arrive at the following revised grammar for
arithmetic expressions.

Digits d : : = 0 | 1 | · · · | 9
Numbers n : : = d | n d
Expressions e : : = t | t+e
Terms t : : = f | f*t
Factors f : : = n | (e)

We have made two significant changes. The grammar has been “layered”
to express the precedence of multiplication over addition and to express
right-associativity of each, and an additional form of expression, parenthe-
sization, has been introduced.

It is a straightforward exercise to translate this grammar into an induc-
tive definition. Having done so, it is also straightforward to revise the def-
inition of the evaluation functions so that are well-defined. The revised
definitions are given by rule induction; they require additional clauses for
the new syntactic categories.

evaldig(0) =df 0
...

evaldig(9) =df 9

evalnum(d) =df evaldig(d)
evalnum(n d) =df 10× evalnum(n) + evaldig(d)

evalexp(t) =df evaltrm(t)
evalexp(t+e) =df evaltrm(t) + evalexp(e)

evaltrm(f) =df evalfct(f)
evaltrm(f*t) =df evalfct(f)× evaltrm(t)

evalfct(n) =df evalnum(n)
evalfct((e)) =df evalexp(e)

A straightforward proof by rule induction shows that these functions are
well-defined.

MARCH 9, 2005 WORKING DRAFT

22 3.4 Exercises

3.4 Exercises

WORKING DRAFT MARCH 9, 2005

Chapter 4

Abstract Syntax Trees

The concrete syntax of a language is an inductively-defined set of strings
over a given alphabet. Its abstract syntax is an inductively-defined set of
abstract syntax trees, or ast’s, over a set of operators. Abstract syntax avoids
the ambiguities of concrete syntax by employing operators that determine
the outermost form of any given expression, rather than relying on parsing
conventions to disambiguate strings.

4.1 Abstract Syntax Trees

Abstract syntax trees are constructed from other abstract syntax trees by
combining them with an constructor, or operator, of a specified arity. The
arity of an operator, o, is the number of arguments, or sub-trees, required
by o to form an ast. A signature is a mapping assigning to each o ∈ dom(Ω)
its arity Ω(o). The judgement form termΩ is inductively defined by the
following rules:

t1 termΩ · · · tn termΩ (Ω(o) = n)
o(t1, . . . , tn) termΩ

Note that we need only one rule, since the arity of o might well be zero, in
which case the above rule has no premises.

For example, the following signature, Ωexpr, specifies an abstract syn-
tax for the language of arithmetic expressions:

Operator Arity
num[n] 0
plus 2
times 2

23

24 4.2 Structural Induction

Here n ranges over the natural numbers; the operator num[n] is the nth nu-
meral, which takes no arguments. The operators plus and times take two
arguments each, as might be expected. The abstract syntax of our language
consists of those t such that t termΩexpr .

Specializing the rules for abstract syntax trees to the signature Ωexpr
(and suppressing explicit mention of it), we obtain the following inductive
definition:

(n ∈N)
num[n] term

t1 term t2 term

plus(t1, t2) term

t1 term t2 term

times(t1, t2) term

It is common to abuse notation by presenting these rules in grammatical
form, as follows:

Terms t : : = num[n] | plus(t1, t2) | times(t1, t2)

Although it has the form of a grammar, this description is to be understood
as defining the abstract, not the concrete, syntax of the language.

In practice we do not explicitly declare the operators and their arities
in advance of giving an inductive definition of the abstract syntax of a lan-
guage. Instead we leave it to the reader to infer the set of operators and
their arities required for the definition to make sense.

4.2 Structural Induction

The principal of rule induction for abstract syntax is called structural induc-
tion. We say that a proposition is proved “by induction on the structure of
. . . ” or “by structural induction on . . . ” to indicate that we are applying the
general principle of rule induction to the rules defining the abstract syntax.

In the case of arithmetic expressions the principal of structural induc-
tion is as follows. To show that t J is evident whenever t term, it is enough
to show:

1. num[n] J for every n ∈N;

2. if t1 J and t2 J, then plus(t1, t2) J;

3. if t1 J and t2 J, then times(t1, t2) J;

For example, we may prove that the equations

eval(num[n]) =df n
eval(plus(t1, t2)) =df eval(t1) + eval(t2)

eval(times(t1, t2)) =df eval(t1)× eval(t2)

WORKING DRAFT MARCH 9, 2005

4.3 Parsing 25

determine a function eval from the abstract syntax of expressions to num-
bers. That is, we may show by induction on the structure of e that there is
a unique n such that eval(t) = n.

4.3 Parsing

The process of translation from concrete to abstract syntax is called pars-
ing. Typically the concrete syntax is specified by an inductive definition
defining the grammatical strings of the language, and the abstract syntax is
given by an inductive definition of the abstract syntax trees that constitute
the language. In this case it is natural to formulate parsing as an inductively
defined function mapping concrete the abstract syntax. Since parsing is to
be a function, there is exactly one abstract syntax tree corresponding to a
well-formed (grammatical) piece of concrete syntax. Strings that are not
derivable according to the rules of the concrete syntax are not grammatical,
and can be rejected as ill-formed.

For example, consider the language of arithmetic expressions discussed
in Chapter 3. Since we wish to define a function on the concrete syntax, it
should be clear from the discussion in Section 3.3 that we should work
with the disambiguated grammar that makes explicit the precedence and
associativity of addition and multiplication. With the rules of this grammar
in mind, we may define simultaneously a family of parsing functions for

MARCH 9, 2005 WORKING DRAFT

26 4.3 Parsing

each syntactic category by the following equations:1

parsedig(0) = 0
...

parsedig(9) = 9

parsenum(d) = num[parsedig(d)]
parsenum(n d) = num[10× k + parsedig d], where parsenum n = num[k]

parseexp(t) = parsetrm(t)
parseexp(t+e) = plus(parsetrm(t), parseexp(e))

parsetrm(f) = parsefct(f)
parsetrm(f*t) = times(parsefct(f), parsetrm(t))

parsefct(n) = parsenum(n)
parsefct((e)) = parseexp(e)

It is a simple matter to prove by rule induction that these rules define a
function from grammatical strings to abstract syntax.

There is one remaining issue about this specification of the parsing func-
tion that requires further remedy. Look closely at the definition of the func-
tion parsenum. It relies on a decomposition of the input string into two parts:
a string, which is parsed as a number, followed a character, which is parsed
as a digit. This is quite unrealistic, at least if we expect to process the input
“on the fly”, since it requires us to work from the end of the input, rather
than the beginning. To remedy this, we modify the grammatical clauses for
numbers to be right recursive, rather than left recursive, as follows:

Numbers n : : = d | d n

This re-formulation ensures that we may process the input from left-to-
right, one character at a time. It is a simple matter to re-define the parser to
reflect this change in the grammar, and to check that it is well-defined.

An implementation of a parser that obeys this left-to-right discipline
and is defined by induction on the rules of the grammar is called a recursive
descent parser. This is the method of choice for hand-coded parsers. Parser

1These are, of course, definitional equalities, but here (and elsewhere) we omit the sub-
script “df ” for perspicuity.

WORKING DRAFT MARCH 9, 2005

4.4 Exercises 27

generators, which automatically create parsers from grammars, make use
of a different technique that is more efficient, but much harder to imple-
ment by hand.

4.4 Exercises

1. Give a concrete and (first-order) abstract syntax for a language.

2. Write a parser for that language.

MARCH 9, 2005 WORKING DRAFT

28 4.4 Exercises

WORKING DRAFT MARCH 9, 2005

Chapter 5

Abstract Binding Trees

Abstract syntax trees make explicit the hierarchical relationships among the
components of a phrase by abstracting out from irrelevant surface details
such as parenthesization. Abstract binding trees, or abt’s, go one step further
and make explicit the binding and scope of identifiers in a phrase, abstract-
ing from the “spelling” of bound names so as to focus attention on their
fundamental role as abstract names.

5.1 Names

Names are widely used in programming languages: names of variables,
names of fields in structures, names of communication channels, names of
locations in the heap, and so forth. Names have no structure beyond their
identity; in particular, the “spelling” of a name is of no significance. Con-
sequently, we shall treat names as atoms, and abstract away any internal
structure such as the “spelling” of the name. We assume given a judge-
ment form name such that x name for infinitely many x.

We will often make use of n-tuples of names ~x = x1, . . . , xn, where n ≥
0. The constituent names of ~x are written xi, where 1 ≤ i ≤ n, and we
tacitly assume that if i 6= j, then xi and xj are distinct names. In any such
tuple the names xi are tacitly assumed to be pairwise distinct. If ~x is an
n-tuple of names, we define its length, |~x|, to be n.

29

30 5.2 Abstract Syntax With Names

5.2 Abstract Syntax With Names

Suppose that we enrich the language of arithmetic expressions given in
Chapter 4 with a means of binding the value of an arithmetic expression to
an identifier for use within another arithmetic expression. To support this
we extend the abstract syntax with two additional constructs:1

x name
id(x) termΩ

x name t1 termΩ t2 termΩ

let(x, t1, t2) termΩ

The ast id(x) represents a use of a name, x, as a variable, and the ast
let(x, t1, t2) introduces a name, x, that is to be bound to (the value of) t1
for use within t2.

The difficulty with abstract syntax trees is that they make no provision
for specifying the binding and scope of names. For example, in the ast
let(x, t1, t2), the name x is available for use within t2, but not within t1.
That is, the name x is bound by the let construct for use within its scope,
the sub-tree t2. But there is nothing intrinsic to the ast that makes this clear.
Rather, it is a condition imposed on the ast “from the outside”, rather than
an intrinsic property of the abstract syntax. Worse, the informal specifica-
tion is vague in certain respects. For example, what does it mean if we nest
bindings for the same identifier, as in the following example?

let(x, t1, let(x, id(x), id(x)))

Which occurrences of x refer to which bindings, and why?

5.3 Abstract Binding Trees

Abstract binding trees are a generalization of abstract syntax trees that pro-
vide intrinsic support for binding and scope of names. Abt’s are formed
from names and abstractors by operators. Operators are assigned (general-
ized) arities, which are finite sequences of valences, which are natural num-
bers. Thus an arity has the form (m1, . . . , mk), specifying an operator with k
arguments, each of which is an abstractor of the specified valence. Abstrac-
tors are formed by associating zero or more names with an abt; the valence
is the number of names attached to the abstractor. The present notion of
arity generalizes that given in Chapter 4 by observing that the arity n from
Chapter 4 becomes the arity (0, . . . , 0), with n copies of 0.

1One may also devise a concrete syntax, for example writing let x be e1 in e2 for the
binding construct, and a parser to translate from the concrete to the abstract syntax.

WORKING DRAFT MARCH 9, 2005

5.4 Renaming 31

This informal description can be made precise by a simultaneous induc-
tive definition of two judgement forms, abtΩ and absΩ, which are param-
eterized by a signature assigning a (generalized) arity to each of a finite set
of operators. The judgement t abtΩ asserts that t is an abt over signature Ω,
and the judgement ~x.t absn

Ω states that ~x.t is an abstractor of valence n.

x name
x abtΩ

β1 absm1
Ω · · · βk absmk

Ω

o(β1, . . . , βk) abtΩ
(Ω(o) = (m1, . . . , mk))

t abtΩ

t abs0
Ω

x name β absn
Ω

x.β absn+1
Ω

An abstractor of valence n has the form x1.x2.. . . xn.t, which is sometimes
abbreviated ~x.t, where ~x = x1, . . . , xn. We tacitly assume that no name
is repeated in such a sequence, since doing so serves no useful purpose.
Finally, we make no distinction between an abstractor of valence zero and
an abt.

The language of arithmetic expressions may be represented as abstract
binding trees built from the following signature.

Operator Arity
num[n] ()
plus (0, 0)
times (0, 0)
let (0, 1)

The arity of the “let” operator makes clear that no name is bound in the
first position, but that one name is bound in the second.

5.4 Renaming

The free names, FN(t), of an abt, t, is inductively defined by the following
recursion equations:

FN(x) =df { x }
FN(o(β1, . . . , βk)) =df FN(β1) ∪ · · · ∪ FN(βk)

FN(~x.t) =df FN(t) \~x

Thus, the set of free names in t are those names occurring in t that do not lie
within the scope of an abstractor.

MARCH 9, 2005 WORKING DRAFT

32 5.4 Renaming

We say that the abt t1 lies apart from the abt t2, written t1 # t2, whenever
FN(t1) ∩ FN(t2) = ∅. In particular, x # t whenever x /∈ FN(t), and x # y
whenever x and y are distinct names. We write~t # ~u to mean that ti # uj for
each 1 ≤ i ≤ |~t| and each 1 ≤ j ≤ |~u|.

The operation of swapping one name, x, for another, y, within an abt,
t, written [x↔y]t, is inductively defined by the following recursion equa-
tions:

[x↔y]x =df y
[x↔y]y =df x
[x↔y]z =df z (if z # x, z # y)

[x↔y]o(β1, . . . , βk) =df o([x↔y]β1, . . . , [x↔y]βk)

[x↔y](~x.t) =df [x↔y]~x.[x↔y]t

In the above equations, and elsewhere, if~t is an n-tuple of abt’s, then [x↔y]~t
stands for the n-tuple [x↔y]t1, . . . , [x↔y]tn.

A chief characteristic of a binding operator is that the choice of bound
names does not matter. This is captured by treating as equivalent and two
abt’s that differ only in the choice of bound names, but are otherwise iden-
tical. This relation is called, for historical reasons, α-equivalence. It is in-
ductively defined by the following rules:

x =α x abtΩ

β1 =α γ1 absm1
Ω · · · βk =α γk absmk

Ω (Ω(o) = (m1, . . . , mk))
o(β1, . . . , βk) =α o(γ1, . . . , γk) abtΩ

t =α u abtΩ

t =α u abs0
Ω

β =α γ absn
Ω

x.β =α x.γ absn+1
Ω

x # y y # β [x↔y]β =α γ absn
Ω

x.β =α y.γ absn+1
Ω

In practice we abbreviate these relations to t =α u and β =α γ, respectively.
As an exercise, check the following α-equivalences and inequivalences

using the preceding definitions specialized to the signature given earlier.

let(x, x.x) =α let(x, y.y)
let(y, x.x) =α let(y, y.y)
let(x, x.x) 6=α let(y, y.y)

let(x, x.plus(x, y)) =α let(x, z.plus(z, y))
let(x, x.plus(x, y)) 6=α let(x, y.plus(y, y))

It may be shown by rule induction that α-equivalence is, in fact, an
equivalence relation (i.e., it is reflexive, symmetric, and transitive). For

WORKING DRAFT MARCH 9, 2005

5.5 Structural Induction 33

transitivity we must show simultaneously that (i) t =α u and u =α v imply
t =α v, and (ii) β =α γ and γ =α δ imply β =α δ. Let us consider the case
that β = x.β′, γ = y.γ′, and δ = z.δ′. Suppose that β =α γ and γ =α δ. We
are to show that β =α δ, for which it suffices to show either

1. x = z and β′ =α δ′, or

2. x # z and z # β′ and [x↔z]β′ =α δ′.

There are four cases to consider, depending on the derivation of β =α γ
and γ =α δ. Consider the case in which x # y, y # β′, and [x↔y]β′ =α γ′

from the first assumption, and y # z, z # γ′, and [y↔z]γ′ =α δ′ from the
second. We proceed by cases on whether x = z or x # z.

1. Suppose that x = z. Since [x↔y]β′ =α γ′ and [y↔z]γ′ =α δ′, it fol-
lows that [y↔z][x↔y]β′ =α δ′. But since x = z, we have [y↔z][x↔y]β′ =
[y↔x][x↔y]β′ = β′, so we have β′ =α δ′, as desired.

2. Suppose that x # z. Note that z # γ′, so z # [x↔y]β′, and hence z # β′

since x # z and y # z. Finally, [x↔y]β′ =α γ′, so [y↔z][x↔y]β′ =α δ′,
and hence [x↔z]β′ =α δ′, as required.

This completes the proof of this case; the other cases are handled similarly.
From this point onwards we identify any two abt’s t and u such that

t =α u. This means that an abt implicitly stands for its α-equivalence class,
and that we tacitly assert that all operations and relations on abt’s respects
α-equivalence. Put the other way around, any operation or relation on abt’s
that fails to respect α-equivalence is illegitimate, and therefore ruled out of
consideration. In this way we ensure that the choice of bound names does
not matter.

One consequence of this policy on abt’s is that whenever we encounter
an abstract x.β, we may assume that x is fresh in the sense that it may be
implicitly chosen to not occur in any specified finite set of names. For if X
is such a finite set and x ∈ X, then we may choose another representative
of the α-equivalence class of x.β, say x′.β′, such that x′ /∈ X, meeting the
implicit assumption of freshness.

5.5 Structural Induction

The principle of structural induction for ast’s generalizes to abt’s, subject to
freshness conditions that ensure bound names are not confused. To show
simultaneously that

MARCH 9, 2005 WORKING DRAFT

34 5.5 Structural Induction

1. for all t such that t abtΩ, the judgement t J holds, and

2. for every β and n such that β absn
Ω, the judgement β Kn holds,

then it is enough to show the following:

1. For any name x, the judgement x J holds.

2. For each operator, o, of arity (m1, . . . , mk), if β1 Km1 and . . . and βk Kmk ,
then o(β1, . . . , βk) J.

3. If t J, then t K0.

4. For some/any “fresh” name x, if β Kn, then x.β Kn+1.

In the last clause the choice of x is immaterial: some choice of fresh names is
sufficient iff all choices of fresh names are sufficient. The precise meaning
of “fresh” is that the name x must not occur free in the judgement K.

Another example of a proof by structural induction is provided by the
definition of substitution. The operation [~x←~u]t performs the simultaneous,
capture-avoiding substitution of ui for free occurrences of xi in t for each
1 ≤ i ≤ |~x| = |~u|. It is inductively defined by the following recursion
equations:

[~x←~u]xi =df ti

[~x←~u]y =df y (if y # ~x)
[~x←~u]o(β1, . . . , βk) =df o([~x←~u]β1, . . . , [~x←~u]βk)

[~x←~u](~y.t) =df ~y.[~x←~u]t (if ~y # ~u)

The condition on the last clause can always be met, by the freshness as-
sumption. More precisely, we may prove by structural induction that sub-
stitution is total in the sense that for any ~u, ~x, and t, there exists a unique t′

such that [~x←~u]t = t′. The crucial point is that the principal of structural
induction for abstract binding trees permits us to choose bound names to
lie apart from ~x when applying the inductive hypothesis.

WORKING DRAFT MARCH 9, 2005

Chapter 6

Static Semantics

The static semantics of a language determines which pieces of abstract syn-
tax (represented as ast’s or abt’s) are well-formed according to some context-
sensitive criteria. A typical example of a well-formedness constraint is scope
resolution, the requirement that every name be declared before it is used.

6.1 Static Semantics of Arithmetic Expressions

We will give an inductive definition of a static semantics for the language
of arithmetic expressions that performs scope resolution. A well-formedness
judgement has the form Γ ` e ok, where Γ is a finite set of variables and e
is the abt representation of an arithmetic expression. The meaning of this
judgement is that e is an arithmetic expression all of whose free variables
are in the set Γ. Thus, if ∅ ` e ok, then e has no unbound variables, and is
therefore suitable for evaluation.

(x ∈ Γ)
Γ ` x ok

(n ≥ 0)
Γ ` num[n] ok

Γ ` e1 ok Γ ` e2 ok

Γ ` plus(e1, e2) ok

Γ ` e1 ok Γ ` e2 ok

Γ ` times(e1, e2) ok

Γ ` e1 ok Γ ∪ { x } ` e2 ok (x /∈ Γ)
Γ ` let(e1, x.e2) ok

There are a few things to notice about these rules. First, a variable is well-
formed iff it is in Γ. This is consistent with the informal reading of the
judgement. Second, a let expression adds a new variable to Γ for use within

35

36 6.2 Exercises

e2. The “newness” of the variable is captured by the requirement that x /∈ Γ.
Since we identify abt’s up to choice of bound names, this requirement can
always be met by a suitable renaming prior to application of the rule. Third,
the rules are syntax-directed in the sense that there is one rule for each form
of expression; as we will see later, this is not always the case for a static
semantics.

6.2 Exercises

1. Show that Γ ` e ok iff FN(e) ⊆ Γ. From left to right, proceed by rule
induction. From right to left, proceed by induction on the structure
of e.

WORKING DRAFT MARCH 9, 2005

Chapter 7

Dynamic Semantics

The dynamic semantics of a language specifies how programs are to be ex-
ecuted. There are two popular methods for specifying dynamic seman-
tics. One method, called structured operational semantics (SOS), or transi-
tion semantics, presents the dynamic semantics of a language as a transition
system specifying the step-by-step execution of programs. Another, called
evaluation semantics, or ES, presents the dynamic semantics as a binary re-
lation specifying the result of a complete execution of a program.

7.1 Structured Operational Semantics

A structured operational semantics for a language consists of a transition
system whose states are programs and whose transition relation is defined
by induction over the structure of programs. We will illustrate SOS for
the simple language of arithmetic expressions (including let expressions)
discussed in Chapter 5.

The set of states is the set of well-formed arithmetic expressions:

S = { e | ∃Γ Γ ` e ok }.

The set of initial states, I ⊆ S, is the set of closed expressions:

I = { e | ∅ ` e ok }.

The set of final states, F ⊆ S, is just the set of numerals for natural numbers:

F = { num[n] | n ≥ 0 }.

37

38 7.1 Structured Operational Semantics

The transition relation 7→ ⊆ S× S is inductively defined by the follow-
ing rules:

(p = m + n)
plus(num[m], num[n]) 7→ num[p]

(p = m× n)
times(num[m], num[n]) 7→ num[p]

let(num[n], x.e) 7→ {num[n]/x}e

e1 7→ e′1
plus(e1, e2) 7→ plus(e′1, e2)

e2 7→ e′2
plus(num[n1], e2) 7→ plus(num[n1], e′2)

e1 7→ e′1
times(e1, e2) 7→ times(e′1, e2)

e2 7→ e′2
times(num[n1], e2) 7→ times(num[n1], e′2)

e1 7→ e′1
let(e1, x.e2) 7→ let(e′1, x.e2)

Observe that variables are stuck states, but they are not final. Free variables
have no binding, and hence cannot be evaluated to a number.

To enhance readability we often write SOS rules using concrete syntax,
as follows:

(p = m + n)
m+n 7→ p

(p = m× n)
m*n 7→ p

let x be n in e 7→ {n/x}e

e1 7→ e′1
e1+e2 7→ e′1+e2

e2 7→ e′2
n1+e2 7→ n1+e′2

e1 7→ e′1
e1*e2 7→ e′1*e2

e2 7→ e′2
n1*e2 7→ n1*e′2

e1 7→ e′1
let x be e1 in e2 7→ let x be e′1 in e2

The intended meaning is the same, the only difference is the presentation.
The first three rules defining the transition relation are somtimes called

instructions, since they correspond to the primitive execution steps of the
machine. Addition and multiplication are evaluated by adding and mul-
tiplying; let bindings are evaluated by substituting the definition for the

WORKING DRAFT MARCH 9, 2005

7.1 Structured Operational Semantics 39

variable in the body. In all three cases the principal arguments of the con-
structor are required to be numbers. Both arguments of an addition or
multiplication are principal, but only the binding of the variable in a let
expression is principal. We say that these primitives are evaluated by value,
because the instructions apply only when the principal arguments have
been fully evaluated.

What if the principal arguments have not (yet) been fully evaluated?
Then we must evaluate them! In the case of arithmetic expressions we ar-
bitrarily choose a left-to-right evaluation order. First we evaluate the first
argument, then the second. Once both have been evaluated, the instruction
rule applies. In the case of let expressions we first evaluate the binding,
after which the instruction step applies. Note that evaluation of an argu-
ment can take multiple steps. The transition relation is defined so that one
step of evaluation is made at a time, reconstructing the entire expression as
necessary.

For example, consider the following evaluation sequence:

let x be 1+2 in (x+3)*4 7→ let x be 3 in (x+3)*4
7→ (3+3)*4
7→ 6*4
7→ 24

Each step is justified by a rule defining the transition relation. Instruction
rules are axioms, and hence have no premises, but all other rules are justi-
fied by a subsidiary deduction of another transition. For example, the first
transition is justified by a subsidiary deduction of 1+2 7→ 3, which is justi-
fied by the first instruction rule definining the transition relation. Each of
the subsequent steps is justified similarly.

Since the transition relation in SOS is inductively defined, we may rea-
son about it using rule induction. Specifically, to show that P(e, e′) holds
whenever e 7→ e′, it is sufficient to show that P is closed under the rules
defining the transition relation. For example, it is a simple matter to show
by rule induction that the transition relation for evaluation of arithmetic ex-
pressions is deterministic: if e 7→ e′ and e 7→ e′′, then e′ = e′′. This may be
proved by simultaneous rule induction over the definition of the transition
relation.

MARCH 9, 2005 WORKING DRAFT

40 7.2 Evaluation Semantics

7.2 Evaluation Semantics

Another method for defining the dynamic semantics of a language, called
evaluation semantics, consists of a direct inductive definition of the evalu-
ation relation, written e ⇓ v, specifying the value, v, of an expression, e.
More precisely, an evaluation semantics consists of a set E of evaluatable ex-
pressions, a set V of values, and a binary relation ⇓ ⊆ E × V. In contrast
to SOS the set of values need not be a subset of the set of expressions; we
are free to choose values as we like. However, it is often advantageous to
choose V ⊆ E.

We will give an evaluation semantics for arithmetic expressions as an
example. The set of evaluatable expressions is defined by

E = { e | ∅ ` e ok }.

The set of values is defined by

V = { num[n] | n ≥ 0 }.

The evaluation relation for arithmetic expressions is inductively defined
by the following rules:

num[n] ⇓ num[n]

e1 ⇓ num[n1] e2 ⇓ num[n2] (n = n1 + n2)
plus(e1, e2) ⇓ num[n]

e1 ⇓ num[n1] e2 ⇓ num[n2] (n = n1 × n2)
times(e1, e2) ⇓ num[n]

e1 ⇓ num[n1] {num[n1]/x}e2 ⇓ v
let(e1, x.e2) ⇓ v

Notice that the rules for evaluation semantics are not syntax-directed! The
value of a let expression is determined by the value of its binding, and
the value of the corresponding substitution instance of its body. Since the
substitution instance is not a sub-expression of the let, the rules are not
syntax-directed.

Since the evaluation relation is inductively defined, it has associated
with it a principle of proof by rule induction. Specifically, to show that
(e, num[n]) J holds for some judgement J governing expressions and num-
bers, it is enough to show that J is closed under the rules given above.
Specifically,

WORKING DRAFT MARCH 9, 2005

7.3 Relating Transition and Evaluation Semantics 41

1. Show that (num[n], num[n]) J.

2. Assume that (e1, num[n1]) J and (e2, num[n2]) J. Show that (plus(e1, e2), num[n1 + n2]) J
and that (times(e1, e2), num[n1 × n2]) J.

3. Assume that (e1, num[n1]) J and ({num[n1]/x}e2, num[n2]) J. Show that
(let(e1, x.e2), num[n2]) J.

7.3 Relating Transition and Evaluation Semantics

We have given two different forms of dynamic semantics for the same lan-
guage. It is natural to ask whether they are equivalent, but to do so first re-
quires that we consider carefully what we mean by equivalence. The tran-
sition semantics describes a step-by-step process of execution, whereas the
evaluation semantics suppresses the intermediate states, focussing atten-
tion on the initial and final states alone. This suggests that the appropriate
correspondence is between complete execution sequences in the transition
semantics and the evaluation relation in the evaluation semantics.

Theorem 7.1
For all well-formed, closed arithmetic expressions e and all natural num-

bers n, e !7→ num[n] iff e ⇓ num[n].

How might we prove such a theorem? We will consider each direction
separately. We consider the easier case first.

Lemma 7.2
If e ⇓ num[n], then e !7→ num[n].

Proof: By induction on the definition of the evaluation relation. For exam-
ple, suppose that plus(e1, e2) ⇓ num[n] by the rule for evaluating additions.

By induction we know that e1
!7→ num[n1] and e2

!7→ num[n2]. We reason as
follows:

plus(e1, e2)
∗7→ plus(num[n1], e2)
∗7→ plus(num[n1], num[n2])
7→ num[n1 + n2]

Therefore plus(e1, e2)
!7→ num[n1 + n2], as required. The other cases are han-

dled similarly. �

MARCH 9, 2005 WORKING DRAFT

42 7.4 Exercises

What about the converse? Recall from Chapter 2 that the complete eval-

uation relation, !7→, is the restriction of the multi-step evaluation relation,
∗7→, to initial and final states (here closed expressions and numerals). Recall

also that multi-step evaluation is inductively defined by two rules, reflex-
ivity and closure under head expansion. By definition num[n] ⇓ num[n], so
it suffices to show closure under head expansion.

Lemma 7.3
If e 7→ e′ and e′ ⇓ num[n], then e ⇓ num[n].

Proof: By induction on the definition of the transition relation. For ex-
ample, suppose that plus(e1, e2) 7→ plus(e′1, e2), where e1 7→ e′1. Suppose
further that plus(e′1, e2) ⇓ num[n], so that e′1 ⇓ num[n1], and e2 ⇓ num[n2]
and n = n1 + n2. By induction e1 ⇓ num[n1], and hence plus(e1, e2) ⇓ n, as
required. �

7.4 Exercises

1. Prove that if e 7→ e1 and e 7→ e2, then e1 ≡ e2.

2. Prove that if e ∈ I and e 7→ e′, then e′ ∈ I. Proceed by induction on
the definition of the transition relation.

3. Prove that if e ∈ I \ F, then there exists e′ such that e 7→ e′. Proceed by
induction on the rules defining well-formedness given in Chapter 6.

4. Prove that if e ⇓ v1 and e ⇓ v2, then v1 ≡ v2.

5. Complete the proof of equivalence of evaluation and transition se-
mantics.

WORKING DRAFT MARCH 9, 2005

Chapter 8

Relating Static and Dynamic
Semantics

The static and dynamic semantics of a language cohere if the strictures of
the static semantics ensure the well-behavior of the dynamic semantics. In
the case of arithmetic expressions, this amounts to showing two properties:

1. Preservation: If ∅ ` e ok and e 7→ e′, then ∅ ` e′ ok.

2. Progress: If ∅ ` e ok, then either e = num[n] for some n, or there exists
e′ such that e 7→ e′.

The first says that the steps of evaluation preserve well-formedness, the
second says that well-formedness ensures that either we are done or we
can make progress towards completion.

8.1 Preservation for Arithmetic Expressions

The preservation theorem is proved by induction on the rules defining the
transition system for step-by-step evaluation of arithmetic expressions. We
will write e ok for ∅ ` e ok to enhance readability. Consider the rule

e1 7→ e′1
plus(e1, e2) 7→ plus(e′1, e2).

By induction we may assume that if e1 ok, then e′1 ok. Assume that plus(e1, e2) ok.
From the definition of the static semantics we have that e1 ok and e2 ok. By
induction e′1 ok, so by the static semantics plus(e′1, e2) ok. The other cases
are quite similar.

43

44 8.2 Progress for Arithmetic Expressions

8.2 Progress for Arithmetic Expressions

A moment’s thought reveals that if e 6 7→, then e must be a name, for other-
wise e is either a number or some transition applies. Thus the content of the
progress theorem for the language of arithmetic expressions is that evalua-
tion of a well-formed expression cannot encounter an unbound variable.

The proof of progress proceeds by induction on the rules of the static
semantics. The rule for variables cannot occur, because we are assuming
that the context, Γ, is empty. To take a representative case, consider the rule

Γ ` e1 ok Γ ` e2 ok

Γ ` plus(e1, e2) ok

where Γ = ∅. Let e = plus(e1, e2), and assume e ok. Since e is not a
number, we must show that there exists e′ such that e 7→ e′. By induc-
tion we have that either e1 is a number, num[n1], or there exists e′1 such
that e1 7→ e′1. In the latter case it follows that plus(e1, e2) 7→ plus(e′1, e2),
as required. In the former we also have by induction that either e2 is a
number, num[n2], or there exists e′2 such that e1 7→ e′1. In the latter case
we have plus(num[n1], e2) 7→ plus(num[n2], e′2). In the former we have
plus(num[n1], num[n2]) 7→ num[n1 + n2]. The other cases are handled sim-
ilarly.

8.3 Exercises

WORKING DRAFT MARCH 9, 2005

Part III

A Functional Language

45

Chapter 9

A Minimal Functional
Language

The language MinML will serve as the jumping-off point for much of our
study of programming language concepts. MinML is a call-by-value, effect-
free language with integers, booleans, and a (partial) function type.

9.1 Syntax

9.1.1 Concrete Syntax

The concrete syntax of MinML is divided into three main syntactic cate-
gories, types, expressions, and programs. Their definition involves some aux-
iliary syntactic categories, namely variables, numbers, and operators.

These categories are defined by the following grammar:

Var′s x : : = . . .
Num′s n : : = . . .
Op′s o : : = + | * | - | = | <
Types τ : : = int | bool | τ1→τ2
Expr′s e : : = x | n | o(e1, . . . ,en) | true | false |

if e then e1 else e2 |
fun f (x:τ1):τ2 is e |
apply(e1, e2)

Prog′s p : : = e

We do not specify precisely the sets of numbers or variables. We generally
write x, y, etc. for variables, and we write numbers in ordinary decimal

47

48 9.2 Static Semantics

notation. As usual we do not bother to specify such niceties as parenthe-
sization or the use of infix syntax for binary operators, both of which would
be necessary in practice.

9.1.2 Abstract Syntax

The abstract syntax of MinML may be read off from its concrete syntax by
interpreting the preceding grammar as a specification of a set of abstract
binding trees, rather than as a set of strings. The only additional infor-
mation we need, beyond what is provided by the context-free grammar, is
a specification of the binding and scopes of names in an expression. In-
formally, these may be specified by saying that in the function expression
fun f (x:τ1):τ2 is e the variables f and x are both bound within the body
of the function, e. Written as an abt, a function expression has the form
fun(τ1, τ2, f ,x.e), which has the virtue of making explicit that f and x are
bound within e, and that the argument and result types of the function are
part of the syntax.

The following signature constitutes a precise definition of the abstract
syntax of MinML as a class of abt’s:

Operator Arity
int ()
bool ()
→ (0, 0)

n ()
o (0, . . . , 0︸ ︷︷ ︸

n

)

fun (0, 0, 2)
apply (0, 0)
true ()
false ()
if (0, 0, 0)

In the above specification o is an n-argument primitive operator.

9.2 Static Semantics

Not all expressions in MinML are sensible. For example, the expression
if 3 then 1 else 0 is not well-formed because 3 is an integer, whereas the

WORKING DRAFT MARCH 9, 2005

9.2 Static Semantics 49

conditional test expects a boolean. In other words, this expression is ill-
typed because the expected constraint is not met. Expressions which do
satisfy these constraints are said to be well-typed, or well-formed.

Typing is clearly context-sensitive. The expression x + 3 may or may
not be well-typed, according to the type we assume for the variable x. That
is, it depends on the surrounding context whether this sub-expression is
well-typed or not.

The three-place typing judgement, written Γ ` e : τ, states that e is a well-
typed expression with type τ in the context Γ, which assigns types to some
finte set of names that may occur free in e. When e is closed (has no free
variables), we write simply e : τ instead of the more unwieldy ∅ ` e : τ.

We write Γ(x) for the unique type τ (if any) assigned to x by Γ. The
function Γ[x:τ], where x /∈ dom(Γ), is defined by the following equation

Γ[x:τ](y) =
{

τ if y = x
Γ(y) otherwise

The typing relation is inductively defined by the following rules:

(Γ(x) = τ)
Γ ` x : τ (9.1)

Here it is understood that if Γ(x) is undefined, then no type for x is deriv-
able from assumptions Γ.

Γ ` n : int (9.2)

Γ ` true : bool (9.3)

Γ ` false : bool (9.4)

The typing rules for the arithmetic and boolean primitive operators are as
expected.

Γ ` e1 : int Γ ` e2 : int
Γ ` +(e1, e2) : int (9.5)

Γ ` e1 : int Γ ` e2 : int
Γ ` *(e1, e2) : int (9.6)

Γ ` e1 : int Γ ` e2 : int
Γ ` -(e1, e2) : int (9.7)

MARCH 9, 2005 WORKING DRAFT

50 9.3 Properties of Typing

Γ ` e1 : int Γ ` e2 : int
Γ ` =(e1, e2) : bool (9.8)

Γ ` e1 : int Γ ` e2 : int
Γ ` <(e1, e2) : bool (9.9)

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ (9.10)

Notice that the “then” and the “else” clauses must have the same type!

Γ[f :τ1→τ2][x:τ1] ` e : τ2 (f , x /∈ dom(Γ))
Γ ` fun f (x:τ1):τ2 is e : τ1→τ2 (9.11)

Γ ` e1 : τ2→τ Γ ` e2 : τ2

Γ ` apply(e1, e2) : τ (9.12)

9.3 Properties of Typing

It is useful at this stage to catalogue some properties of the typing rela-
tion. We will make use of the principle of induction on typing derivations, or
induction on the typing rules.

A key observation about the typing rules is that there is exactly one
rule for each form of expression — that is, there is one rule for the each of
the boolean constants, one rule for functions, etc.. The typing relation is
therefore said to be syntax-directed; the form of the expression determines
the typing rule to be applied. While this may seem inevitable at this stage,
we will later encounter type systems for which this is not the case.

A simple — but important — consequence of syntax-directedness are
the following inversion principles for typing. The typing rules define suffi-
cient conditions for typing. For example, to show that

Γ ` if e then e1 else e2 : τ,

it suffices to show that Γ ` e : bool, Γ ` e1 : τ, and Γ ` e2 : τ, because
of Rule 9.10. Since there is exactly one typing rule for each expression, the
typing rules also express necessary conditions for typing. For example, if

WORKING DRAFT MARCH 9, 2005

9.3 Properties of Typing 51

Γ ` if e then e1 else e2 : τ, then Γ ` e : bool, Γ ` e1 : τ and Γ ` e2 : τ. That
is, we can “invert” each rule to obtain a necessary typing condition. This is
the content of the following theorem.

Theorem 9.1 (Inversion)
1. If Γ ` x : τ, then Γ(x) = τ.

2. If Γ ` n : τ, then τ = int.

3. If Γ ` true : τ, then τ = bool, and similarly for false.

4. If Γ ` if e then e1 else e2 : τ, then Γ ` e : bool, Γ ` e1 : τ and
Γ ` e2 : τ.

5. If Γ ` fun f (x:τ1):τ2 is e : τ, then Γ[f :τ1→τ2][x:τ1] ` e : τ2 and
τ = τ1→τ2.

6. If Γ ` apply(e1, e2) : τ, then there exists τ2 such that Γ ` e1 : τ2→τ
and Γ ` e2 : τ2.

Proof: Each case is proved by induction on typing. In each case exactly
one rule applies, from which the result is obvious. �

Lemma 9.2
1. Typing is not affected by “junk” in the symbol table. If Γ ` e : τ and

Γ′ ⊇ Γ, then Γ′ ` e : τ.

2. Substitution for a variable with type τ by an expression of the same
type doesn’t affect typing. If Γ[x:τ] ` e′ : τ′, and Γ ` e : τ, then
Γ ` {e/x}e′ : τ′.

Proof:

1. By induction on the typing rules. For example, consider the typing
rule for applications. Inductively we may assume that if Γ′ ⊇ Γ, then
Γ′ ` e1 : τ2→τ and if Γ′ ⊇ Γ, then Γ′ ` e2 : τ2. Consequently, if Γ′ ⊇ Γ,
then Γ′ ` apply(e1, e2) : τ, as required. The other cases follow a
similar pattern.

2. By induction on the derivation of the typing Γ[x:τ] ` e′ : τ′. We will
consider several rules to illustrate the idea.

MARCH 9, 2005 WORKING DRAFT

52 9.4 Dynamic Semantics

(Rule 9.1) We have that e′ is a variable, say y, and τ′ = Γ[x:τ](y). If
y 6= x, then {e/x}y = y and Γ[x:τ](y) = Γ(y), hence Γ ` y : Γ(y),
as required. If x = y, then τ′ = Γ[x:τ](x) = τ, and {e/x}x = e. By
assumption Γ ` e : τ, as required.

(Rule 9.11) We have that e′ = fun f (y:τ1):τ2 is e2 and τ′ = τ1→τ2.
We may assume that f and y are chosen so that

{ f , y } ∩ (FV(e) ∪ { x } ∪ dom(Γ)) = ∅.

By definition of substitution,

{e/x}e′ = fun f (y:τ1):τ2 is {e/x}e2.

Applying the inductive hypothesis to the premise of Rule 9.11,

Γ[x:τ][f :τ1→τ2][y:τ1] ` e2 : τ2,

it follows that
Γ[f :τ1→τ2][y:τ1] ` {e/x}e2 : τ2.

Hence
Γ ` fun f (y:τ1):τ2 is {e/x}e2 : τ1→τ2,

as required.

�

9.4 Dynamic Semantics

The dynamic semantics of MinML is given by an inductive definition of the
one-step evaluation relation, e 7→ e′, between closed expressions. Recall that
we are modelling computation in MinML as a form of “in place” calculation;
the relation e 7→ e′ means that e′ is the result of performing a single step of
computation starting with e. To calculate the value of an expression e, we
repeatedly perform single calculation steps until we reach a value, v, which
is either a number, a boolean constant, or a function.

The rules defining the dynamic semantics of MinML may be classified
into two categories: rules defining the fundamental computation steps (or,
instructions) of the language, and rules for determining where the next in-
struction is to be executed. The purpose of the search rules is to ensure that

WORKING DRAFT MARCH 9, 2005

9.4 Dynamic Semantics 53

the dynamic semantics is deterministic, which means that for any expression
there is at most one “next instruction” to be executed.1

First the instructions governing the primitive operations. We assume
that each primitive operation o defines a total function — given values v1,
. . . , vn of appropriate type for the arguments, there is a unique value v
that is the result of performing operation o on v1, . . . , vn. For example, for
addition we have the following primitive instruction:

+(m, n) 7→ m + n (9.13)

The other primitive operations are defined similarly.
The primitive instructions for conditional expressions are as follows:

if true then e1 else e2 7→ e1 (9.14)

if false then e1 else e2 7→ e2 (9.15)

The primitive instruction for application is as follows:

(v = fun f (x:τ1):τ2 is e)
apply(v, v1) 7→ {v, v1/ f , x}e (9.16)

To apply the function v = fun f (x:τ1):τ2 is e to an argument v1 (which
must be a value!), we substitute the function itself, v, for f , and the argu-
ment value, v1, for x in the body, e, of the function. By substituting v for f
we are “unrolling” the recursive function as we go along.

This completes the primitive instructions of MinML. The “search” rules,
which determine which instruction to execute next, follow.

For the primitive operations, we specify a left-to-right evaluation order.
For example, we have the following two rules for addition:

e1 7→ e′1
+(e1, e2) 7→ +(e′1, e2) (9.17)

e2 7→ e′2
+(v1, e2) 7→ +(v1, e′2) (9.18)

1Some languages are, by contrast, non-determinstic, notably those involving concurrent
interaction. We’ll come back to those later.

MARCH 9, 2005 WORKING DRAFT

54 9.5 Properties of the Dynamic Semantics

The other primitive operations are handled similarly.
For the conditional, we evaluate the test expression.

e 7→ e′

if e then e1 else e2 7→ if e′ then e1 else e2 (9.19)

For applications, we first evaluate the function position; once that is
complete, we evaluate the argument position.

e1 7→ e′1
apply(e1, e2) 7→ apply(e′1, e2) (9.20)

e2 7→ e′2
apply(v1, e2) 7→ apply(v1, e′2) (9.21)

This completes the definition of the MinML one-step evaluation relation.
The multi-step evaluation relation, e 7→∗ e′, is inductively defined by the

following rules:
e 7→∗ e (9.22)

e 7→ e′ e′ 7→∗ e′′

e 7→∗ e′′ (9.23)

In words: e 7→∗ e′ iff performing zero or more steps of evaluation starting
from the expression e yields the expression e′. The relation 7→∗ is sometimes
called the Kleene closure, or reflexive-transitive closure, of the relation 7→.

9.5 Properties of the Dynamic Semantics

Let us demonstrate that the dynamic semantics of MinML is well-defined in
the sense that it assigns at most one value to each expression. (We should
be suspicious if this weren’t true of the semantics, for it would mean that
programs have no definite meaning.)

First, observe that if v is a value, then there is no e (value or otherwise)
such that v 7→ e. Second, observe that the evaluation rules are arranged so
that at most one rule applies to any given form of expression, even though
there are, for example, n + 1 rules governing each n-argument primitive op-
eration. These two observations are summarized in the following lemma.

WORKING DRAFT MARCH 9, 2005

9.6 Exercises 55

Lemma 9.3
For every closed expression e, there exists at most one e′ such that e 7→ e′.
In other words, the relation 7→ is a partial function.

Proof: By induction on the structure of e. We leave the proof as an exercise
to the reader. Be sure to consider all rules that apply to a given expression
e! �

It follows that evaluation to a value is deterministic:

Lemma 9.4
For every closed expression e, there exists at most one value v such that
e 7→∗ v.

Proof: Follows immediately from the preceding lemma, together with the
observation that there is no transition from a value. �

9.6 Exercises

1. Can you think of a type system for a variant of MinML in which inver-
sion fails? What form would such a type system have to take? Hint:
think about overloading arithmetic operations.

2. Prove by induction on the structure of e that for every e and every Γ
there exists at most one τ such that Γ ` e : τ. Hint: use rule induction
for the rules defining the abstract syntax of expressions.

MARCH 9, 2005 WORKING DRAFT

56 9.6 Exercises

WORKING DRAFT MARCH 9, 2005

Chapter 10

Type Safety

Programming languages such as ML and Java are said to be “safe” (or,
“type safe”, or “strongly typed”). Informally, this means that certain kinds
of mismatches cannot arise during execution. For example, it will never
arise that an integer is to be applied to an argument, nor that two functions
could be added to each other. The goal of this section is to make this infor-
mal notion precise. What is remarkable is that we will be able to clarify the
idea of type safety without making reference to an implementation. Con-
sequently, the notion of type safety is extremely robust — it is shared by all
correct implementations of the language.

10.1 Defining Type Safety

Type safety is a relation between the static and dynamic semantics. It tells
us something about the execution of well-typed programs; it says nothing
about the execution of ill-typed programs. In implementation terms, we ex-
pect ill-typed programs to be rejected by the compiler, so that nothing need
be said about their execution behavior (just as syntactically incorrect pro-
grams are rejected, and nothing is said about what such a program might
mean).

In the framework we are developing, type safety amounts to the follow-
ing two conditions:

1. Preservation. If e is a well-typed program, and e 7→ e′, then e′ is also
a well-typed program.

2. Progress. If e is a well-typed program, then either e is a value, or there
exists e′ such that e 7→ e′.

57

58 10.2 Type Safety

Preservation tells us that the dynamic semantics doesn’t “run wild”. If we
start with a well-typed program, then each step of evaluation will neces-
sarily lead to a well-typed program. We can never find ourselves lost in
the tall weeds. Progress tells us that evaluation never “gets stuck”, unless
the computation is complete (i.e., the expression is a value). An example
of “getting stuck” is provided by the expression apply(3, 4) — it is easy
to check that no transition rule applies. Fortunately, this expression is also
ill-typed! Progress tells us that this will always be the case.

Neither preservation nor progress can be expected to hold without some
assumptions about the primitive operations. For preservation, we must as-
sume that if the result of applying operation o to arguments v1, . . . , vn is
v, and o(v1, . . . , vn) : τ, then v : τ. For progress, we must assume that if
o(v1, . . . , vn) is well-typed, then there exists a value v such that v is the re-
sult of applying o to the arguments v1, . . . , vn. For the primitive operations
we’re considering, these assumptions make sense, but they do preclude
introducing “partial” operations, such as quotient, that are undefined for
some arguments. We’ll come back to this shortly.

10.2 Type Safety

Theorem 10.1 (Preservation)
If e : τ and e 7→ e′, then e′ : τ.

Proof: Note that we are proving not only that e′ is well-typed, but that
it has the same type as e. The proof is by induction on the rules defining
one-step evaluation. We will consider each rule in turn.

(Rule 9.13) Here e = +(m, n), τ = int, and e′ = m + n. Clearly e′ : int, as
required. The other primitive operations are handled similarly.

(Rule 9.14) Here e = if true then e1 else e2 and e′ = e1. Since e : τ, by
inversion e1 : τ, as required.

(Rule 9.15) Here e = if false then e1 else e2 and e′ = e2. Since e : τ, by
inversion e2 : τ, as required.

(Rule 9.16) Here e = apply(v1, v2), where v1 = fun f (x:τ2):τ is e2, and
e′ = {v1, v2/ f , x}e2. By inversion applied to e, we have v1 : τ2→τ and v2 :

WORKING DRAFT MARCH 9, 2005

10.2 Type Safety 59

τ2. By inversion applied to v1, we have [f :τ2→τ][x:τ2] ` e2 : τ. Therefore,
by substitution we have {v1, v2/ f , x}e2 : τ, as required.

(Rule 9.17) Here e = +(e1, e2), e′ = +(e′1, e2), and e1 7→ e′1. By inversion
e1 : int, so that by induction e′1 : int, and hence e′ : int, as required.

(Rule 9.18) Here e = +(v1, e2), e′ = +(v1, e′2), and e2 7→ e′2. By inversion
e2 : int, so that by induction e′2 : int, and hence e′ : int, as required.

The other primitive operations are handled similarly.

(Rule 9.19) Here e = if e1 then e2 else e3 and e′ = if e′1 then e2 else e3.
By inversion we have that e1 : bool, e2 : τ and e3 : τ. By inductive hypoth-
esis e′1 : bool, and hence e′ : τ.

(Rule 9.20) Here e = apply(e1, e2) and e′ = apply(e′1, e2). By inversion
e1 : τ2→τ and e2 : τ2, for some type τ2. By induction e′1 : τ2→τ, and hence
e′ : τ.

(Rule 9.21) Here e = apply(v1, e2) and e′ = apply(v1, e′2). By inversion,
v1 : τ2→τ and e2 : τ2, for some type τ2. By induction e′2 : τ2, and hence
e′ : τ.

�

The type of a closed value “predicts” its form.

Lemma 10.2 (Canonical Forms)
Suppose that v : τ is a closed, well-formed value.

1. If τ = bool, then either v = true or v = false.

2. If τ = int, then v = n for some n.

3. If τ = τ1→τ2, then v = fun f (x:τ1):τ2 is e for some f , x, and e.

Proof: By induction on the typing rules, using the fact that v is a value.
�

Exercise 10.3
Give a proof of the canonical forms lemma.

MARCH 9, 2005 WORKING DRAFT

60 10.2 Type Safety

Theorem 10.4 (Progress)
If e : τ, then either e is a value, or there exists e′ such that e 7→ e′.

Proof: The proof is by induction on the typing rules.

(Rule 9.1) Cannot occur, since e is closed.

(Rules 9.2, 9.3, 9.4, 9.11) In each case e is a value, which completes the
proof.

(Rule 9.5) Here e = +(e1, e2) and τ = int, with e1 : int and e2 : int. By
induction we have either e1 is a value, or there exists e′1 such that e1 7→ e′1
for some expression e′1. In the latter case it follows that e 7→ e′, where
e′ = +(e′1, e2). In the former case, we note that by the canonical forms lemma
e1 = n1 for some n1, and we consider e2. By induction either e2 is a value, or
e2 7→ e′2 for some expression e′2. If e2 is a value, then by the canonical forms
lemma e2 = n2 for some n2, and we note that e 7→ e′, where e′ = n1 + n2.
Otherwise, e 7→ e′, where e′ = +(v1, e′2), as desired.

(Rule 9.10) Here e = if e1 then e2 else e3, with e1 : bool, e2 : τ, and e3 :
τ. By the first inductive hypothesis, either e1 is a value, or there exists e′1
such that e1 7→ e′1. If e1 is a value, then we have by the Canonical Forms
Lemma, either e1 = true or e1 = false. In the former case e 7→ e2, and
in the latter e 7→ e3, as required. If e1 is not a value, then e 7→ e′, where
e′ = if e′1 then e2 else e3, by Rule 9.19.

(Rule 9.12) Here e = apply(e1, e2), with e1 : τ2→τ and e2 : τ2. By the first
inductive hypothesis, either e1 is a value, or there exists e′1 such that e1 7→ e′1.
If e1 is not a value, then e 7→ apply(e′1, e2) by Rule 9.20, as required. By the
second inductive hypothesis, either e2 is a value, or there exists e′2 such that
e2 7→ e′2. If e2 is not a value, then e 7→ e′, where e′ = apply(e1, e′2), as
required. Finally, if both e1 and e2 are values, then by the Canonical Forms
Lemma, e1 = fun f (x:τ2):τ is e′′, and e 7→ e′, where e′ = {e1, e2/ f , x}e′′,
by Rule 9.16.

�

Theorem 10.5 (Safety)
If e is closed and well-typed, then evaluation of e can only terminate with
a value of the same type. In particular, evaluation cannot “get stuck” in an

WORKING DRAFT MARCH 9, 2005

10.3 Run-Time Errors and Safety 61

ill-defined state.

10.3 Run-Time Errors and Safety

Stuck states correspond to ill-defined programs that attempt to, say, treat
an integer as a pointer to a function, or that move a pointer beyond the
limits of a region of memory. In an unsafe language there are no stuck states
— every program will do something — but it may be impossible to predict
how the program will behave in certain situations. It may “dump core”, or
it may allow the programmer to access private data, or it may compute a
“random” result.

The best-known example of an unsafe language is C. It’s lack of safety
manifests itself in numerous ways, notably in that computer viruses nearly
always rely on overrunning a region of memory as a critical step in an at-
tack. Another symptom is lack of portability: an unsafe program may ex-
ecute sensibly on one platform, but behave entirely differently on another.
To avoid this behavior, standards bodies have defined portable subsets of
C that are guaranteed to have predictable behavior on all platforms. But
there is no good way to ensure that a programmer, whether through malice
or neglect, adheres to this subset.1

Safe languages, in contrast, avoid ill-defined states entirely, by imposing
typing restrictions that ensure that well-typed programs have well-defined
behavior. MinML is a good example of a safe language. It is inherently
portable, because its dynamic semantics is specified in an implementation-
independent manner, and because its static semantics ensures that well-
typed programs never “get stuck”. Stated contrapositively, the type safety
theorem for MinML assures us that stuck states are ill-typed.

But suppose that we add to MinML a primitive operation, such as quo-
tient, that is undefined for certain arguments. An expression such as 3/0
would most-assuredly be “stuck”, yet would be well-typed, at least if we
take the natural typing rule for it:

Γ ` e1 : int Γ ` e2 : int
Γ ` e1 / e2 : int

What are we to make of this? Is the extension of MinML with quotient
unsafe?

To recover safety, we have two options:

1It should be easy to convince yourself that it is undecidable whether a given C program
can reach an implementation-dependent state.

MARCH 9, 2005 WORKING DRAFT

62 10.3 Run-Time Errors and Safety

1. Enhance the type system so that no well-typed program can ever divide
by zero.

2. Modify the dynamic semantics so that division by zero is not “stuck”,
but rather incurs a run-time error.

The first option amounts to requiring that the type checker prove that the
denominator of a quotient is non-zero in order for it to be well-typed. But
this means that the type system would, in general, be undecidable, for we
can easily arrange for the denominator of some expression to be non-zero
exactly when some Turing machine halts on blank tape. It is the subject of
ongoing research to devise conservative type checkers that are sufficiently
expressive to be useful in practice, but we shall not pursue this approach
any further here.

The second option is widely used. It is based on distinguishing checked
from unchecked errors. A checked error is one that is detected at execution
time by an explicit test for ill-defined situations. For example, the quotient
operation tests whether its denominator is zero, incurring an error if so. An
unchecked error is one that is not detected at execution time, but rather is
regarded as “stuck” or “ill-defined”. Type errors in MinML are unchecked
errors, precisely because the static semantics ensures that they can never
occur.

The point of introducing checked errors is that they ensure well-defined
behavior even for ill-defined programs. Thus 3/0 evaluates to error, rather
than simply “getting stuck” or behaving unpredictably. The essence of type
safety is that well-typed programs should have well-defined behavior, even
if that behavior is to signal an error. That way we can predict how the pro-
gram will behave simply by looking at the program itself, without regard to
the implementation or platform. In this sense safe languages are inherently
portable, which explains the recent resurgence in interest in them.

How might checked errors be added to MinML? The main idea is to add
to MinML a special expression, error, that designates a run-time fault in an
expression. Its typing rule is as follows:

Γ ` error : τ (10.1)

Note that a run-time error can have any type at all. The reasons for this
will become clear once we re-state the safety theorem.

The dynamic semantics is augmented in two ways. First, we add new
transitions for the checked errors. For example, the following rule checks

WORKING DRAFT MARCH 9, 2005

10.3 Run-Time Errors and Safety 63

for a zero denominator in a quotient:

v1 / 0 7→ error (10.2)

Second, we add rules to propagate errors; once an error has arisen, it aborts
the rest of the computation. Here are two representative error propagation
rules:

apply(error, v2) 7→ error (10.3)

apply(v1, error) 7→ error (10.4)

These rule state that if the function or argument position of an application
incur an error, then so does the entire application.

With these changes, the type safety theorem may be stated as follows:

Theorem 10.6 (Safety With Errors)
If an expression is well-typed, it can only evaluate to a value or evaluate to
error. It cannot “get stuck” in an ill-defined state.

As before, safety follows from preservation and progress. The preser-
vation theorem states that types are preserved by evaluation. We have al-
ready proved this for MinML; we need only consider error transitions. But
for these preservation is trivial, since error has any type whatsoever. The
canonical forms lemma carries over without change. The progress theorem
is proved as before, relying on checked errors to ensure that progress can
be made, even in ill-defined states such as division by zero.

MARCH 9, 2005 WORKING DRAFT

64 10.3 Run-Time Errors and Safety

WORKING DRAFT MARCH 9, 2005

Part IV

Control and Data Flow

65

Chapter 11

Abstract Machines

Long considered to be a topic of primarily academic interest, abstract, or vir-
tual, machines are now attracting renewed attention, especially by the soft-
ware industry. The main idea is to define an instruction set for a “pseudo-
computer”, the abstract machine, that may be used as the object code for
compiling a high-level language (such as ML or Java) and that may be im-
plemented with reasonable efficiency on a wide variety of stock platforms.
This means that the high-level language must be implemented only once,
for the abstract machine, but that the abstract machine must itself be im-
plemented once per platform. One advantage is that it is, in principle,
much easier to port the abstract machine than it is to re-implement the
language for each platform. More importantly, this architecture supports
the exchange of object code across the network — if everyone implements
the abstract machine, then code can migrate from one computer to another
without modification. Web sites all over the world exploit this capability to
tremendous advantage, using the Java Virtual Machine.

Before we get started, let us ask ourselves the question: what is an ab-
stract machine? In other words, what is a computer? The fundamental idea
of computation is the notion of step-by-step execution of instructions that
transform the state of the computer in some determinate fashion.1 Each
instruction should be executable in a finite amount of time using a finite
amount of information, and it should be clear how to effect the required
state transformation using only physically realizable methods.2 Execution

1The question of determinacy is increasingly problematic for real computers, largely
because of the aggressive use of parallelism in their implementation. We will gloss over
this issue here.

2For example, consider the instruction that, given the representation of a program, sets
register zero to one iff there is an input on which that program halts when executed, and

67

68 11.1 Control Flow

of a program consists of initializing the machine to a known start state, ex-
ecuting instructions one-by-one until no more instructions remains; the re-
sult of the computation is the final state. Thus an abstract machine is essen-
tially a transition system between states of that machine.

According to this definition the dynamic semantics of MinML is an ab-
stract machine, the M machine. The states of the M machine are closed
MinML expressions e, and the transitions are given by the one-step eval-
uation relation e 7→M e′ defined earlier. This machine is quite high-level
in the sense that the instructions are fairly complex compared to what are
found in typical concrete machines. For example, the M machine performs
substitution of a value for a variable in one step, a decidedly large-scale
(but nevertheless finite and effective) instruction. This machine is also odd
in another sense: rather than have an analogue of a program counter that
determines the next instruction to be executed, we instead have “search
rules” that traverse the expression to determine what to do next. As you
have no doubt observed, this can be quite an involved process, one that
is not typical of real computers. We will begin to address these concerns
by first looking at the management of the flow of control in an abstract
machine, and then considering the management of bindings of values to
variables.

11.1 Control Flow

Rather than repeatedly traverse an expression looking for the next instruc-
tion to execute, we can maintain an explicit record of what to do next in
the computation using an abstract control stack that maintains a record of
the work remaining to be done (in reverse order) to finish evaluating an
expression. We will call this machine the C machine, to remind us that it is
defined to capture the idea of control flow in a computation.

The states of the C machine have the form (k, e), where k is a control
stack and e is a closed expression. Control stacks are inductively defined
by the following rules:

• stack (11.1)

f frame k stack

f . k stack (11.2)

sets it to zero otherwise. This instruction could not be regarded as the instruction of any
computing device that we could ever physically realize, because of the unsolvability of the
halting problem.

WORKING DRAFT MARCH 9, 2005

11.1 Control Flow 69

The set of stack frames is inductively defined by these rules:

e2 expr

+(�, e2) frame (11.3)

v1 value

+(v1,�) frame (11.4)

(There are analogous frames associated with the other primitive opera-
tions.)

e1 expr e2 expr

if� then e1 else e2 frame (11.5)

e2 expr

apply(�, e2) frame (11.6)

v1 value

apply(v1,�) frame (11.7)

Thus a control stack is a sequence of frames f1 . · · · fn . • (implicitly right-
associated), where • is the empty stack and each fi (1 ≤ i ≤ n) is a stack
frame. Each stack frame represents one step in the process of searching for
the next position to evaluate in an expression.

The transition relation for the C machine is inductively defined by a set
of transition rules. We begin with the rules for addition; the other primitive
operations are handled similarly.

(k, +(e1, e2)) 7→C (+(�, e2) . k, e1) (11.8)

(+(�, e2) . k, v1) 7→C (+(v1,�) . k, e2) (11.9)

(+(n1,�) . k, n2) 7→C (k, n1 + n2) (11.10)

The first two rules capture the left-to-right evaluation order for the argu-
ments of addition. The top stack frame records the current position within
the argument list; when the last argument has been evaluated, the opera-
tion is applied and the stack is popped.

Next, we consider the rules for booleans.

(k, if e then e1 else e2) 7→C (if� then e1 else e2 . k, e) (11.11)

MARCH 9, 2005 WORKING DRAFT

70 11.1 Control Flow

(if� then e1 else e2 . k, true) 7→C (k, e1) (11.12)

(if� then e1 else e2 . k, false) 7→C (k, e2) (11.13)

These rules follow the same pattern. First, the test expression is evaluated,
recording the pending conditional branch on the stack. Once the value
of the test has been determined, we branch to the appropriate arm of the
conditional.

Finally, we consider the rules for application of functions.

(k, apply(e1, e2)) 7→C (apply(�, e2) . k, e1) (11.14)

(apply(�, e2) . k, v1) 7→C (apply(v1,�) . k, e2) (11.15)

(apply(v1,�) . k, v2) 7→C (k, {v1, v2/ f , x}e) (11.16)

The last rule applies in the case that v1 = fun f (x:τ1):τ2 is e. These rules
ensure that the function is evaluated before the argument, applying the
function when both have been evaluated.

The final states of the C machine have the form (•, v) consisting of the
empty stack (no further work to do) and a value v.

The rules defining the C machine have no premises — they are all sim-
ple transitions, without any hypotheses. We’ve made explicit the manage-
ment of the “subgoals” required for evaluating expressions using the M ma-
chine by introducing a stack of pending sub-goals that specifies the order
in which they are to be considered. In this sense the C machine is less ab-
stract than the M machine. It is interesting to examine your implementation
of the M machine, and compare it to an implementation of the C machine.
The M machine implementation makes heavy use of the ML runtime stack
to implement the recursive calls to the MinML interpreter corresponding to
premises of the evaluation rules. The runtime stack is required because the
interpreter is not a tail recursive function. In contrast an implementation of
the C machine is tail recursive, precisely because there are no premises on
any of the transitions rules defining it.

What is the relationship between the M machine and the C machine? Do
they define the same semantics for the MinML language? Indeed they do,
but a rigorous proof of this fact is surprisingly tricky to get right. The hard-
est part is to figure out how to state the correspondence precisely; having
done that, the verification is not difficult.

WORKING DRAFT MARCH 9, 2005

11.1 Control Flow 71

The first step is to define a correspondence between C machine states
and M machine states. Intuitively the control stack in the C machine corre-
sponds to the “surrounding context” of an expression, which is saved for
consideration once the expression has been evaluated. Thus a C machine
state may be thought of as representing the M machine state obtained by
“unravelling” the control stack and plugging in the current expression to
reconstruct the entire program as a single expression. The function that
does this, written k @ e, is defined by induction on the structure of k as
follows:

•@ e = e
+(�, e2) . k @ e1 = k @ +(e1, e2)
+(v1,�) . k @ e2 = k @ +(v1, e2)

if� then e1 else e2 . k @ e = k @ if e then e1 else e2
apply(�, e2) . k @ e = k @ apply(e, e2)
apply(v1,�) . k @ e = k @ apply(v1, e)

The precise correspondence between the two machines is given by the
following theorem.

Theorem 11.1
1. If (k, e) 7→C (k′, e′), then either k @ e = k′ @ e′, or k @ e 7→M k′ @ e′.

2. If e 7→M e′ and (k, e′) 7→∗C (•, v), then (k, e) 7→∗C (•, v).

The first part of the Theorem states that the C machine transitions are either
“bookkeeping” steps that move a piece of the program onto the control
stack without materially changing the overall program, or “instruction”
steps that correspond to transitions in the M machine. The second part is a
bit tricky to understand, at first glance. It says that if the M machine moves
from a state e to a state e′, and the C machine runs to completion starting
from e′ and an arbitrary stack k, then it also runs to completion starting
from e and k.3

Proof:

1. By induction on the definition of the C machine. We will do the cases
for application here; the remainder follow a similar pattern.

3Half the battle in establishing a correspondence between the two machines was to find
the proper statement of the correspondence! So you should not be dismayed if it takes some
time to understand what is being said here, and why.

MARCH 9, 2005 WORKING DRAFT

72 11.1 Control Flow

(a) Consider the transition

(k, apply(e1, e2)) 7→C (apply(�, e2) . k, e1).

Here e = apply(e1, e2), k′ = apply(�, e2) . k, and e′ = e1. It is
easy to check that k @ e = k′ @ e′.

(b) Consider the transition

(apply(�, e2) . k′′, v1) 7→C (apply(v1,�) . k′′, e2).

Here e = v1, k = apply(�, e2). k′′, e′ = e2, and k′ = apply(v1,�).
k′′. It is easy to check that k @ e = k′ @ e′.

(c) Consider the transition

(apply(v1,�) . k′, v2) 7→C (k′, {v1, v2/ f , x}e),

where v1 = fun f (x:τ2):τ is e. Here k = apply(v1,�) . k′,
e = v2, and e′ = {v1, v2/ f , x}e. We have

k @ e = k′ @ apply(v1, v2)
7→ k′ @ e′

as desired. The second step follows from the observation that
stacks are defined so that the M search rules “glide over” k′ —
the next instruction to execute in k′ @ apply(v1, v2) must be the
application apply(v1, v2).

2. By induction on the MinML dynamic semantics. We will do the cases
for application here; the remainder follow a similar pattern.

(a) e = apply(v1, v2) 7→M {v1, v2/ f , x}e2 = e′, where the value
v1 = fun f (x:τ2):τ is e2. Suppose that (k, e′) 7→∗C (•, v). By the
definition of the C machine transition relation,

(k, e) 7→C (apply(�, v2) . k, v1)
7→C (apply(v1,�) . k, v2)
7→C (k, e′)

From this, the result follows immediately.

(b) e = apply(e1, e2) 7→M apply(e′1, e2) = e′, where e1 7→M e′1. Sup-
pose that (k, e′) 7→∗C (•, v). Since e′ = apply(e′1, e2), and since the

WORKING DRAFT MARCH 9, 2005

11.1 Control Flow 73

C machine is deterministic, this transition sequence must have
the form

(k, e′) = (k, apply(e′1, e2)) 7→C (apply(�, e2) . k, e′1) 7→∗C (•, v)

By the inductive hypothesis, using the enlarged stack, it follows
that

(apply(�, e2) . k, e1) 7→∗C (•, v).

Now since

(k, e) = (k, apply(e1, e2)) 7→C (apply(�, e2) . k, e1)

the result follows immediately.

(c) e = apply(v1, e2) 7→M apply(v1, e′2) = e′, where e2 7→M e′2. Sup-
pose that (k, e′) 7→∗C (•, v). Since e′ = apply(v1, e′2), and since
the C machine is deterministic, this transition sequence must
have the form

(k, e′) = (k, apply(v1, e′2)) 7→C (apply(v1,�) . k, e′2) 7→∗C (•, v)

By the inductive hypothesis, using the enlarged stack, it follows
that

(apply(v1,�) . k, e2) 7→∗C (•, v).

Now since

(k, e) = (k, apply(v1, e2)) 7→C (apply(v1,�) . k, e1)

the result follows immediately.

�

Exercise 11.2
Finish the proof of the theorem by giving a complete proof of part (1), and
filling in the missing cases in part (2).

Corollary 11.3
1. If (k, e) 7→∗C (•, v), then k @ e 7→∗M v. Hence if (•, e) 7→∗C (•, v), then

e 7→∗M v.

2. If e 7→∗M e′ and (k, e′) 7→∗C (•, v), then (k, e) 7→∗C (•, v). Hence if e 7→∗M
v, then (•, e) 7→∗C (•, v).

MARCH 9, 2005 WORKING DRAFT

74 11.1 Control Flow

Proof:

1. By induction on the transition sequence, making use of part (1) of the
theorem, then taking k = •. For the induction we have two cases to
consider, one for each rule defining multi-step transition:

(a) Reflexivity. In this case k = • and e = v. It follows that k @ e =
v 7→∗ v, as required.

(b) Reverse execution. Here we have (k′, e′) 7→C (k, e) 7→∗C (•, v). By
induction k @ e 7→∗M v, and by Theorem 11.1 k′ @ e′ 7→∗M k @ e, so
k′ @ e′ 7→∗M v.

2. By induction on transition sequence, making use of part (2) of the
theorem, then taking e′ = v and k = •. We have two cases:

(a) Reflexivity. In this case e = e′ and the result is immediate.

(b) Reverse execution. Here e 7→M e′′ 7→∗M e′ and (k, e′) 7→∗C (•, v).
By induction (k, e′′) 7→∗C (•, v) and by Theorem 11.1 we have
(k, e) 7→∗C (•, v), as required.

�

To facilitate comparison with the E machine described below, it is useful
to restructure the C machine in the following manner. First, we introduce
an “auxiliary” state of the form (v, k), which represents the process of pass-
ing the value v to the stack k. Second, we “link” these two states by the
transition rule

(k, v) 7→C (v, k). (11.17)

That is, when encountering a value, pass it to the stack. Finally, we modify
the transition relation so that all analysis of the stack is performed using
the auxiliary state. Note that transitions now have one of four forms:

(k, e) 7→C (k′, e′) process expression
(k, v) 7→C (v, k) pass value to stack
(v, k) 7→C (v′, k′) pass value up stack
(v, k) 7→C (k′, e′) process pending expression

Exercise 11.4
Complete the suggested re-formulation of the C machine, and show that it
is equivalent to the orginal formulation.

WORKING DRAFT MARCH 9, 2005

11.2 Environments 75

11.2 Environments

The C machine is still quite “high level” in that function application is per-
formed by substitution of the function itself and its argument into the body
of the function, a rather complex operation. This is unrealistic for two rea-
sons. First, substitution is a complicated process, not one that we would
ordinarily think of as occurring as a single step of execution of a computer.
Second, and perhaps more importantly, the use of substitution means that
the program itself, and not just the data it acts upon, changes during eval-
uation. This is a radical departure from more familiar models of compu-
tation, which maintain a rigorous separation between program and data.
In this section we will present another abstraction machine, the E machine,
which avoids substitution by introducing an environment that records the
bindings of variables.

The basic idea is simple: rather than replace variables by their bindings
when performing a function application, we instead record the bindings of
variables in a data structure, and, correspondingly, look up the bindings of
variables when they are used. In a sense we are performing substitution
“lazily”, rather than “eagerly”, to avoid unnecessary duplication and to
avoid modifying the program during execution. The main complication
introduced by environments is that we must exercise considerable caution
to ensure that we do not confuse the scopes of variables.4 It is remarkably
easy, if we are not careful, to confuse the bindings of variables that happen
to have the same name. We avoid difficulties by introducing closures, data
structures that package an expression together with an environment.

To see the point, let’s first sketch out the structure of the E machine. A
state of the E machine has the form (K, E, e), where K is a machine stack,
E is an environment, a finite function mapping variables to machine values,
and e is an open expression such that FV(e) ⊆ dom(E). Machine values
are values “inside the machine”, distinct from the syntactic notion of value
used in the M and C machines. The reason for the distinction arises from
the replacement of substitution by binding.

Since the M and C machines perform function application by substitu-
tion, there is never any need to consider expressions with free variables in
them; the invariant that the expression part of the state is closed is main-
tained throughout evaluation. The whole point of the E machine, how-
ever, is to avoid substitution by maintaining an environment that records

4In fact, the notion of “dynamic scope” arose as a result of an error in the original Lisp
interpreter (circa 1960) that confused the scopes of variables.

MARCH 9, 2005 WORKING DRAFT

76 11.2 Environments

the bindings of free variables. When a function is called, the parameter
is bound to the argument, the function name is bound to the function it-
self, and the body is evaluated; when that is complete the bindings of the
function name and parameter can be released, and evaluation continues.

This suggests that the environment is a global, stack-like data structure
onto which arguments are pushed and popped during evaluation — values
are pushed on function call and popped on function return. In fact, the en-
vironment might be called the data stack for precisely this reason. However,
a moment’s thought reveals that this characterization is a tad too simplistic,
because it overlooks a crucial issue in the implementation of functional lan-
guages, namely the ability to return functions as results of function appli-
cations. Suppose that f is a function of type int→int→int. When applied
to an integer n, the result apply(f , n) yields a function of type int→int.
For example, f might be the following function:

fun (x:int):int→int is fun (y:int):int is x,

Observe that the function returned by f contains a free occurrence of the
parameter x of f . If we follow the simple stack-like discipline of function
call and return, we will, upon calling f , bind x to 1, yielding the value

fun (y:int):int is x,

then pop the binding of x from the environment. But wait a minute! The
returned value is a function that contains a free occurrence of x, and we’ve
just deleted the binding for x from the environment! Subsequent uses of
this function will either capture some other binding for x that happens to
be in the environment at the time it is used, violating the static scoping
principle,5, or incur an unbound variable error if no binding for x happens
to be available.

This problem is avoided by the use of closures. The value returned by
the application apply(f , 1) is the closure6

fun (y:int):int is x[E[x 7→ 1]]

where E is the environment in effect at the point of the call. When f returns
the binding for x is indeed popped from the global environment, but a local

5This is the error in the original implementation of Lisp referred to earlier.
6In this case the rest of the environment, E, is superfluous. In general we can cut down

the closing environment to just those variables that actually occur in the body of the func-
tion. We will ignore this optimization for the time being.

WORKING DRAFT MARCH 9, 2005

11.2 Environments 77

copy of it is retained in the closure returned by f . This way no confusion
or capture is possible, and the static scoping discipline is maintained, even
in the absence of substitution.

The need for closures motivates the distinction between syntactic val-
ues and machine values. The latter are inductively defined by the following
rules:

n mvalue (11.18)

true mvalue (11.19)

false mvalue (11.20)

x var y var e expr

fun x (y:τ1):τ2 is e[E] mvalue (11.21)

An environment, E, is a finite function mapping variables to machine val-
ues.

The set of machine stacks is inductively defined by the following rules:

• mstack (11.22)

F mframe K mstack
F . K mstack . (11.23)

Here F is a machine frame. The set of machine frames is inductively defined
by these rules:

e2 expr

+(�, e2)[E] mframe (11.24)

V1 mvalue

+(V1,�) mframe (11.25)

e1 expr e2 expr

if� then e1 else e2[E] mframe (11.26)

e2 expr

apply(�, e2)[E] mframe (11.27)

V1 mvalue

apply(V1,�) mframe (11.28)

MARCH 9, 2005 WORKING DRAFT

78 11.2 Environments

The notation for E machine frames is deceptively similar to the notation
for C machine frames. Note, however, that E machine frames involve ma-
chine values, and that in many cases the frame is closed with respect to an
environment recording the bindings of the free variables in the expressions
stored in the frame. The second form of addition and application frames
need no environment; do you see why?

The E machine has two kinds of states: (K, E, e), described earlier, and
“auxiliary” states of the form (V, K), where K is a machine stack and V is
a machine value. The auxiliary state represents the passage of a machine
value to the top frame of the machine stack. (In the C machine this is ac-
complished by simply filling the hole in the stack frame, but here a bit more
work is required.)

The E machine is inductively defined by a set of rules for transitions of
one of the following four forms:

(K, E, e) 7→E (K′, E′, e′) process expression
(K, E, v) 7→E (V ′, K′) pass value to stack

(V, K) 7→E (V ′, K′) pass value up stack
(V, K) 7→E (K′, E′, e′) process pending expression

We will use the same transition relation for all four cases, relying on the
form of the states to disambiguate which is intended.

To evaluate a variable x, we look up its binding and pass the associated
value to the top frame of the control stack.

(K, E, x) 7→E (E(x), K) (11.29)

Similarly, to evaluate numeric or boolean constants, we simply pass
them to the control stack.

(K, E, n) 7→E (n, K) (11.30)

(K, E, true) 7→E (true, K) (11.31)

(K, E, false) 7→E (false, K) (11.32)

To evaluate a function expression, we close it with respect to the current
environment to ensure that its free variables are not inadvertently captured,
and pass the resulting closure to the control stack.

(K, E, fun f (x:τ1):τ2 is e) 7→E (fun f (x:τ1):τ2 is e[E], K) (11.33)

WORKING DRAFT MARCH 9, 2005

11.2 Environments 79

To evaluate a primitive operation, we start by evaluating its first argu-
ment, pushing a frame on the control stack that records the need to evaluate
its remaining arguments.

(K, E, +(e1, e2)) 7→E (+(�, e2)[E] . K, E, e1) (11.34)

Notice that the frame is closed in the current environment to avoid capture
of free variables in the remaining arguments.

To evaluate a conditional, we evaluate the test expression, pushing a
frame on the control stack to record the two pending branches, once again
closed with respect to the current environment.

(K, E, if e then e1 else e2) 7→E (if� then e1 else e2[E] . K, E, e) (11.35)

To evaluate an application, we begin by evaluating the function posi-
tion, pushing a frame to record the pending evaluation of the argument,
closed with respect to the current environment.

(K, E, apply(e1, e2)) 7→E (apply(�, e2)[E] . K, E, e1) (11.36)

To complete the definition of the E machine, we must define the transi-
tions governing the auxiliary states.

Pending argument evaluations for primitive operations are handled as
follows. If more arguments remain to be evaluated, we switch states to
process the next argument.

(V1, +(�, e2)[E] . K) 7→E (+(V1,�) . K, E, e2) (11.37)

Notice that the environment of the frame is used to evaluate the next argu-
ment. If no more arguments remain to be evaluated, we pass the result of
executing the primitive operation to the rest of the stack.

(n2, +(v1,�) . K) 7→E (n1 + n2, K) (11.38)

Pending conditional branches are handled in the obvious manner.

(true, if� then e1 else e2[E] . K) 7→E (K, E, e1) (11.39)

(false, if� then e1 else e2[E] . K) 7→E (K, E, e2) (11.40)

MARCH 9, 2005 WORKING DRAFT

80 11.2 Environments

Notice that the environment of the frame is restored before evaluating the
appropriate branch of the conditional.

Pending function applications are handled as follows.

(V, apply(�, e2)[E] . K) 7→E (apply(V,�) . K, E, e2) (11.41)

Observe that the environment of the frame is restored before evaluating
the argument of the application, and that the function value (which is, pre-
sumbly, a closure) is stored intact in the new top frame of the stack.

Once the argument has been evaluated, we call the function.

(V2, apply(V,�) . K) 7→E (K, E[f 7→ V][x 7→ V2], e) (11.42)

where
V = fun f (x:τ1):τ2 is e[E].

To call the function we bind f to V and x to V2 in the environment of the clo-
sure, continuing with the evaluation of the body of the function. Observe
that since we use the environment of the closure, extended with bindings
for the function and its parameter, we ensure that the appropriate bindings
for the free variables of the function are employed.

The final states of the E machine have the form (V, •), with final re-
sult V. Notice that the result is a machine value. If the type of the entire
program is int or bool, then V will be a numeral or a boolean constant,
respectively. Otherwise the value will be a closure.

A correspondence between the E and the C machine along the lines of
the correspondence between the C machine and the M machine may be
established. However, since the technical details are rather involved, we
will not pursue a rigorous treatment of the relationship here. Suffice it to
say that if e is a closed MinML program of base type (int or bool), then
(•, e) 7→∗C (•, v) iff (•, ∅, e) 7→∗E (v, •). (The restriction to base type is neces-
sary if we are to claim that both machines return the same value.)

WORKING DRAFT MARCH 9, 2005

Chapter 12

Continuations

The semantics of many control constructs (such as exceptions and co-routines)
can be expressed in terms of reified control stacks, a representation of a con-
trol stack as an ordinary value. This is achieved by allowing a stack to be
passed as a value within a program and to be restored at a later point, even if
control has long since returned past the point of reification. Reified control
stacks of this kind are called first-class continuations, where the qualifica-
tion “first class” stresses that they are ordinary values with an indefinite
lifetime that can be passed and returned at will in a computation. First-
class continuations never “expire”, and it is always sensible to reinstate a
continuation without compromising safety. Thus first-class continuations
support unlimited “time travel” — we can go back to a previous point in
the computation and then return to some point in its future, at will.

How is this achieved? The key to implementing first-class continua-
tions is to arrange that control stacks are persistent data structures, just like
any other data structure in ML that does not involve mutable references.
By a persistent data structure we mean one for which operations on it yield
a “new” version of the data structure without disturbing the old version.
For example, lists in ML are persistent in the sense that if we cons an ele-
ment to the front of a list we do not thereby destroy the original list, but
rather yield a new list with an additional element at the front, retaining the
possibility of using the old list for other purposes. In this sense persistent
data structures allow time travel — we can easily switch between several
versions of a data structure without regard to the temporal order in which
they were created. This is in sharp contrast to more familiar ephemeral data
structures for which operations such as insertion of an element irrevocably
mutate the data structure, preventing any form of time travel.

81

82 12.1 Informal Overview of Continuations

Returning to the case in point, the standard implementation of a control
stack is as an ephemeral data structure, a pointer to a region of mutable
storage that is overwritten whenever we push a frame. This makes it im-
possible to maintain an “old” and a “new” copy of the control stack at the
same time, making time travel impossible. If, however, we represent the
control stack as a persistent data structure, then we can easily reify a con-
trol stack by simply binding it to a variable, and continue working. If we
wish we can easily return to that control stack by referring to the variable
that is bound to it. This is achieved in practice by representing the control
stack as a list of frames in the heap so that the persistence of lists can be
extended to control stacks. While we will not be specific about implemen-
tation strategies in this note, it should be born in mind when considering
the semantics outlined below.

Why are first-class continuations useful? Fundamentally, they are rep-
resentations of the control state of a computation at a given point in time.
Using first-class continuations we can “checkpoint” the control state of a
program, save it in a data structure, and return to it later. In fact this is
precisely what is necessary to implement threads (concurrently executing
programs) — the thread scheduler must be able to checkpoint a program
and save it for later execution, perhaps after a pending event occurs or an-
other thread yields the processor. In Section 12.3 we will show how to build
a threads package for concurrent programming using continuations.

12.1 Informal Overview of Continuations

We will extend MinML with the type τ cont of continuations accepting val-
ues of type τ. A continuation will, in fact, be a control stack of type τ stack,
but rather than expose this representation to the programmer, we will re-
gard τ cont as an abstract type supporting two operations, letcc x in e and
throw e1 to e2.1

Informally, evaluation of letcc x in e binds the current continuation2 to
x and evaluates e. The current continuation is, as we’ve discussed, a reifi-
cation of the current control stack, which represents the current point in the
evaluation of the program. The type of x is τ cont, where τ is the type of e.
The intuition is that the current continuation is the point to which e returns

1Close relatives of these primitives are available in SML/NJ in the following forms:
for letcc x in e, write SMLofNJ.Cont.callcc (fn x => e), and for throw e1 to e2, write
SMLofNJ.Cont.throw e2 e1.

2Hence the name “letcc”.

WORKING DRAFT MARCH 9, 2005

12.1 Informal Overview of Continuations 83

when it completes evaluation. Consequently, the control stack expects a
value of type τ, which then determines how execution proceeds. Thus x is
bound to a stack expecting a value of type τ, that is, a value of type τ cont.
Note that this is the only way to obtain a value of type τ cont; there are no
expressions that evaluate to continuations. (This is similar to our treatment
of references — values of type τ ref are locations, but locations can only
be obtained by evaluating a ref expression.)

We may “jump” to a saved control point by throwing a value to a contin-
uation, written throw e1 to e2. The expression e2 must evaluate to a τ1 cont,
and e1 must evaluate to a value of type τ1. The current control stack is aban-
doned in favor of the reified control stack resulting from the evaluation of
e2; the value of e1 is then passed to that stack.

Here is a simple example, written in Standard ML notation. The idea is
to multiply the elements of a list, short-circuiting the computation in case 0
is encountered. Here’s the code:

fun mult list (l:int list):int =
letcc ret in

let fun mult nil = 1
| mult (0::) = throw 0 to ret
| mult (n::l) = n * mult l

in mult l end)

Ignoring the letcc for the moment, the body of mult list is a let expres-
sion that defines a recursive procedure mult, and applies it to the argument
of mult list. The job of mult is to return the product of the elements of the
list. Ignoring the second line of mult, it should be clear why and how this
code works.

Now let’s consider the second line of mult, and the outer use of letcc.
Intuitively, the purpose of the second line of mult is to short circuit the mul-
tiplication, returning 0 immediately in the case that a 0 occurs in the list.
This is achieved by throwing the value 0 (the final answer) to the continua-
tion bound to the variable ret. This variable is bound by letcc surround-
ing the body of mult list. What continuation is it? It’s the continuation
that runs upon completion of the body of mult list. This continuation
would be executed in the case that no 0 is encountered and evaluation pro-
ceeds normally. In the unusual case of encountering a 0 in the list, we
branch directly to the return point, passing the value 0, effecting an early
return from the procedure with result value 0.

Here’s another formulation of the same function:

MARCH 9, 2005 WORKING DRAFT

84 12.1 Informal Overview of Continuations

fun mult list l =
let fun mult nil ret = 1

| mult (0::) ret = throw 0 to ret
| mult (n::l) ret = n * mult l ret

in letcc ret in (mult l) ret end

Here the inner loop is parameterized by the return continuation for early
exit. The multiplication loop is obtained by calling mult with the current
continuation at the exit point of mult list so that throws to ret effect an
early return from mult list, as desired.

Let’s look at another example: given a continuation k of type τ cont and
a function f of type τ′→τ, return a continuation k′ of type τ′ cont with the
following behavior: throwing a value v′ of type τ′ to k′ throws the value
f (v′) to k. This is called composition of a function with a continuation. We
wish to fill in the following template:

fun compose (f:τ′->τ,k:τ cont):τ′ cont = ...

The function compose will have type

((τ′ -> τ) * τ cont) -> τ′ cont

The first problem is to obtain the continuation we wish to return. The
second problem is how to return it. The continuation we seek is the one in
effect at the point of the ellipsis in the expression throw f(...) to k. This
is the continuation that, when given a value v′, applies f to it, and throws
the result to k. We can seize this continuation using letcc, writing

throw f(letcc x:τ′ cont in ...) to k

At the point of the ellipsis the variable x is bound to the continuation we
wish to return. How can we return it? By using the same trick as we used
for short-circuiting evaluation above! We don’t want to actually throw a
value to this continuation (yet), instead we wish to abort it and return it as
the result. Here’s the final code:

fun compose (f, k) =
letcc ret in
throw (f (letcc r in throw r to ret)) to k

The type of ret is τ′ cont cont, a continuation expecting a continuation
expecting a value of type τ′!

WORKING DRAFT MARCH 9, 2005

12.2 Semantics of Continuations 85

We can do without first-class continuations by “rolling our own”. The
idea is that we can perform (by hand or automatically) a systematic pro-
gram transformation in which a “copy” of the control stack is maintained
as a function, called a continuation. Every function takes as an argument
the control stack to which it is to pass its result by applying given stack
(represented as a function) to the result value. Functions never return in
the usual sense; they pass their result to the given continuation. Programs
written in this form are said to be in continuation-passing style, or CPS for
short.

Here’s the code to multiply the elements of a list (without short-circuiting)
in continuation-passing style:

fun cps mult nil k = k 1
| cps mult (n::l) k = cps mult l (fn r => k (n * r))

fun mult l = cps mult l (fn r => r)

It’s easy to implement the short-circuit form by passing an additional
continuation, the one to invoke for short-circuiting the result:

fun cps mult list l k =
let fun cps mult nil k0 k = k 1

| fun cps mult (0::) k0 k = k0 0
| fun cps mult (n::l) k0 k = cps mult k0 l (fn p => k (n*p))

in cps mult l k k end

The continuation k0 never changes; it is always the return continuation for
cps mult list. The argument continuation to cps mult list is duplicated
on the call to cps mult.

Observe that the type of the first version of cps mult becomes

int list→(int→α)→α,

and that the type of the second version becomes

int list→(int→α)→(int→α)→α,

These transformations are representative of the general case.

12.2 Semantics of Continuations

The informal description of evaluation is quite complex, as you no doubt
have observed. Here’s an example where a formal semantics is much clearer,

MARCH 9, 2005 WORKING DRAFT

86 12.2 Semantics of Continuations

and can serve as a useful guide for understanding how all of this works.
The semantics is suprisingly simple and intuitive.

First, the abstract syntax. We extend the language of MinML types with
continuation types of the form τ cont. We extend the language of MinML
expressions with these additional forms:

e : : = . . . | letcc x in e | throw e1 to e2 | K

In the expression letcc x in e the variable x is bound in e. As usual we
rename bound variables implicitly as convenient. We include control stacks
K as expressions for the sake for the sake of the dynamic semantics, much
as we included locations as expressions when considering reference types.
We define continuations thought of as expressions to be values:

K stack
K value (12.1)

Stacks are as defined for the C machine, extended with these additional
frames: e2 expr

throw� to e2 frame (12.2)

v1 value

throw v1 to� frame (12.3)

Second, the static semantics. The typing rules governing the continua-
tion primitives are these:

Γ[x:τ cont] ` e : τ

Γ ` letcc x in e : τ (12.4)

Γ ` e1 : τ1 Γ ` e2 : τ1 cont

Γ ` throw e1 to e2 : τ′ (12.5)

The result type of a throw expression is arbitrary because it does not return
to the point of the call. The typing rule for continuation values is as follows:

` K : τ stack
Γ ` K : τ cont (12.6)

That is, a continuation value K has type τ cont exactly if it is a stack ac-
cepting values of type τ. This relation is defined below, when we consider
type safety of this extension to MinML.

WORKING DRAFT MARCH 9, 2005

12.2 Semantics of Continuations 87

Finally, the dynamic semantics. We use the C machine as a basis. We ex-
tend the language of expressions to include control stacks K as values. Like
locations, these arise only during execution; there is no explicit notation for
continuations in the language. The key transitions are as follows:

(K, letcc x in e) 7→ (K, {K/x}e) (12.7)

(throw v to� . K, K′) 7→ (K′, v) (12.8)

In addition we specify the order of evaluation of arguments to throw:

(K, throw e1 to e2) 7→ (throw� to e2 . K, e1) (12.9)

(throw� to e2 . K, v1) 7→ (throw v1 to� . K, e2) (12.10)

Notice that evaluation of letcc duplicates the control stack, and that eval-
uation of throw eliminates the current control stack.

The safety of this extension of MinML may be established by proving
a preservation and progress theorem for the abstract machine. The well-
formedness of a machine state is defined by the following rule:

` K : τ stack ` e : τ
(K, e) ok (12.11)

That is, a state (K, e) is well-formed iff e is an expression of type τ and K is
a τ-accepting control stack.

To define the judgement ` K : τ stack, we must first fix the type of
the “ultimate answer” of a program, the value returned when evaluation is
completed. The particular choice of answer type is not important, but it is
important that it be a fixed type, τans.

` • : τans stack (12.12)

` F : (τ,τ′) frame ` K : τ′ stack
` F . K : τ stack (12.13)

Thus a stack is well-typed iff its frames compose properly. The typing
rules for frames as as follows:

` e2 : int
` +(�, e2) : (int,int) frame (12.14)

MARCH 9, 2005 WORKING DRAFT

88 12.2 Semantics of Continuations

v1 value ` v1 : int
` +(v1,�) : (int,int) frame (12.15)

` e1 : τ ` e2 : τ

` if� then e1 else e2 : (bool,τ) frame (12.16)

` e2 : τ2

` apply(�, e2) : (τ2→τ,τ) frame (12.17)

v1 value ` v1 : τ2→τ

` apply(v1,�) : (τ2,τ) frame (12.18)

` e2 : τ cont

` throw� to e2 : (τ,τ′) frame (12.19)

` v1 : τ

` throw v1 to� : (τ cont,τ′) frame (12.20)

Intuitively, a frame of type (τ1,τ2) frame takes an “argument” of type τ1
and yields a “result” of type τ2. The argument is represented by the “�”
in the frame; the result is the type of the frame once its hole has been filled
with an expression of the given type.

With this in hand, we may state the preservation theorem as follows:

Theorem 12.1 (Preservation)
If (K, e) ok and (K, e) 7→ (K′, e′), then (K′, e′) ok.

Proof: The proof is by induction on evaluation. The verification is left as
an exercise. �

To establish progress we need the following extension to the canonical
forms lemma:

Lemma 12.2 (Canonical Forms)
If ` v : τ cont, then v = K for some control stack K such that ` K : τ stack.

Finally, progress is stated as follows:

Theorem 12.3 (Progress)
If (K, e) ok then either K = • and e value, or there exists K′ and e′ such that
(K, e) 7→ (K′, e′).

WORKING DRAFT MARCH 9, 2005

12.3 Coroutines 89

Proof: By induction on typing. The verification is left as an exercise. �

12.3 Coroutines

Some problems are naturally implemented using coroutines, two (or more)
routines that interleave their execution by an explicit hand-off of control
from one to the other. In contrast to conventional sub-routines neither rou-
tine is “in charge”, with one calling the other to execute to completion.
Instead, the control relationship is symmetric, with each yielding control to
the other during excecution.

A classic example of coroutining is provided by the producer-consumer
model of interaction. The idea is that there is a common, hidden resource
that is supplied by the producer and utilized by the consumer. Production
of the resource is interleaved with its consumption by an explicit hand-
off from producer to consumer. Here is an outline of a simple producer-
consumer relationship, writting in Standard ML.

val buf : int ref = ref 0

fun produce (n:int, cons:state) =
(buf := n; produce (n+1, resume cons))

fun consume (prod:state) =
(print (!buf); consume (resume prod))

There the producer and consumer share an integer buffer. The producer
fills it with successive integers; the consumer retrieves these values and
prints them. The producer yields control to the consumer after filling the
buffer; the consumer yields control to the producer after printing its con-
tents. Since the handoff is explicit, the producer and consumer run in strict
synchrony, alternating between production and consumption.

The key to completing this sketch is to detail the handoff protocol. The
overall idea is to represent the state of a coroutine by a continuation, the
point at which it should continue executing when it is resumed by an-
other coroutine. The function resume captures the current continuation and
throws it to the argument continuation, transferring control to the other
coroutine and, simultaneously, informing it how to resume the caller. This
means that the state of a coroutine is a continuation accepting the state of
(another) coroutine, which leads to a recursive type. This leads to the fol-
lowing partial solution in terms of the SML/NJ continuation primitives:

MARCH 9, 2005 WORKING DRAFT

90 12.3 Coroutines

datatype state = S of state cont

fun resume (S k : state) : state =
callcc (fn k’ : state cont => throw k (S k’))

val buf : int ref = ref 0

fun produce (n:int, cons:state) =
(buf := n; produce (n+1, resume cons))

fun consume (prod:state) =
(print (Int.toString(!buf)); consume (resume prod))

All that remains is to initialize the coroutines. It is natural to start by
executing the producer, but arranging to pass it a coroutine state corre-
sponding to the consumer. This can be achieved as follows:

fun run () =
consume (callcc (fn k : state cont => produce (0, S k)))

Because of the call-by-value semantics of function application, we first seize
the continuation corresponding to passing an argument to consume, then
invoke produce with initial value 0 and this continuation. When produce
yields control, it throws its state to the continuation that invokes consume
with that state, at which point the coroutines have been initialized — fur-
ther hand-off’s work as described earlier.

This is, admittedly, a rather simple-minded example. However, it il-
lustrates an important idea, namely the symmetric hand-off of control be-
tween routines. The difficulty with this style of programming is that the
hand-off protocol is “hard wired” into the code. The producer yields con-
trol to the consumer, and vice versa, in strict alternating order. But what
if there are multiple producers? Or multiple consumers? How would we
handle priorities among them? What about asynchronous events such as
arrival of a network packet or completion of a disk I/O request?

An elegant solution to these problems is to generalize the notion of a
coroutine to the notion of a user-level thread. As with coroutines, threads
enjoy a symmetric relationship among one another, but, unlike coroutines,
they do not explicitly hand off control amongst themselves. Instead threads
run as coroutines of a scheduler that mediates interaction among the threads,
deciding which to run next based on considerations such as priority rela-
tionships or availability of data. Threads yield control to the scheduler,
which determines which other thread should run next, rather than explic-
itly handing control to another thread.

Here is a simple interface for a user-level threads package:

WORKING DRAFT MARCH 9, 2005

12.3 Coroutines 91

signature THREADS = sig
exception NoMoreThreads
val fork : (unit -> unit) -> unit
val yield : unit -> unit
val exit : unit -> ’a

end

The function fork is called to create a new thread executing the body of
the given function. The function yield is called to cede control to another
thread, selected by the thread scheduler. The function exit is called to
terminate a thread.

User-level threads are naturally implemented as continuations. A thread
is a value of type unit cont. The scheduler maintains a queue of threads
that are ready to execute. To dispatch the scheduler dequeues a thread
from the ready queue and invokes it by throwing () to it. Forking is imple-
mented by creating a new thread. Yielding is achieved by enqueueing the
current thread and dispatching; exiting is a simple dispatch, abandoning
the current thread entirely. This implementation is suggestive of a slogan
suggested by Olin Shivers: “A thread is a trajectory through continuation
space”. During its lifetime a thread of control is represented by a succes-
sion of continuations that are enqueued onto and dequeued from the ready
queue.

Here is a simple implementation of threads:

MARCH 9, 2005 WORKING DRAFT

92 12.3 Coroutines

structure Threads :> THREADS = struct
open SMLofNJ.Cont
exception NoRunnableThreads
type thread = unit cont
val readyQueue : thread Queue.queue = Queue.mkQueue()
fun dispatch () =

let
val t = Queue.dequeue readyQueue

handle Queue.Dequeue => raise NoRunnableThreads
in

throw t ()
end

fun exit () = dispatch()
fun enqueue t = Queue.enqueue (readyQueue, t)
fun fork f =

callcc (fn parent => (enqueue parent; f (); exit()))
fun yield () =

callcc (fn parent => (enqueue parent; dispatch()))
end

Using the above thread interface we may implement the simple producer-
consumer example as follows:

structure Client = struct
open Threads
val buffer : int ref = ref (~1)
fun producer (n) =

(buffer := n ; yield () ; producer (n+1))
fun consumer () =

(print (Int.toString (!buffer)); yield (); consumer())
fun run () =

(fork (consumer); producer 0)
end

This example is excessively naı̈ve, however, in that it relies on the strict
FIFO ordering of threads by the scheduler, allowing careful control over
the order of execution. If, for example, the producer were to run several
times in a row before the consumer could run, several numbers would be
omitted from the output.

Here is a better solution that avoids this problem (but does so by “busy
waiting”):

WORKING DRAFT MARCH 9, 2005

12.4 Exercises 93

structure Client = struct
open Threads
val buffer : int option ref = ref NONE
fun producer (n) =

(case !buffer
of NONE => (buffer := SOME n ; yield() ; producer (n+1))
| SOME => (yield (); producer (n)))

fun consumer () =
(case !buffer

of NONE => (yield (); consumer())
| SOME n =>
(print (Int.toString n); buffer := NONE; yield(); consumer()))

fun run () =
(fork (consumer); producer 0)

end

There is much more to be said about threads! We will return to this
later in the course. For now, the main idea is to give a flavor of how first-
class continuations can be used to implement a user-level threads package
with very little difficulty. A more complete implementation is, of course,
somewhat more complex, but not much more. We can easily provide all
that is necessary for sophisticated thread programming in a few hundred
lines of ML code.

12.4 Exercises

1. Study the short-circuit multiplication example carefully to be sure
you understand why it works!

2. Attempt to solve the problem of composing a continuation with a
function yourself, before reading the solution.

3. Simulate the evaluation of compose (f, k) on the empty stack. Ob-
serve that the control stack substituted for x is

apply(f ,�) . throw� to k . • (12.21)

This stack is returned from compose. Next, simulate the behavior of
throwing a value v′ to this continuation. Observe that the above stack
is reinstated and that v′ is passed to it.

MARCH 9, 2005 WORKING DRAFT

94 12.4 Exercises

WORKING DRAFT MARCH 9, 2005

Chapter 13

Exceptions

Exceptions effects a non-local transfer of control from the point at which
the exception is raised to a dynamically enclosing handler for that excep-
tion. This transfer interrupts the normal flow of control in a program in
response to unusual conditions. For example, exceptions can be used to
signal an error condition, or to indicate the need for special handling in
certain circumstances that arise only rarely. To be sure, one could use ex-
plicit conditionals to check for and process errors or unusual conditions,
but using exceptions is often more convenient, particularly since the trans-
fer to the handler is direct and immediate, rather than indirect via a series
of explicit checks. All too often explicit checks are omitted (by design or
neglect), whereas exceptions cannot be ignored.

We’ll consider the extension of MinML with an exception mechanism
similar to that of Standard ML, with the significant simplification that no
value is associated with the exception — we simply signal the exception
and thereby invoke the nearest dynamically enclosing handler. We’ll come
back to consider value-passing exceptions later.

The following grammar describes the extensions to MinML to support
valueless exceptions:

e : : = . . . | fail | try e1 ow e2

The expression fail raises an exception. The expression try e1 ow e2 evalu-
ates e1. If it terminates normally, we return its value; otherwise, if it fails,
we continue by evaluating e2.

The static semantics of exceptions is quite straightforward:

Γ ` fail : τ (13.1)

95

96

Γ ` e1 : τ Γ ` e2 : τ

Γ ` try e1 ow e2 : τ (13.2)

Observe that a failure can have any type, precisely because it never returns.
Both clauses of a handler must have the same type, to allow for either pos-
sible outcome of evaluation.

The dynamic semantics of exceptions is given in terms of the C machine
with an explicit control stack. The set of frames is extended with the fol-
lowing additional clause:

e2 expr

try� ow e2 frame (13.3)

The evaluation rules are extended as follows:

(K, try e1 ow e2) 7→ (try� ow e2 . K, e1) (13.4)

(try� ow e2 . K, v) 7→ (K, v) (13.5)

(try� ow e2 . K, fail) 7→ (K, e2) (13.6)

(F 6= try� ow e2)
(F . K, fail) 7→ (K, fail) (13.7)

To evaluate try e1 ow e2 we begin by evaluating e1. If it achieves a value,
we “pop” the pending handler and yield that value. If, however, it fails, we
continue by evaluating the “otherwise” clause of the nearest enclosing han-
dler. Notice that we explicitly “pop” non-handler frames while processing
a failure; this is sometimes called unwinding the control stack. Finally, we
regard the state (•, fail) as a final state of computation, corresponding to
an uncaught exception.

Using the definition of stack typing given in 12, we can state and prove
safety of the exception mechanism.

Theorem 13.1 (Preservation)
If (K, e) ok and (K, e) 7→ (K′, e′), then (K, e) ok.

Proof: By induction on evaluation. �

WORKING DRAFT MARCH 9, 2005

97

Theorem 13.2 (Progress)
If (K, e) ok then either

1. K = • and e value, or

2. K = • and e = fail, or

3. there exists K′ and e′ such that (K, e) 7→ (K′, e′).

Proof: By induction on typing. �

The dynamic semantics of exceptions is somewhat unsatisfactory be-
cause of the explicit unwinding of the control stack to find the nearest en-
closing handler. While this does effect a non-local transfer of control, it does
so by rather crude means, rather than by a direct “jump” to the handler. In
practice exceptions are implemented as jumps, using the following ideas.
A dedicated register is set aside to contain the “current” exception handler.
When an exception is raised, the current handler is retrieved from the ex-
ception register, and control is passed to it. Before doing so, however, we
must reset the exception register to contain the nearest handler enclosing
the new handler. This ensures that if the handler raises an exception the
correct handler is invoked. How do we recover this handler? We maintain
a stack of pending handlers that is pushed whenever a handler is installed,
and popped whenever a handler is invoked. The exception register is the
top element of this stack. Note that we must restore the control stack to the
point at which the handler was installed before invoking the handler!

This can be modelled by a machine with states of the form (H, K, e),
where

• H is a handler stack;

• K is a control stack;

• e is a closed expression

A handler stack consists of a stack of pairs consisting of a handler together
its associated control stack:

• hstack (13.8)

K stack e expr H hstack

(K, e) . H hstack (13.9)

A handler stack element consists of a “freeze dried” control stack paired
with a pending handler.

MARCH 9, 2005 WORKING DRAFT

98

The key transitions of the machine are given by the following rules. On
failure we pop the control stack and pass to the exception stack:

((K′, e′) . H, K, fail) 7→ (H, K′, e′) (13.10)

We pop the handler stack, “thaw” the saved control stack, and invoke the
saved handler expression. If there is no pending handler, we stop the ma-
chine:

(•, K, fail) 7→ (•, •, fail) (13.11)

To install a handler we preserve the handler code and the current control
stack:

(H, K, try e1 ow e2) 7→ ((K, e2) . H, try� ow e2 . K, e1) (13.12)

We “freeze dry” the control stack, associate it with the unevaluated han-
dler, and push it on the handler stack. We also push a frame on the control
stack to remind us to remove the pending handler from the handler stack
in the case of normal completion of evaluation of e1:

((K, e2) . H, try� ow e2 . K, v1) 7→ (H, K, v1) (13.13)

The idea of “freeze-drying” an entire control stack and “thawing” it
later may seem like an unusually heavy-weight operation. However, a key
invariant governing a machine state (H, K, e) is the following prefix property:
if H = (K′, e′) . H′, then K′ is a prefix of K. This means that we can store
a control stack by simply keeping a “finger” on some initial segment of it,
and can restore a saved control stack by popping up to that finger.

The prefix property may be taken as a formal justification of an im-
plementation based on the setjmp and and longjmp constructs of the C
language. Unlike setjmp and longjmp, the exception mechanism is com-
pletely safe — it is impossible to return past the “finger” yet later attempt
to “pop” the control stack to that point. In C the fingers are kept as ad-
dresses (pointers) in memory, and there is no discipline for ensuring that
the set point makes any sense when invoked later in a computation.

Finally, let us consider value-passing exceptions such as are found in
Standard ML. The main idea is to replace the failure expression, fail, by a
more general raise expression, raise(e), which associates a value (that of
e) with the failure. Handlers are generalized so that the “otherwise” clause
is a function accepting the value associated with the failure, and yielding

WORKING DRAFT MARCH 9, 2005

99

a value of the same type as the “try” clause. Here is a sketch of the static
semantics for this variation:

Γ ` e : τexn

Γ ` raise(e) : τ (13.14)

Γ ` e1 : τ Γ ` e2 : τexn→τ

Γ ` try e1 ow e2 : τ (13.15)

These rules are parameterized by the type of values associated with excep-
tions, τexn.

The question is: what should be the type τexn? The first thing to observe
is that all exceptions should be of the same type, otherwise we cannot guar-
antee type safety. The reason is that a handler might be invoked by any
raise expression occurring during the execution of its “try” clause. If one
exception raised an integer, and another a boolean, the handler could not
safely dispatch on the exception value. Given this, we must choose a type
τexn that supports a flexible programming style.

For example, we might choose, say, string, for τexn, with the idea that
the value associated with an exception is a description of the cause of the
exception. For example, we might write

fun div (m, 0) = raise "Division by zero attempted."
| div (m, n) = ... raise "Arithmetic overflow occurred." ...

However, consider the plight of the poor handler, which may wish to dis-
tinguish between division-by-zero and arithmetic overflow. How might it
do that? If exception values were strings, it would have to parse the string,
relying on the message to be in a standard format, and dispatch based on
the parse. This is manifestly unworkable. For similar reasons we wouldn’t
choose τexn to be, say, int, since that would require coding up exceptions as
numbers, much like “error numbers” in Unix. Again, completely unwork-
able in practice, and completely unmodular (different modules are bound
to conflict over their numbering scheme).

A more reasonable choice would be to define τexn to be a given datatype
exc. For example, we might have the declaration

datatype exc = Div | Overflow | Match | Bind

as part of the implicit prelude of every program. Then we’d write

fun div (m, 0) = raise Div
| div (m, n) = ... raise Overflow ...

MARCH 9, 2005 WORKING DRAFT

100 13.1 Exercises

Now the handler can easily dispatch on Div or Overflow using pattern
matching, which is much better. However, this choice restricts all programs
to a fixed set of exceptions, the value constructors associated with the pre-
declared exc datatype.

To allow extensibility Standard ML includes a special extensible datatype
called exn. Values of type exn are similar to values of a datatype, namely
they are constructed from other values using a constructor. Moreover, we
may pattern match against values of type exn in the usual way. But, in ad-
dition, we may introduce new constructors of type exn “on the fly”, rather
than declare a fixed set at the beginning of the program. Such new con-
structors are introduced using an exception declaration such as the follow-
ing:

exception Div
exception Overflow

Now Div and Overflow are constructors of type exn, and may be used in
a raise expression or matched against by an exception handler. Exception
declarations can occur anywhere in the program, and are guaranteed (by
α-conversion) to be distinct from all other exceptions that may occur else-
where in the program, even if they happen to have the same name. If two
modules declare an exception named Error, then these are different excep-
tions; no confusion is possible.

The interesting thing about the exn type is that it has nothing whatsoever
to do with the exception mechanism (beyond the fact that it is the type of val-
ues associated with exceptions). In particular, the exception declaration
introduces a value constructor that has no inherent connection with the ex-
ception mechanism. We may use the exn type for other purposes; indeed,
Java has an analogue of the type exn, called Object. This is the basis for
downcasting and so-called typecase in Java.

13.1 Exercises

1. Hand-simulate the evaluation of a few simple expressions with ex-
ceptions and handlers to get a feeling for how it works.

2. Prove Theorem 13.1.

3. Prove Theorem 13.2.

WORKING DRAFT MARCH 9, 2005

13.1 Exercises 101

4. Combine the treatment of references and exceptions to form a lan-
guage with both of these features. You will face a choice of how to
define the interaction between mutation and exceptions:

(a) As in ML, mutations are irrevocable, even in the face of excep-
tions that “backtrack” to a surrounding handler.

(b) Invocation of a handler rolls back the memory to the state at the
point of installation of the handler.

Give a dynamic semantics for each alternative, and argue for and
against each choice.

5. State and prove the safety of the formulation of exceptions using a
handler stack.

6. Prove that the prefix property is preserved by every step of evalua-
tion.

MARCH 9, 2005 WORKING DRAFT

102 13.1 Exercises

WORKING DRAFT MARCH 9, 2005

Part V

Imperative Functional
Programming

103

Chapter 14

Mutable Storage

MinML is said to be a pure language because the execution model consists
entirely of evaluating an expression for its value. ML is an impure language
because its execution model also includes effects, specifically, control effects
and store effects. Control effects are non-local transfers of control; these were
studied in Chapters 12 and 13. Store effects are dynamic modifications to
mutable storage. This chapter is concerned with store effects.

14.1 References

The MinML type language is extended with reference types τ ref whose el-
ements are to be thought of as mutable storage cells. We correspondingly
extend the expression language with these primitive operations:

e : : = l | ref(e) | !e | e1:=e2

As in Standard ML, ref(e) allocates a “new” reference cell, !e retrieves the
contents of the cell e, and e1:=e2 sets the contents of the cell e1 to the value
e2. The variable l ranges over a set of locations, an infinite set of identifiers
disjoint from variables. These are needed for the dynamic semantics, but
are not expected to be notated directly by the programmer. The set of values
is extended to include locations.

Typing judgments have the form Λ; Γ ` e : τ, where Λ is a location typ-
ing, a finite function mapping locations to types; the other components of
the judgement are as for MinML. The location typing Λ records the types of
allocated locations during execution; this is critical for a precise statement
and proof of type soundness.

105

106 14.1 References

The typing rules are those of MinML (extended to carry a location typ-
ing), plus the following rules governing the new constructs of the language:

(Λ(l) = τ)
Λ; Γ ` l : τ ref (14.1)

Λ; Γ ` e : τ

Λ; Γ ` ref(e) : τ ref (14.2)

Λ; Γ ` e : τ ref
Λ; Γ ` !e : τ (14.3)

Λ; Γ ` e1 : τ2 ref Λ; Γ ` e2 : τ2

Λ; Γ ` e1:=e2 : τ2 (14.4)

Notice that the location typing is not extended during type checking! Loca-
tions arise only during execution, and are not part of complete programs,
which must not have any free locations in them. The role of the location
typing will become apparent in the proof of type safety for MinML extended
with references.

A memory is a finite function mapping locations to closed values (but
possibly involving locations). The dynamic semantics of MinML with refer-
ences is given by an abstract machine. The states of this machine have the
form (M, e), where M is a memory and e is an expression possibly involv-
ing free locations in the domain of M. The locations in dom(M) are bound
simultaneously in (M, e); the names of locations may be changed at will
without changing the identity of the state.

The transitions for this machine are similar to those of the M machine,
but with these additional steps:

(M, e) 7→ (M′, e′)
(M, ref(e)) 7→ (M′, ref(e′)) (14.5)

(l /∈ dom(M))
(M, ref(v)) 7→ (M[l=v], l) (14.6)

(M, e) 7→ (M′, e′)
(M, !e) 7→ (M′, !e′) (14.7)

WORKING DRAFT MARCH 9, 2005

14.1 References 107

(l ∈ dom(M))
(M, !l) 7→ (M, M(l)) (14.8)

(M, e1) 7→ (M′, e′1)
(M, e1:=e2) 7→ (M′, e′1:=e2) (14.9)

(M, e2) 7→ (M′, e′2)
(M, v1:=e2) 7→ (M′, v1:=e′2) (14.10)

(l ∈ dom(M))
(M, l:=v) 7→ (M[l=v], v) (14.11)

A state (M, e) is final iff e is a value (possibly a location).
To prove type safety for this extension we will make use of some auxil-

iary relations. Most importantly, the typing relation between memories and
location typings, written ` M : Λ, is inductively defined by the following
rule:

dom(M) = dom(Λ) ∀l ∈ dom(Λ) Λ; • ` M(l) : Λ(l)
` M : Λ (14.12)

It is very important to study this rule carefully! First, we require that Λ
and M govern the same set of locations. Second, for each location l in their
common domain, we require that the value at location l, namely M(l), have
the type assigned to l, namely Λ(l), relative to the entire location typing Λ.
This means, in particular, that memories may be “circular” in the sense that
the value at location l may contain an occurrence of l, for example if that
value is a function.

The typing rule for memories is reminiscent of the typing rule for recur-
sive functions — we are allowed to assume the typing that we are trying
to prove while trying to prove it. This similarity is no accident, as the fol-
lowing example shows. Here we use ML notation, but the example can be
readily translated into MinML extended with references:

MARCH 9, 2005 WORKING DRAFT

108 14.1 References

(* loop forever when called *)
fun diverge (x:int):int = diverge x
(* allocate a reference cell *)
val fc : (int->int) ref = ref (diverge)
(* define a function that ‘‘recurs’’ through fc *)
fun f 0 = 1 | f n = n * ((!fc)(n-1))
(* tie the knot *)
val = fc := f
(* now call f *)
val n = f 5

This technique is called backpatching. It is used in some compilers to imple-
ment recursive functions (and other forms of looping construct).

Exercise 14.1
1. Sketch the contents of the memory after each step in the above exam-

ple. Observe that after the assignment to fc the memory is “circular”
in the sense that some location contains a reference to itself.

2. Prove that every cycle in well-formed memory must “pass through”
a function. Suppose that M(l1) = l2, M(l2) = l3, . . . , M(ln) = l1 for
some sequence l1, . . . , ln of locations. Show that there is no location
typing Λ such that ` M : Λ.

The well-formedness of a machine state is inductively defined by the
following rule:

` M : Λ Λ; • ` e : τ

(M, e) ok (14.13)

That is, (M, e) is well-formed iff there is a location typing for M relative to
which e is well-typed.

Theorem 14.2 (Preservation)
If (M, e) ok and (M, e) 7→ (M′, e′), then (M′, e′) ok.

Proof: The trick is to prove a stronger result by induction on evaluation: if
(M, e) 7→ (M′, e′), ` M : Λ, and Λ; • ` e : τ, then there exists Λ′ ⊇ Λ such
that ` M′ : Λ′ and Λ′; • ` e′ : τ. �

Exercise 14.3
Prove Theorem 14.2. The strengthened form tells us that the location typ-
ing, and the memory, increase monotonically during evaluation — the type

WORKING DRAFT MARCH 9, 2005

14.1 References 109

of a location never changes once it is established at the point of allocation.
This is crucial for the induction.

Theorem 14.4 (Progress)
If (M, e) ok then either (M, e) is a final state or there exists (M′, e′) such that
(M, e) 7→ (M′, e′).

Proof: The proof is by induction on typing: if ` M : Λ and Λ; • ` e : τ,
then either e is a value or there exists M′ ⊇ M and e′ such that (M, e) 7→
(M′, e′). �

Exercise 14.5
Prove Theorem 14.4 by induction on typing of machine states.

MARCH 9, 2005 WORKING DRAFT

110 14.1 References

WORKING DRAFT MARCH 9, 2005

Chapter 15

Monads

As we saw in Chapter 14 one way to combine functional and imperative
programming is to add a type of reference cells to MinML. This approach
works well for call-by-value languages,1 because we can easily predict where
expressions are evaluated, and hence where references are allocated and as-
signed. For call-by-name languages this approach is problematic, because
in such languages it is much harder to predict when (and how often) ex-
pressions are evaluated.

Enriching ML with a type of references has an additional consequence
that one can no longer determine from the type alone whether an expres-
sion mutates storage. For example, a function of type int→int must taken
an integer as argument and yield an integer as result, but may or may not
allocate new reference cells or mutate existing reference cells. The expres-
sive power of the type system is thereby weakened, because we cannot dis-
tinguish pure (effect-free) expressions from impure (effect-ful) expressions.

Another approach to introducing effects in a purely functional language
is to make the use of effects explicit in the type system. Several methods
have been proposed, but the most elegant and widely used is the concept
of a monad. Roughly speaking, we distinguish between pure and impure ex-
pressions, and make a corresponding distinction between pure and impure
function types. Then a function of type int→int is a pure function (has
no effects when evaluated), whereas a function of type int ⇀ int may
have an effect when applied. The monadic approach is more popular for
call-by-name languages, but is equally sensible for call-by-value languages.

1We need to introduce cbv and cbn earlier, say in Chapter 9.

111

112 15.1 A Monadic Language

15.1 A Monadic Language

A monadic variant of MinML is obtained by separating pure from impure
expressions. The pure expressions are those of MinML. The impure ex-
pressions consist of any pure expression (vacuously impure), plus a new
primitive expression, called bind, for sequencing evaluation of impure ex-
pressions. In addition the impure expressions include primitives for allo-
cating, mutating, and accessing storage; these are “impure” because they
depend on the store for their execution.

The abstract syntax of monadic MinML is given by the following gram-
mar:

Types τ : : = int | bool | τ1→τ2 | τ1 ⇀ τ2
Pure e : : = x | n | o(e1. . .,,en) |

true | false | if e then e1 else e2 |
fun f (x:τ1):τ2 is e | apply(e1, e2)
fun f (x:τ1):τ2 ism end

Impure m : : = return e | bind x:τ ← m1 inm2
ifτ e thenm1 elsem2 fi | apply(e1, e2)

Monadic MinML is a general framework for computing with effects. Note
that there are two forms of function, one whose body is pure, and one
whose body is impure. Correspondingly, there are two forms of applica-
tion, one for pure functions, one for impure functions. There are also two
forms of conditional, according to whether the arms are pure or impure.
(We will discuss methods for eliminating some of this redundancy below.)

The static semantics of monadic MinML consists of two typing judge-
ments, Γ ` e : τ for pure expressions, and Γ ` m : τ for impure expressions.

WORKING DRAFT MARCH 9, 2005

15.1 A Monadic Language 113

Most of the rules are as for MinML; the main differences are given below.

Γ, f :τ1 ⇀ τ2, x:τ1 ` m : τ2

Γ ` fun f (x:τ1):τ2 ism end : τ1 ⇀ τ2

Γ ` e1 : τ2 ⇀ τ Γ ` e2 : τ2

Γ ` apply(e1, e2) : τ

Γ ` e : τ
Γ ` return e : τ

Γ ` m1 : τ1 Γ, x:τ1 ` m2 : τ2

Γ ` bind x:τ ← m1 inm2 : τ2

Γ ` e : bool Γ ` m1 : τ Γ ` m2 : τ

Γ ` ifτ e thenm1 elsem2 fi : τ

So far we have not presented any mechanisms for engendering effects!
Monadic MinML is rather a framework for a wide variety of effects that we
will instantiate to the case of mutable storage. This is achieved by adding
the following forms of impure expression to the language:

Impure m : : = ref(e) | !e | e1:=e2

Their typing rules are as follows:

Γ ` e : τ
Γ ` ref(e) : τ ref

Γ ` e : τ ref
Γ ` !e : τ

Γ ` e1 : τ ref Γ ` e2 : τ2

Γ ` e1:=e2 : τ2

In addition we include locations as pure expressions, with typing rule

(Γ(l) = τ)
Γ ` l : τ ref

(For convenience we merge the location and variable typings.)
The dynamic semantics of monadic MinML is an extension to that of

MinML. Evaluation of pure expressions does not change, but we must

MARCH 9, 2005 WORKING DRAFT

114 15.2 Reifying Effects

add rules governing evaluation of impure expressions. For the purposes
of describing mutable storage, we must consider transitions of the form
(M, m) 7→ (M′, m′), where M and M′ are memories, as in Chapter 14.

e 7→ e′

(M, return e) 7→ (M, return e′)

(M, m1) 7→ (M′, m′1)
(M, bind x:τ ← m1 inm2) 7→ (M′, bind x:τ ← m′1 inm2)

(M, bind x:τ ← return v inm2) 7→ (M, {v/x}m2)

The evaluation rules for the reference primitives are as in Chapter 14.

15.2 Reifying Effects

The need for pure and impure function spaces in monadic MinML is some-
what unpleasant because of the duplication of constructs. One way to
avoid this is to introduce a new type constructor, ! τ, whose elements are
unevaluated impure expressions. The computation embodied by the ex-
pression is said to be reified (turned into a “thing”).

The syntax required for this extension is as follows:

Types τ : : = ! τ
Pure e : : = box(m)
Impure m : : = unbox(e)

Informally, the pure expression box(m) is a value that contains an un-
evaluated impure expression m; the expression m is said to be boxed. Boxed
expressions can be used as ordinary values without restriction. The expres-
sion unbox(e) “opens the box” and evaluates the impure expression inside;
it is therefore itself an impure expression.

The static semantics of this extension is given by the following rules:

Γ ` m : τ
Γ ` box(m) : ! τ

Γ ` e : ! τ
Γ ` unbox(e) : τ

WORKING DRAFT MARCH 9, 2005

15.3 Exercises 115

The dynamic semantics is given by the following transition rules:

(M, unbox(box(m))) 7→ (M, m)
e 7→ e′

(M, unbox(e)) 7→ (M, unbox(e′))

The expression box(m) is a value, for any choice of m.
One use for reifying effects is to replace the impure function space,

τ1 ⇀ τ2, with the pure function space τ1→! τ2. The idea is that an im-
pure function is a pure function that yields a suspended computation that
must be unboxed to be executed. The impure function expression

fun f (x:τ1):τ2 ism end

is replaced by the pure function expression

fun f (x:τ1):τ2 is box(m) end.

The impure application,
apply(e1, e2),

is replaced by
unbox(apply(e1, e2)),

which unboxes, hence executes, the suspended computation.

15.3 Exercises

1. Consider other forms of effect such as I/O.

2. Check type safety.

3. Problems with multiple monads to distinguish multiple effects.

MARCH 9, 2005 WORKING DRAFT

116 15.3 Exercises

WORKING DRAFT MARCH 9, 2005

Part VI

Cost Semantics and Parallelism

117

Chapter 16

Cost Semantics

The dynamic semantics of MinML is given by a transition relation e 7→ e′

defined using Plotkin’s method of Structured Operational Semantics (SOS).
One benefit of a transition semantics is that it provides a natural measure of
the time complexity of an expression, namely the number of steps required
to reach a value.

An evaluation semantics, on the other hand, has an appealing simplic-
ity, since it defines directly the value of an expression, suppressing the de-
tails of the process of execution. However, by doing so, we no longer obtain
a direct account of the cost of evaluation as we do in the transition seman-
tics.

The purpose of a cost semantics is to enrich evaluation semantics to
record not only the value of each expression, but also the cost of evalu-
ating it. One natural notion of cost is the number of instructions required
to evaluate the expression to a value. The assignment of costs in the cost
semantics can be justified by relating it to the transition semantics.

16.1 Evaluation Semantics

The evaluation relation, e ⇓ v, for MinML is inductively defined by the
following inference rules.

n ⇓ n (16.1)

e1 ⇓ n1 e2 ⇓ n2

+(e1, e2) ⇓ n1 + n2 (16.2)

119

120 16.2 Relating Evaluation Semantics to Transition Semantics

(and similarly for the other primitive operations).

true ⇓ true false ⇓ false (16.3)

e ⇓ true e1 ⇓ v
if e then e1 else e2 ⇓ v (16.4)

e ⇓ false e2 ⇓ v
if e then e1 else e2 ⇓ v (16.5)

fun f (x:τ1):τ2 is e ⇓ fun f (x:τ1):τ2 is e (16.6)

e1 ⇓ v1 e2 ⇓ v2 {v1, v2/ f , x}e ⇓ v
apply(e1, e2) ⇓ v (16.7)

(where v1 = fun f (x:τ1):τ2 is e.)
This concludes the definition of the evaluation semantics of MinML. As

you can see, the specification is quite small and is very intuitively appeal-
ing.

16.2 Relating Evaluation Semantics to Transition Se-
mantics

The precise relationship between SOS and ES is given by the following the-
orem.

Theorem 16.1
1. If e ⇓ v, then e 7→∗ v.

2. If e 7→ e′ and e′ ⇓ v, then e ⇓ v. Consequently, if e 7→∗ v, then e ⇓ v.

Proof:

1. By induction on the rules defining the evaluation relation. The re-
sult is clearly true for values, since trivially v 7→∗ v. Suppose that
e = apply(e1, e2) and assume that e ⇓ v. Then e1 ⇓ v1, where
v1 = fun f (x:τ1):τ2 is e, e2 ⇓ v2, and {v1, v2/ f , x}e ⇓ v. By in-
duction we have that e1 7→∗ v1, e2 7→∗ v2 and {v1, v2/ f , x}e 7→∗ v.
It follows that apply(e1, e2) 7→∗ apply(v1, e2) 7→∗ apply(v1, v2) 7→
{v1, v2/ f , x}e 7→∗ v, as required. The other cases are handled simi-
larly.

WORKING DRAFT MARCH 9, 2005

16.3 Cost Semantics 121

2. By induction on the rules defining single-step transition. Suppose
that e = apply(v1, v2), where v1 = fun f (x:τ1):τ2 is e, and e′ =
{v1, v2/ f , x}e. Suppose further that e′ ⇓ v; we are to show that e ⇓ v.
Since v1 ⇓ v1 and v2 ⇓ v2, the result follows immediately from the
assumption that e′ ⇓ v. Now suppose that e = apply(e1, e2) and
e′ = apply(e′1, e2), where e1 7→ e′1. Assume that e′ ⇓ v; we are to
show that e ⇓ v. It follows that e′1 ⇓ v1, e2 ⇓ v2, and {v1, v2/ f , x}e ⇓
v. By induction e1 ⇓ v1, and hence e ⇓ v. The remaining cases are
handled similarly. It follows by induction on the rules defining multi-
step evaluation that if e 7→∗ v, then e ⇓ v. The base case, v 7→∗ v,
follows from the fact that v ⇓ v. Now suppose that e 7→ e′ 7→∗ v. By
induction e′ ⇓ v, and hence e ⇓ v by what we have just proved.

�

16.3 Cost Semantics

In this section we will give a cost semantics for MinML that reflects the
number of steps required to complete evaluation according to the struc-
tured operational semantics given in Chapter 9.

Evaluation judgements have the form e ⇓n v, with the informal mean-
ing that e evaluates to v in n steps. The rules for deriving these judgements
are easily defined.

n ⇓0 n (16.8)

e1 ⇓k1 n1 e2 ⇓k2 n2

+(e1, e2) ⇓k1+k2+1 n1 + n2 (16.9)

(and similarly for the other primitive operations).

true ⇓0 true false ⇓0 false (16.10)

e ⇓k true e1 ⇓k1 v
if e then e1 else e2 ⇓k+k1+1 v (16.11)

e ⇓k false e2 ⇓k2 v
if e then e1 else e2 ⇓k+k2+1 v (16.12)

MARCH 9, 2005 WORKING DRAFT

122 16.4 Relating Cost Semantics to Transition Semantics

fun f (x:τ1):τ2 is e ⇓0 fun f (x:τ1):τ2 is e (16.13)

e1 ⇓k1 v1 e2 ⇓k2 v2 {v1, v2/ f , x}e ⇓k v

apply(e1, e2) ⇓k1+k2+k+1 v (16.14)

(where v1 = fun f (x:τ1):τ2 is e.)
This completes the definition of the cost semantics for MinML.

16.4 Relating Cost Semantics to Transition Semantics

What is it that makes the cost semantics given above “correct”? Informally,
we expect that if e ⇓k v, then e should evaluate to v in k steps. Moreover,
we also expect the converse to hold — the cost semantics should be com-
pletely faithful to the underlying execution model. This is captured by the
following theorem.

To state the theorem we need one additional bit of notation. Define
e k7→ e′ by induction on k as follows. For the basis, we define e 07→ e′ iff

e = e′; if k = k′ + 1, we define e k7→ e′ to hold iff e 7→ e′′ k′7→ e′.

Theorem 16.2
For any closed expression e and closed value v of the same type, e ⇓k v iff

e k7→ v.

Proof: From left to right we proceed by induction on the definition of the
cost semantics. For example, consider the rule for function application. We
have e = apply(e1, e2) and k = k1 + k2 + k + 1, where

1. e1 ⇓k1 v1,

2. e2 ⇓k2 v2,

3. v1 = fun f (x:τ1):τ2 is e,

4. {v1, v2/ f , x}e ⇓k v.

By induction we have

1. e1
k17→ v1,

2. e2
k27→ v2,

WORKING DRAFT MARCH 9, 2005

16.5 Exercises 123

3. {v1, v2/ f , x}e k7→ v,

and hence
e1(e2)

k17→ v1(e2)
k27→ v1(v2)
7→ {v1, v2/ f , x}e

k7→ v

which is enough for the result.
From right to left we proceed by induction on k. For k = 0, we must

have e = v. By inspection of the cost evaluation rules we may check that
v ⇓0 v for every value v. For k = k′ + 1, we must show that if e 7→ e′

and e′ ⇓k′ v, then e ⇓k v. This is proved by a subsidiary induction on the
transition rules. For example, suppose that e = e1(e2) 7→ e′1(e2) = e′, with
e1 7→ e′1. By hypothesis e′1(e2) ⇓k v, so k = k1 + k2 + k3 + 1, where

1. e′1 ⇓k1 v1,

2. e2 ⇓k2 v2,

3. v1 = fun f (x:τ1):τ2 is e,

4. {v1, v2/ f , x}e ⇓k3 v.

By induction e1 ⇓k1+1 v1, hence e ⇓k+1 v, as required. �

16.5 Exercises

MARCH 9, 2005 WORKING DRAFT

124 16.5 Exercises

WORKING DRAFT MARCH 9, 2005

Chapter 17

Implicit Parallelism

In this chapter we study the extension of MinML with implicit data paral-
lelism, a means of speeding up computations by allowing expressions to
be evaluated simultaneously. By “implicit” we mean that the use of paral-
lelism is invisible to the programmer as far as the ultimate results of com-
putation are concerned. By “data parallel” we mean that the parallelism in
a program arises from the simultaneous evaluation of the components of a
data structure.

Implicit parallelism is very natural in an effect-free language such as
MinML. The reason is that in such a language it is not possible to deter-
mine the order in which the components of an aggregate data structure
are evaluated. They might be evaluated in an arbitrary sequential order,
or might even be evaluated simultaneously, without affecting the outcome
of the computation. This is in sharp contrast to effect-ful languages, for
then the order of evaluation, or the use of parallelism, is visible to the pro-
grammer. Indeed, dependence on the evaluation order must be carefully
guarded against to ensure that the outcome is determinate.

17.1 Tuple Parallelism

We begin by considering a parallel semantics for tuples according to which
all components of a tuple are evaluated simultaneously. For simplicity we
consider only pairs, but the ideas generalize in a straightforward manner
to tuples of any size. Since the “widths” of tuples are specified statically as
part of their type, the amount of parallelism that can be induced in any one
step is bounded by a static constant. In Section 17.3 we will extend this to
permit a statically unbounded degree of parallelism.

125

126 17.1 Tuple Parallelism

To facilitate comparison, we will consider two operational semantics
for this extension of MinML, the sequential and the parallel. The sequential
semantics is as in Chapter 19. However, we now write e 7→seq e′ for the tran-
sition relation to stress that this is the sequential semantics. The sequential
evaluation rules for pairs are as follows:

e1 7→seq e′1
(e1,e2) 7→seq (e′1,e2) (17.1)

v1 value e2 7→seq e′2
(v1,e2) 7→seq (v1,e′2) (17.2)

v1 value v2 value

split (v1,v2) as (x,y) in e 7→seq {v1, v2/x, y}e (17.3)

e1 7→seq e′1
split e1 as (x,y) in e2 7→seq split e′1 as (x,y) in e2 (17.4)

The parallel semantics is similar, except that we evaluate both compo-
nents of a pair simultaneously whenever this is possible. This leads to the
following rules:1

e1 7→par e′1 e2 7→par e′2
(e1,e2) 7→par (e′1,e′2) (17.5)

e1 7→par e′1 v2 value

(e1,v2) 7→par (e′1,v2) (17.6)

v1 value e2 7→par e′2
(v1,e2) 7→par (v1,e′2) (17.7)

Three rules are required to account for the possibility that evaluation of
one component may complete before the other.

When presented two semantics for the same language, it is natural to
ask whether they are equivalent. They are, in the sense that both semantics
deliver the same value for any expression. This is the precise statement of
what we mean by “implicit parallelism”.

1It might be preferable to admit progress on either e1 or e2 alone, without requiring the
other to be a value.

WORKING DRAFT MARCH 9, 2005

17.2 Work and Depth 127

Theorem 17.1
For every closed, well-typed expression e, e 7→∗seq v iff e 7→∗par v.

Proof: For the implication from left to right, it suffices to show that if
e 7→seq e′ 7→∗par v, then e 7→∗par v. This is proved by induction on the se-
quential evaluation relation. For example, suppose that

(e1,e2) 7→seq (e′1,e2) 7→∗par (v1,v2),

where e1 7→seq e′1. By inversion of the parallel evaluation sequence, we
have e′1 7→∗par v1 and e2 7→∗par v2. Hence, by induction, e1 7→∗par v1, from
which it follows immediately that (e1,e2) 7→∗par (v1,v2). The other case
of sequential evaluation for pairs is handled similarly. All other cases are
immediate since the sequential and parallel semantics agree on all other
constructs.

For the other direction, it suffices to show that if e 7→par e′ 7→∗seq v, then
e 7→∗seq v. We proceed by induction on the definition of the parallel evalua-
tion relation. For example, suppose that we have

(e1,e2) 7→par (e′1,e′2) 7→∗seq (v1,v2)

with e1 7→par e′1 and e2 7→par e′2. We are to show that (e1,e2) 7→∗seq (v1,v2).
Since (e′1,e′2) 7→∗seq (v1,v2), it follows that e′1 7→∗seq v1 and e′2 7→∗seq v2. By
induction e1 7→∗seq v1 and e2 7→∗seq v2, which is enough for the result. The
other cases of evaluation for pairs are handled similarly.

�

One important consequence of this theorem is that parallelism is seman-
tically invisible: whether we use parallel or sequential evaluation of pairs,
the result is the same. Consequently, parallelism may safely be left implicit,
at least as far as correctness is concerned. However, as one might expect,
parallelism effects the efficiency of programs.

17.2 Work and Depth

An operational semantics for a language induces a measure of time com-
plexity for expressions, namely the number of steps required to evaluate
that expression to a value. The sequential complexity of an expression is its
time complexity relative to the sequential semantics; the parallel complex-
ity is its time complexity relative to the paralle semantics. These can, in
general, be quite different. Consider, for example, the following naı̈ve im-
plementation of the Fibonacci sequence in MinML with products:

MARCH 9, 2005 WORKING DRAFT

128 17.2 Work and Depth

fun fib (n:int):int is
if n=0 then 1
else if n=1 then 1
else plus(fib(n-1),fib(n-2)) fi fi

where plus is the following function on ordered pairs:

fun plus (p:int*int):int is
split p as (m:int,n:int) in m+n

The sequential complexity of fib n is O(2n), whereas the parallel complex-
ity of the same expression is O(n). The reason is that each recursive call
spawns two further recursive calls which, if evaluated sequentially, lead to
an exponential number of steps to complete. However, if the two recursive
calls are evaluated in parallel, then the number of parallel steps to comple-
tion is bounded by n, since n is decreased by 1 or 2 on each call. Note that
the same number of arithmetic operations is performed in each case! The
difference is only in whether they are performed simultaneously.

This leads naturally to the concepts of work and depth. The work of an
expression is the total number of primitive instruction steps required to
complete evaluation. Since the sequential semantics has the property that
each rule has at most one premise, each step of the sequential semantics
amounts to the execution of exactly one instruction. Therefore the sequen-
tial complexity coincides with the work required. (Indeed, work and se-
quential complexity are often taken to be synonymous.) The work required
to evaluate fib n is O(2n).

On the other hand the depth of an expression is the length of the longest
chain of sequential dependencies in a complete evaluation of that expres-
sion. A sequential dependency is induced whenever the value of one ex-
pression depends on the value of another, forcing a sequential evaluation
ordering between them. In the Fibonacci example the two recursive calls
have no sequential dependency among them, but the function itself se-
quentially depends on both recursive calls — it cannot return until both
calls have returned. Since the parallel semantics evaluates both compo-
nents of an ordered pair simultaneously, it exactly captures the indepen-
dence of the two calls from each, but the dependence of the result on both.
Thus the parallel complexity coincides with the depth of the computation.
(Indeed, they are often taken to be synonymous.) The depth of the expres-
sion fib n is O(n).

With this in mind, the cost semantics introduced in Chapter 16 may be
extended to account for parallelism by specifying both the work and the

WORKING DRAFT MARCH 9, 2005

17.2 Work and Depth 129

depth of evaluation. The judgements of the parallel cost semantics have
the form e ⇓w,d v, where w is the work and d the depth. For all cases but
evaluation of pairs the work and the depth track one another. The rule for
pairs is as follows:

e1 ⇓w1,d1 v1 e2 ⇓w2,d2 v2

(e1,e2) ⇓w1+w2,max(d1,d2) (v1,v2) (17.8)

The remaining rules are easily derived from the sequential cost semantics,
with both work and depth being additively combined at each step.2

The correctness of the cost semantics states that the work and depth
costs are consistent with the sequential and parallel complexity, respec-
tively, of the expression.

Theorem 17.2
For any closed, well-typed expression e, e ⇓w,d v iff e 7→w

seq v and e 7→d
par v.

Proof: From left to right, we proceed by induction on the cost semantics.
For example, we must show that if e1 7→d1

par v1 and e2 7→d2
par v2, then

(e1,e2) 7→d
par (v1,v2),

where d = max(d1, d2). Suppose that d = d2, and let d′ = d− d1 (the case
d = d1 is handled similarly). We have e1 7→d1

par v1 and e2 7→d1
par e′2 7→d′

par v2. It
follows that

(e1,e2) 7→d1
par (v1,e′2)

7→d′
par (v1,v2).

For the converse, we proceed by considering work and depth costs sep-
arately. For work, we proceed as in Chapter 16. For depth, it suffices to
show that if e 7→par e′ and e′ ⇓d v, then e ⇓d+1 v.3 For example, suppose that
(e1,e2) 7→par (e′1,e′2), with e1 7→par e′1 and e2 7→par e′2. Since (e′1,e′2) ⇓d v,
we must have v = (v1,v2), d = max(d1, d2) with e′1 ⇓d1 v1 and e′2 ⇓d2 v2.
By induction e1 ⇓d1+1 v1 and e2 ⇓d2+1 v2 and hence (e1,e2) ⇓d+1 (v1,v2),
as desired. �

2If we choose, we might evaluate arguments of primop’s in parallel, in which case the
depth complexity would be calculated as one more than the maximum of the depths of its
arguments. We will not do this here since it would only complicate the development.

3The work component of the cost is suppressed here for the sake of clarity.

MARCH 9, 2005 WORKING DRAFT

130 17.3 Vector Parallelism

17.3 Vector Parallelism

To support vector parallelism we will extend MinML with a type of vectors,
which are finite sequences of values of a given type whose length is not
determined until execution time. The primitive operations on vectors are
chosen so that they may be executed in parallel on a shared memory multi-
processor, or SMP, in constant depth for an arbitrary vector.

The following primitives are added to MinML to support vectors:

Types τ : : = τ vector
Expr’s e : : = [e0, . . . ,en−1] | elt(e1,e2) | size(e) | index(e) |

map(e1,e2) | update(e1,e2)
Values v : : = [v0, . . . ,vn−1]

These expressions may be informally described as follows. The expres-
sion [e0, . . . ,en−1] evaluates to an n-vector whose elements are given by
the expressions ei, 0 ≤ i < n. The operation elt(e1,e2) retrieves the el-
ement of the vector given by e1 at the index given by e2. The operation
size(e) returns the number of elements in the vector given by e. The oper-
ation index(e) creates a vector of length n (given by e) whose elements are
0, . . . , n− 1. The operation map(e1,e2) applies the function given by e1 to
every element of e2 in parallel. Finally, the operation update(e1,e2) yields
a new vector of the same size, n, as the vector v given by e1, but whose
elements are updated according to the vector v′ given by e2. The elements
of e2 are triples of the form (b, i, x), where b is a boolean flag, i is a non-
negative integer less than or equal to n, and x is a value, specifying that the
ith element of v should be replaced by x, provided that b = true.

The static semantics of these primitives is given by the following typing
rules:

Γ ` e1 : τ · · · Γ ` en : τ

Γ ` [e0, . . . ,en−1] : τ vector (17.9)

Γ ` e1 : τ vector Γ ` e2 : int
Γ ` elt(e1,e2) : τ (17.10)

Γ ` e : τ vector
Γ ` size(e) : int (17.11)

Γ ` e : int
Γ ` index(e) : int vector (17.12)

WORKING DRAFT MARCH 9, 2005

17.3 Vector Parallelism 131

Γ ` e1 : τ→τ′ Γ ` e2 : τ vector

Γ ` map(e1,e2) : τ′ vector (17.13)

Γ ` e1 : τ vector Γ ` e2 : (bool*int*τ) vector
Γ ` update(e1,e2) : τ vector (17.14)

The parallel dynamic semantics is given by the following rules. The
most important is the parallel evaluation rule for vector expressions, since
this is the sole source of parallelism:

∀i ∈ I (ei 7→par e′i) ∀i /∈ I (e′i = ei & ei value)
[e0, . . . ,en−1] 7→par [e′0, . . . ,e′n−1] (17.15)

where ∅ 6= I ⊆ { 0, . . . , n− 1 }. This allows for the parallel evaluation of
all components of the vector that have not yet been evaluated.

For each of the primitive operations of the language there is a rule spec-
ifying that its arguments are evaluated in left-to-right order. We omit these
rules here for the sake of brevity. The primitive instructions are as follows:

elt([v0, . . . ,vn−1],i) 7→par vi (17.16)

size([v0, . . . ,vn−1]) 7→par n (17.17)

index(n) 7→par [0, . . . ,n− 1] (17.18)

map(v,[v0, . . . ,vn−1]) 7→par [apply(v, v0), . . . ,apply(v, vn−1)] (17.19)

update([v0, . . . ,vn−1],[(b0,i0,x0), . . . ,(bk−1,ik−1,xk−1)])
7→par

[v′0, . . . ,v′n−1]
(17.20)

where for each i ∈ { i0, . . . , ik−1 }, if bi is true, then v′i = xi, and otherwise
v′i = vi. If an index i appears more than once, the rightmost occurrence
takes precedence over the others.

MARCH 9, 2005 WORKING DRAFT

132 17.3 Vector Parallelism

The sequential dynamic semantics of vectors is defined similarly to the
parallel semantics. The only difference is that vector expressions are eval-
uated in left-to-right order, rather than in parallel. This is expressed by the
following rule:

ei 7→seq e′i
[v0, . . . ,vi−1,ei,ei+1, . . . ,en−1] 7→ [v0, . . . ,vi−1,e′i,ei+1, . . . ,en−1]

(17.21)
We write e 7→seq e′ to indicate that e steps to e′ under the sequential seman-
tics.

With these two basic semantics in mind, we may also derive a cost se-
mantics for MinML with vectors, where the work corresponds to the num-
ber of steps required in the sequential semantics, and the depth corresponds
to the number of steps required in the parallel semantics. The rules are as
follows.

Vector expressions are evaluated in parallel.

∀ 0 ≤ i < n (ei ⇓wi ,di vi)
[e0, . . . ,en−1] ⇓w,d [v0, . . . ,vn−1] (17.22)

where w = ∑n−1
i=0 wi and d = maxn−1

i=0 di.
Retrieving an element of a vector takes constant work and depth.

e1 ⇓w1,d1 [v0, . . . ,vn−1] e2 ⇓w2,d2 i (0 ≤ i < n)
elt(e1,e2) ⇓w1+w2+1,d1+d2+1 vi (17.23)

Retrieving the size of a vector takes constant work and depth.

e ⇓w,d [v0, . . . ,vn−1]

size(e) ⇓w+1,d+1 n (17.24)

Creating an index vector takes linear work and constant depth.

e ⇓w,d n
index(e) ⇓w+n,d+1 [0, . . . ,n− 1] (17.25)

WORKING DRAFT MARCH 9, 2005

17.3 Vector Parallelism 133

Mapping a function across a vector takes constant work and depth be-
yond the cost of the function applications.

e1 ⇓w1,d1 v e2 ⇓w2,d2 [v0, . . . ,vn−1]
[apply(v, v0), . . . ,apply(v, vn−1)] ⇓w,d [v′0, . . . ,v′n−1]

map(e1,e2) ⇓w1+w2+w+1,d1+d2+d+1 [v′0, . . . ,v′n−1] (17.26)

Updating a vector takes linear work and constant depth.

e1 ⇓w1,d1 [v0, . . . ,vn−1] e2 ⇓w2,d2 [(b1,i1,x1), . . . ,(bk,ik,xk)]

update(e1,e2) ⇓w1+w2+k+n,d1+d2+1 [v′0, . . . ,v′n−1] (17.27)

where for each i ∈ { i1, . . . , ik }, if bi is true, then v′i = xi, and otherwise
v′i = vi. If an index i appears more than once, the rightmost occurrence
takes precedence over the others.

Theorem 17.3
For the extension of MinML with vectors, e ⇓w,d v iff e 7→d

par v and e 7→w
seq v.

MARCH 9, 2005 WORKING DRAFT

134 17.3 Vector Parallelism

WORKING DRAFT MARCH 9, 2005

Chapter 18

A Parallel Abstract Machine

The parallel operational semantics described in Chapter 17 abstracts away
some important aspects of the implementation of parallelism. For example,
the parallel evaluation rule for ordered pairs

e1 7→par e′1 e2 7→par e′2
(e1,e2) 7→par (e′1,e′2)

does not account for the overhead of allocating e1 and e2 to two (physical or
virtual) processors, or for synchronizing with those two processors to ob-
tain their results. In this chapter we will discuss a more realistic operational
semantics that accounts for this overhead.

18.1 A Simple Parallel Language

Rather than specify which primitives, such as pairing, are to be evaluated
in parallel, we instead introduce a “parallel let” construct that allows the
programmer to specify the simultaneous evaluation of two expressions.
Moreover, we restrict the language so that the arguments to all primitive
operations must be values. This forces the programmer to decide for her-
self which constructs are to be evaluated in parallel, and which are to be
evaluated sequentially.

Types τ : : = int | bool | unit | τ1*τ2 | τ1→τ2
Expressions e : : = v | let x1:τ1 be e1 and x2:τ2 be e2 in e end |

o(v1, . . . , vn) | if τ then v else e1e2 |
apply(v1, v2) | split v as (x1,x2) in e

Values v : : = x | n | true | false | () | (v1,v2) |
fun x (y:τ1):τ2 is e

135

136 18.1 A Simple Parallel Language

The binding conventions are as for MinML with product types, with the
additional specification that the variables x1 and x2 are bound within the
body of a let expression. Note that variables are regarded as values only
for the purpose of defining the syntax of the language; evaluation is, as
ever, defined only on closed terms.

As will become apparent when we specify the dynamic semantics, the
“sequential let” is definable from the “parallel let”:

let τ1:x1 be e1 in e2 : = let x1:τ1 be e1 and x:unit be () in e2 end

where x does not occur free in e2. Using these, the “parallel pair” is defin-
able by the equation

(e1,e2)par : = let x1:τ1 be e1 and x2:τ2 be e2 in (x1,x2) end

whereas the “(left-to-right) sequential pair” is definable by the equation

(e1,e2)seq : = let τ1:x1 be e1 in let τ2:x2 be e2 in (x1,x2).

The static semantics of this language is essentially that of MinML with
product types, with the addition of the following typing rule for the parallel
let construct:

Γ ` e1 : τ1 Γ ` e2 : τ2 Γ, x1:τ1, x2:τ2 ` e : τ

Γ ` let x1:τ1 be e1 and x2:τ2 be e2 in e end : τ (18.1)

It is a simple exercise to give a parallel structured operational semantics
to this language in the style of Chapter 17. In particular, it would employ
the following rules for the parallel let construct.

e1 7→par e′1 e2 7→par e′2
let x1:τ1 be e1 and x2:τ2 be e2 in e end

7→par
let x1:τ1 be e′1 and x2:τ2 be e′2 in e end

(18.2)

e1 7→par e′1
let x1:τ1 be e1 and x2:τ2 be v2 in e end

7→par
let x1:τ1 be e′1 and x2:τ2 be v2 in e end

(18.3)

WORKING DRAFT MARCH 9, 2005

18.2 A Parallel Abstract Machine 137

e2 7→par e′2
let x1:τ1 be v1 and x2:τ2 be e2 in e end

7→par
let x1:τ1 be v1 and x2:τ2 be e′2 in e end

(18.4)

However, these rules ignore the overhead associated with allocating the
sub-expression to processors. In the next section we will consider an ab-
stract machine that accounts for this overhead.

Exercise 18.1
Prove preservation and progress for the static and dynamic semantics just
given.

18.2 A Parallel Abstract Machine

The essence of parallelism is the simultaneous execution of several pro-
grams. Each execution is called a thread of control, or thread, for short. The
problem of devising a parallel abstract machine is how to represent mul-
tiple threads of control, in particular how to represent the creation of new
threads and synchronization between threads. The P-machine is designed
to represent a parallel computer with an unbounded number of processors
in a simple and elegant manner.

The main idea of the P-machine is represent the state of a parallel com-
puter by a nested composition of parallel let statements representing the
active threads in a program. Each step of the machine consists of executing
all of the active instructions in the program, resulting in a new P-state.

In order to account for the activation of threads and the synchroniza-
tion of their results we make explicit the process of activating an expression,
which corresponds to assigning it to a processor for execution. Execution
of a parallel let instruction whose constituent expressions have not yet
been activated consists of the activation of these expressions. Execution of
a parallel let whose constituents are completely evaluated consists of sub-
stituting the values of these expressions into the body of the let, which is
itself then activated. Execution of all other instructions is exactly as before,
with the result being made active in each case.

This can be formalized using parallelism contexts, which capture the tree
structure of nested parallel computations. Let l and variants range over a
countable set of labels. These will serve to identify the abstract processors
assigned to the execution of an active expression. The set of parallelism

MARCH 9, 2005 WORKING DRAFT

138 18.2 A Parallel Abstract Machine

contexts L is defined by the following grammar:

L : : = l:� | l:let x1:τ1 beL1 and x2:τ2 beL2 in e end |
l:let x1:τ1 beL1 and x2:τ2 be v2 in e end |

l:let x1:τ1 be v1 and x2:τ2 beL2 in e end

A parallelism context is well-formed only if all labels occurring within it are
distinct; hereafter we will consider only well-formed parallelism contexts.

A labelled “hole” in a parallelism context represents an active computa-
tion site; a labelled let expression represents a pending computation that
is awaiting completion of its child threads. We have arranged things so that
all active sites are children of pending sites, reflecting the intuition that an
active site must have been spawned by some (now pending) site.

The arity of a context is defined to be the number of “holes” occurring
within it. The arity is therefore the number of active threads within the
context. If L is a context with arity n, then the expression L[l = e]ni=1 rep-
resents the result of “filling” the hole labelled li with the expression ei, for
each 1 ≤ i ≤ n. Thus the ei’s represent the active expressions within the
context; the label li represents the “name” of the processor assigned to exe-
cute ei.

Each step of the P-machine consists of executing all of the active instruc-
tions in the current state. This is captured by the following evaluation rule:

e1 −→ e′1 · · · en −→ e′n
L[l = e]ni=1 7→P L[l = e′]ni=1

The relation e −→ e′ defines the atomic instruction steps of the P-
machine. These are defined by a set of axioms. The first is the fork axiom,
which initiates execution of a parallel let statement:

let x1:τ1 be e1 and x2:τ2 be e2 in e end
−→

let x1:τ1 be l1:e1 and x2:τ2 be l2:e2 in e end
(18.5)

Here l1 and l2 are “new” labels that do not otherwise occur in the compu-
tation. They serve as the labels of the processors assigned to execute e1 and
e2, respectively.

The second instruction is the join axiom, which completes execution of
a parallel let:

v1 value v2 value

let x1:τ1 be l1:v1 and x2:τ2 be l2:v2 in e end −→ {v1, v2/x1, x2}e (18.6)

WORKING DRAFT MARCH 9, 2005

18.3 Cost Semantics, Revisited 139

The other instructions are inherited from the M-machine. For example,
function application is defined by the following instruction:

v1 value v2 value (v1 = fun f (x:τ1):τ2 is e)
apply(v1, v2) −→ {v1, v2/ f , x}e (18.7)

This completes the definition of the P-machine.

Exercise 18.2
State and prove preservation and progress relative to the P-machine.

18.3 Cost Semantics, Revisited

A primary motivation for introducing the P-machine was to achieve a proper
accounting for the cost of creating and synchronizing threads. In the sim-
plified model of Chapter 17 we ignored these costs, but here we seek to
take them into account. This is accomplished by taking the following rule
for the cost semantics of the parallel let construct:

e1 ⇓w1,d1 v1 e2 ⇓w2,d2 v2 {v1, v2/x1, x2}e ⇓w,d v

let x1:τ1 be e1 and x2:τ2 be e2 in e end ⇓w′,d′ v (18.8)

where w′ = w1 + w2 + w + 2 and d′ = max(d1, d2) + d + 2. Since the
remaining expression forms are all limited to values, they have unit cost
for both work and depth.

The calculation of work and depth for the parallel let construct is jus-
tified by relating the cost semantics to the P-machine. The work performed
in an evaluation sequence e 7→∗P v is the total number of primitive instruc-
tion steps performed in the sequence; it is the sequential cost of executing
the expression e.

Theorem 18.3
If e ⇓w,d v, then l:e 7→d

P l:v with work w.

Proof: The proof from left to right proceeds by induction on the cost se-
mantics. For example, consider the cost semantics of the parallel let con-
struct. By induction we have

1. l1:e1 7→d1
P l1:v1 with work w1;

MARCH 9, 2005 WORKING DRAFT

140 18.4 Provable Implementations (Summary)

2. l2:e2 7→d2
P l2:v2 with work w2;

3. l:{v1, v2/x1, x2}e 7→d
P l:v with work w.

We therefore have the following P-machine evaluation sequence:

l:let x1:τ1 be e1 and x2:τ2 be e2 in e end 7→P

l:let x1:τ1 be l1:e1 and x2:τ2 be l2:e2 in e end 7→max(d1,d2)
P

l:let x1:τ1 be l1:v1 and x2:τ2 be l2:v2 in e end 7→P

l:{v1, v2/x1, x2}e 7→d
P

l:v

The total length of the evaluation sequence is max(d1, d2) + d + 2, as re-
quired by the depth cost, and the total work is w1 + w2 + w + 2, as required
by the work cost. �

18.4 Provable Implementations (Summary)

The semantics of parallelism given above is based on an idealized parallel
computer with an unlimited number of processors. In practice this idealiza-
tion must be simulated using some fixed number, p, of physical processors.
In practice p is on the order of 10’s of processors, but may even rise (at the
time of this writing) into the 100’s. In any case p does not vary with input
size, but is rather a fixed parameter of the implementation platform. The
important question is how efficiently can one simulate unbounded paral-
lelism using only p processors? That is, how realistic are the costs assigned
to the language by our semantics? Can we make accurate predictions about
the running time of a program on a real parallel computer based on the ide-
alized cost assigned to it by our semantics?

The answer is yes, through the notion of a provably efficient implementa-
tion. While a full treatment of these ideas is beyond the scope of this book,
it is worthwhile to summarize the main ideas.

Theorem 18.4 (Blelloch and Greiner)
If e ⇓w,d v, then e can be evaluated on an SMP with p-processors in time
O(w/p + d lg p).

For our purposes, an SMP is any of a wide range of parallel computers,
including a CRCW PRAM, a hypercube, or a butterfly network. Observe
that for p = 1, the stated bound simplifies to O(w), as would be expected.

WORKING DRAFT MARCH 9, 2005

18.4 Provable Implementations (Summary) 141

To understand the significance of this theorem, observe that the defi-
nition of work and depth yields a lower bound of Ω(max(w/p, d)) on the
execution time on p processors. We can never complete execution in fewer
than d steps, and can, at best, divide the total work evenly among the p
processors. The theorem tells us that we can come within a constant factor
of this lower bound. The constant factor, lg p, represents the overhead of
scheduling parallel computations on p processors.

The goal of parallel programming is to maximize the use of parallelism
so as to minimize the execution time. By the theorem this will occur if
the term w/p dominates, which occurs if the ratio w/d of work to depth
is at least p lg p. This ratio is sometimes called the parallelizability of the
program. For highly sequential programs, d is directly proportional to w,
yielding a low parallelizability — increasing the number of processors will
not speed up the computation. For highly parallel programs, d might be
constant or proportional to lg w, resulting in a large parallelizability, and
good utilization of the available computing resources. It is important to
keep in mind that it is not known whether there are inherently sequential
problems (for which no parallelizable solution is possible), or whether, in-
stead, all problems can benefit from parallelism. The best that we can say
at the time of this writing is that there are problems for which no paralleliz-
able solution is known.

To get a sense of what is involved in the proof of Blelloch and Greiner’s
theorem, let us consider the assumption that the index operation on vec-
tors (given in Chapter 17) has constant depth. The theorem implies that
index is implementable on an SMP in time O(n/p + lg p). We will briefly
sketch a proof for this one case. The main idea is that we may assume that
every processor is assigned a unique number from 0 to p − 1. To imple-
ment index, we simply allocate, but do not initialize, a region of memory
of the appropriate size, and ask each processor to simultaneously store its
identifying number i into the ith element of the allocated array. This works
directly if the size of the vector is no more than the number of processors.
Otherwise, we may divide the problem in half, and recursively build two
index vectors of half the size, one starting with zero, the other with n/2.
This process need proceed at most lg p times before the vectors are small
enough, leaving n/p sub-problems of size at most p to be solved. Thus the
total time required is O(n/p + lg p), as required by the theorem.

The other primitive operations are handled by similar arguments, justi-
fying the cost assignments made to them in the operational semantics. To
complete the proof of Blelloch and Greiner’s theorem, we need only argue

MARCH 9, 2005 WORKING DRAFT

142 18.4 Provable Implementations (Summary)

that the total work w can indeed be allocated to p processors with a cost
of only lg p for the overhead. This is a consequence of Brent’s Theorem,
which states that a total workload w divided into d parallel steps may be
implemented on p processors in O(n/p + d lg p) time. The argument relies
on certain assumptions about the SMP, including the ability to perform a
parallel fetch-and-add operation in constant time.

WORKING DRAFT MARCH 9, 2005

Part VII

Data Structures and
Abstraction

143

Chapter 19

Aggregate Data Structures

It is interesting to add to MinML support for programming with aggregate
data structures such as n-tuples, lists, and tree structures. We will decom-
pose these familiar data structures into three types:

1. Product (or tuple) types. In general these are types whose values are
n-tuples of values, with each component of a specified type. We will
study two special cases that are sufficient to cover the general case:
0-tuples (also known as the unit type) and 2-tuples (also known as
ordered pairs).

2. Sum (or variant or union) types. These are types whose values are
values of one of n specified types, with an explicit “tag” indicating
which of the n choices is made.

3. Recursive types. These are “self-referential” types whose values may
have as constituents values of the recursive type itself. Familiar ex-
amples include lists and trees. A non-empty list consists of a value at
the head of the list together with another value of list type.

19.1 Products

The first-order abstract syntax associated with nullary and binary product
types is given by the following grammar:

Types τ : : = unit | τ1*τ2
Expressions e : : = () | check e1 is () in e2 | (e1,e2) |

split e1 as (x,y) in e2
Values v : : = () | (v1,v2)

145

146 19.1 Products

The higher-order abstract syntax is given by stipulating that in the ex-
pression split e1 as (x,y) in e2 the variables x and y are bound within e2,
and hence may be renamed (consistently, avoiding capture) at will without
changing the interpretation of the expression.

The static semantics of these constructs is given by the following typing
rules:

Γ ` () : unit (19.1)

Γ ` e1 : unit Γ ` e2 : τ2

Γ ` check e1 is () in e2 : τ2 (19.2)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1,e2) : τ1*τ2 (19.3)

Γ ` e1 : τ1*τ2 Γ, x:τ1, y:τ2 ` e2 : τ

Γ ` split e1 as (x,y) in e2 : τ (19.4)

The dynamic semantics is given by these rules:

check () is () in e 7→ e (19.5)

e1 7→ e′1
check e1 is () in e2 7→ check e′1 is () in e2 (19.6)

e1 7→ e′1
(e1,e2) 7→ (e′1,e2) (19.7)

e2 7→ e′2
(v1,e2) 7→ (v1,e′2) (19.8)

split (v1,v2) as (x,y) in e 7→ {v1, v2/x, y}e (19.9)

e1 7→ e′1
split e1 as (x,y) in e2 7→ split e′1 as (x,y) in e2 (19.10)

e 7→ e′

caseτ e of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 7→ caseτ e′ of inl(x1:τ1) => e1 | inr(x2:τ2) => e2
(19.11)

WORKING DRAFT MARCH 9, 2005

19.2 Sums 147

Exercise 19.1
State and prove the soundness of this extension to MinML.

Exercise 19.2
A variation is to treat any pair (e1,e2) as a value, regardless of whether or
not e1 or e2 are values. Give a precise formulation of this variant, and prove
it sound.

Exercise 19.3
It is also possible to formulate a direct treatment of n-ary product types (for
n ≥ 0), rather than to derive them from binary and nullary products. Give
a direct formalization of n-ary products. Be careful to get the cases n = 0
and n = 1 right!

Exercise 19.4
Another variation is to considered labelled products in which the compo-
nents are accessed directly by referring to their labels (in a manner similar
to C struct’s). Formalize this notion.

19.2 Sums

The first-order abstract syntax of nullary and binary sums is given by the
following grammar:

Types τ : : = τ1+τ2
Expressions e : : = inlτ1+τ2(e1) | inrτ1+τ2(e2) |

caseτ e0 of inl(x:τ1) => e1 | inr(y:τ2) => e2
Values v : : = inlτ1+τ2(v1) | inrτ1+τ2(v2)

The higher-order abstract syntax is given by noting that in the expression
caseτ e0 of inl(x:τ1) => e1 | inr(y:τ2) => e2, the variable x is bound in e1
and the variable y is bound in e2.

The typing rules governing these constructs are given as follows:

Γ ` e1 : τ1

Γ ` inlτ1+τ2(e1) : τ1+τ2 (19.12)

Γ ` e2 : τ2

Γ ` inrτ1+τ2(e2) : τ1+τ2 (19.13)

MARCH 9, 2005 WORKING DRAFT

148 19.3 Recursive Types

Γ ` e0 : τ1+τ2 Γ, x1:τ1 ` e1 : τ Γ, x2:τ2 ` e2 : τ

Γ ` caseτ e0 of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 : τ (19.14)

The evaluation rules are as follows:

e 7→ e′

inlτ1+τ2(e) 7→ inlτ1+τ2(e′) (19.15)

e 7→ e′

inrτ1+τ2(e) 7→ inrτ1+τ2(e′) (19.16)

caseτ inlτ1+τ2(v) of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 7→ {v/x1}e1
(19.17)

caseτ inrτ1+τ2(v) of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 7→ {v/x2}e2
(19.18)

Exercise 19.5
State and prove the soundness of this extension.

Exercise 19.6
Consider these variants: inlτ1+τ2(e) and inrτ1+τ2(e) are values, regardless
of whether or not e is a value; n-ary sums; labelled sums.

19.3 Recursive Types

Recursive types are somewhat less familiar than products and sums. Few
well-known languages provide direct support for these. Instead the pro-
grammer is expected to simulate them using pointers and similar low-level
representations. Here instead we’ll present them as a fundamental concept.

As mentioned in the introduction, the main idea of a recursive type is
similar to that of a recursive function — self-reference. The idea is easily
illustrated by example. Informally, a list of integers may be thought of as
either the empty list, nil, or a non-empty list, cons(h, t), where h is an
integer and t is another list of integers. The operations nil and cons(−,−)
are value constructors for the type ilist of integer lists. We may program
with lists using a form of case analysis, written

listcase e of nil => e1 | cons(x, y) => e2,

WORKING DRAFT MARCH 9, 2005

19.3 Recursive Types 149

where x and y are bound in e2. This construct analyses whether e is the
empty list, in which case it evaluates e1, or a non-empty list, with head x
and tail y, in which case it evaluates e2 with the head and tail bound to
these variables.

Exercise 19.7
Give a formal definition of the type ilist.

Rather than take lists as a primitive notion, we may define them from
a combination of sums, products, and a new concept, recursive types. The
essential idea is that the types ilist and unit+(int*ilist) are isomorphic,
meaning that there is a one-to-one correspondence between values of type
ilist and values of the foregoing sum type. In implementation terms we
may think of the correspondence “pointer chasing” — every list is a pointer
to a tagged value indicating whether or not the list is empty and, if not, a
pair consisting of its head and tail. (Formally, there is also a value associ-
ated with the empty list, namely the sole value of unit type. Since its value
is predictable from the type, we can safely ignore it.) This interpretation
of values of recursive type as pointers is consistent with the typical low-
level implementation strategy for data structures such as lists, namely as
pointers to cells allocated on the heap. However, by sticking to the more
abstract viewpoint we are not committed to this representation, however
suggestive it may be, but can choose from a variety of programming tricks
for the sake of efficiency.

Exercise 19.8
Consider the type of binary trees with integers at the nodes. To what sum
type would such a type be isomorphic?

This motivates the following general definition of recursive types. The
first-order abstract syntax is given by the following grammar:

Types τ : : = t | rec t is τ
Expressions e : : = roll(e) | unroll(e)
Values v : : = roll(v)

Here t ranges over a set of type variables, which are used to stand for the
recursive type itself, in much the same way that we give a name to recursive
functions to stand for the function itself. For the present we will insist that
type variables are used only for this purpose; they may occur only inside
of a recursive type, where they are bound by the recursive type constructor
itself.

MARCH 9, 2005 WORKING DRAFT

150 19.3 Recursive Types

For example, the type τ = rec t is unit+(int*t) is the recursive type of
lists of integers. It is isomorphic to its unrolling, the type

unit+(int*τ).

This is the isomorphism described informally above.
The abstract “pointers” witnessing the isomorphism are written roll(e),

which “allocates” a pointer to (the value of) e, and unroll(e), which “chases”
the pointer given by (the value of) e to recover its underlying value. This in-
terpretation will become clearer once we have given the static and dynamic
semantics of these constructs.

The static semantics of these constructs is given by the following rules:

Γ ` e : {rec t is τ/t}τ
Γ ` roll(e) : rec t is τ (19.19)

Γ ` e : rec t is τ
Γ ` unroll(e) : {rec t is τ/t}τ (19.20)

These primitive operations move back and forth between a recursive type
and its unrolling.

The dynamic semantics is given by the following rules:

unroll(roll(v)) 7→ v (19.21)

e 7→ e′

unroll(e) 7→ unroll(e′) (19.22)

e 7→ e′

roll(e) 7→ roll(e′) (19.23)

Exercise 19.9
State and prove the soundness of this extension of MinML.

Exercise 19.10
Consider the definition of the type ilist as a recursive type given above.
Give definitions of nil, cons, and listcase in terms of the operations on
recursive types, sums, and products.

WORKING DRAFT MARCH 9, 2005

Chapter 20

Polymorphism

MinML is an explicitly typed language. The abstract syntax is defined to have
sufficient type information to ensure that all expressions have a unique
type. In particular the types of the parameters of a function must be chosen
when the function is defined.

While this is not itself a serious problem, it does expose a significant
weakness in the MinML type system. For example, there is no way to define
a generic procedure for composing two functions whose domain and range
match up appropriately. Instead we must define a separate composition
operation for each choice of types for the functions being composed. Here
is one composition function

fun (f:string->int):(char->string)->(string->int) is
fun (g:char->string):string->int is

fun (x:string):int is apply(f, apply(g, x)),

and here is another

fun (f:float->double):(int->float)->(int->double) is
fun (g:int->float):int->double is

fun (x:int):double is apply(f, apply(g, x)).

The annoying thing is that both versions of function composition exe-
cute the same way; they differ only in the choice of types of the functions
being composed. This is rather irksome, and very quickly gets out of hand
in practice. Statically typed languages have long been criticized for pre-
cisely this reason. Fortunately this inflexibility is not an inherent limitation
of statically typed languages, but rather a limitation of the particular type
system we have given to MinML. A rather straightforward extension is

151

152 20.1 A Polymorphic Language

sufficient to provide the kind of flexibility that is essential for a practical
language. This extension is called polymorphism.

While ML has had such a type system from its inception (circa 1978),
few other languages have followed suit. Notably the Java language suffers
from this limitation (but the difficulty is mitigated somewhat in the pres-
ence of subtyping). Plans are in the works, however, for adding polymor-
phism (called generics) to the Java language. A compiler for this extension,
called Generic Java, is already available.

20.1 A Polymorphic Language

Polymorphic MinML, or PolyMinML, is an extension of MinML with the abil-
ity to define polymorphic functions. Informally, a polymorphic function is a
function that takes a type as argument and yields a value as result. The type
parameter to a polymorphic function represents an unknown, or generic,
type, which can be instantiated by applying the function to a specific type.
The types of polymorphic functions are called polymorphic types, or poly-
types.

A significant design decision is whether to regard polymorphic types
as “first-class” types, or whether they are, instead, “second-class” citizens.
Polymorphic functions in ML are second-class — they cannot be passed as
arguments, returned as results, or stored in data structures. The only thing
we may do with polymorphic values is to bind them to identifiers with a
val or fun binding. Uses of such identifiers are automatically instantiated
by an implicit polymorphic instantiation. The alternative is to treat poly-
morphic functions as first-class values, which can be used like any other
value in the language. Here there are no restrictions on how they can be
used, but you should be warned that doing so precludes using type infer-
ence to perform polymorphic abstraction and instantiation automatically.

We’ll set things up for second-class polymorphism by explicitly distin-
guishing polymorphic types from monomorphic types. The first-class case
can then be recovered by simply conflating polytypes and monotypes.

WORKING DRAFT MARCH 9, 2005

20.1 A Polymorphic Language 153

Abstract Syntax

The abstract syntax of PolyMinML is defined by the following extension to
the MinML grammar:

Polytypes σ : : = τ | ∀t(σ)
Monotypes τ : : = . . . | t
Expressions e : : = . . . | Fun t in e | inst(e,τ)
Values v : : = . . . | Fun t in e

The variable t ranges over a set of type variables, which are written ML-style
’a, ’b, and so on in examples. In the polytype ∀t(σ) the type variable t
is bound in σ; we do not distinguish between polytypes that differ only
in the names of bound variables. Since the quantifier can occur only at
the outermost level, in ML it is left implicit. An expression of the form
Fun t in e is a polymorphic function with parameter t and body e. The variable
t is bound within e. An expression of the form inst(e,τ) is a polymorphic
instantiation of the polymorphic function e at monotype τ. Notice that we
may only instantiate polymorphic functions with monotypes. In examples
we write f[τ] for polymorphic instantiation, rather than the more verbose
inst(f,τ).

We write FTV(τ) (respectively, FTV(σ), FTV(e)) for the set of free type
variables occurring in τ (respectively, σ, e). Capture-avoiding substitu-
tion of a monotype τ for free occurrences of a type variable t in a poly-
type σ (resp., monotype τ′, expression e) is written {τ/t}σ (resp., {τ/t}τ′,
{τ/t}e).

Static Semantics

The static semantics of PolyMinML is a straightforward extension to that of
MinML. One significant change, however, is that we must now keep track
of the scopes of type variables, as well as ordinary variables. In the static
semantics of MinML a typing judgement had the form Γ ` e : τ, where
Γ is a context assigning types to ordinary variables. Only those variables
in dom Γ may legally occur in e. For PolyMinML we must introduce an
additional context, ∆, which is a set of type variables, those that may legally
occur in the types and expression of the judgement.

The static semantics consists of rules for deriving the following two
judgements:

∆ ` σ ok σ is a well-formed type in ∆
Γ `∆ e : σ e is a well-formed expression of type σ in Γ and ∆

MARCH 9, 2005 WORKING DRAFT

154 20.1 A Polymorphic Language

The rules for validity of types are as follows:

t ∈ ∆
∆ ` t ok (20.1)

∆ ` int ok (20.2)

∆ ` bool ok (20.3)

∆ ` τ1 ok ∆ ` τ2 ok

∆ ` τ1→τ2 ok (20.4)

∆ ∪ { t } ` σ ok t /∈ ∆
∆ ` ∀t(σ) ok (20.5)

The auxiliary judgement ∆ ` Γ is defined by the following rule:

∆ ` Γ(x) ok (∀x ∈ dom(Γ))
∆ ` Γ ok . (20.6)

The rules for deriving typing judgements Γ `∆ e : σ are as follows. We
assume that ∆ ` Γ ok, ∆ ` σ ok, FV(e) ⊆ dom(Γ), and FTV(e) ⊆ ∆. We
give only the rules specific to PolyMinML; the remaining rules are those of
MinML, augmented with a set ∆ of type variables.

Γ `∆∪{ t } e : σ t /∈ ∆

Γ `∆ Fun t in e : ∀t(σ) (20.7)

Γ `∆ e : ∀t(σ) ∆ ` τ ok

Γ `∆ inst(e,τ) : {τ/t}σ (20.8)

For example, here is the polymorphic composition function in PolyMinML:

Fun t in
Fun u in

Fun v in
fun (f:u->v):(t->u)->(t->v) is

fun (g:t->u):t->v is
fun (x:t):v is apply(f, apply(g, x))

WORKING DRAFT MARCH 9, 2005

20.1 A Polymorphic Language 155

It is easy to check that it has type

∀t(∀u(∀v((u→v)→(t→u)→(t→v)))).

We will need the following technical lemma stating that typing is pre-
served under instantiation:

Lemma 20.1 (Instantiation)
If Γ `∆∪{ t } e : σ, where t /∈ ∆, and ∆ ` τ ok, then {τ/t}Γ `∆ {τ/t}e :
{τ/t}σ.

The proof is by induction on typing, and involves no new ideas beyond
what we have already seen.

We will also have need of the following canonical forms lemma:

Lemma 20.2 (Canonical Forms)
If v : ∀t(σ), then v = Fun t in e for some t and e such that ∅ `{ t } e : σ.

This is proved by a straightforward analysis of the typing rules.

Dynamic Semantics

The dynamic semantics of PolyMinML is a simple extension of that of MinML.
We need only add the following two SOS rules:

inst(Fun t in e,τ) 7→ {τ/t}e (20.9)

e 7→ e′

inst(e,τ) 7→ inst(e′,τ) (20.10)

It is then a simple matter to prove safety for this language.

Theorem 20.3 (Preservation)
If e : σ and e 7→ e′, then e′ : σ.

The proof is by induction on evaluation.

Theorem 20.4 (Progress)
If e : σ, then either e is a value or there exists e′ such that e 7→ e′.

As before, this is proved by induction on typing.

MARCH 9, 2005 WORKING DRAFT

156 20.1 A Polymorphic Language

First-Class Polymorphism

The syntax given above describes an ML-like treatment of polymorphism,
albeit one in which polymorphic abstraction and instantiation is explicit,
rather than implicit, as it is in ML. To obtain the first-class variant of PolyMinML,
we simply ignore the distinction between poly- and mono-types, regarding
them all as simply types. Everything else remains unchanged, including
the proofs of progress and preservation.

With first-class polymorphism we may consider types such as

∀t(t→t)→∀t(t→t),

which cannot be expressed in the ML-like fragment. This is the type of
functions that accept a polymorphic function as argument and yield a poly-
morphic function (of the same type) as result. If f has the above type,
then f(Fun t in fun (x:t):t is x) is well-formed. However, the applica-
tion f(fun (x:int):int is+(x, 1)) is ill-formed, because the successor
function does not have type ∀t(t→t). The requirement that the argument
be polymorphic is a significant restriction on how f may be used!

Contrast this with the following type (which does lie within the ML-like
fragment):

∀t((t→t)→(t→t)).

This is the type of polymorphic functions that, for each type t, accept a
function on t and yield another function on t. If g has this type, the expres-
sion inst(g,int)(succ) is well-formed, since we first instantiate g at int,
then apply it to the successor function.

The situation gets more interesting in the presence of data structures
such as lists and reference cells. It is a worthwhile exercise to consider the
difference between the types ∀t(σ) list and ∀t(σ list) for various choices
of σ. Note once again that the former type cannot be expressed in ML,
whereas the latter can.

Recall the following counterexample to type soundness for the early
version of ML without the so-called value restriction:

let
val r : (’a -> ’a) ref = ref (fn x:’a => x)

in
r := (fn x:int => x+1) ; (!r)(true)

end

WORKING DRAFT MARCH 9, 2005

20.1 A Polymorphic Language 157

A simple check of the polymorphic typing rules reveals that this is a well-
formed expression, provided that the value restriction is suspended. Of
course, it “gets stuck” during evaluation by attempting to add 1 to true.

Using the framework of explicit polymorphism, I will argue that the
superficial plausibility of this example (which led to the unsoundness in
the language) stems from a failure to distinguish between these two types:

1. The type ∀t(t→t ref) of polymorphic functions yielding reference
cells containing a function from a type to itself.

2. The type ∀t(t→t) ref of reference cells containing polymorphic func-
tions yielding a function from a type to itself.

(Notice the similarity to the distinctions discussed above.) For this example
to be well-formed, we rely on an inconsistent reading of the example. At
the point of the val binding we are treating r as a value of the latter type,
namely a reference cell containing a polymorphic function. But in the body
of the let we are treating it as a value of the former type, a polymorphic
function yielding a reference cell. We cannot have it both ways at once!

To sort out the error let us make the polymorphic instantiation and ab-
straction explicit. Here’s one rendering:

let
val r : All ’a ((’a -> ’a) ref) =

Fun ’a in ref (fn x:’a => x) end
in

r[int] := (fn x:int => x+1) ; (!(r[bool]))(true)
end

Notice that we have made the polymorphic abstraction explicit, and in-
serted corresponding polymorphic instantiations. This example is type cor-
rect, and hence (by the proof of safety above) sound. But notice that it al-
locates two reference cells, not one! Recall that polymporphic functions are
values, and the binding of r is just such a value. Each of the two instances
of r executes the body of this function separately, each time allocating a
new reference cell. Hence the unsoundness goes away!

Here’s another rendering that is, in fact, ill-typed (and should be, since
it “gets stuck”!).

MARCH 9, 2005 WORKING DRAFT

158 20.2 ML-style Type Inference

let
val r : (All ’a (’a -> ’a)) ref =
ref (Fun ’a in fn x:’a => x end)

in
r := (fn x:int => x+1) ; (!r)[bool](true)

end

The assignment to r is ill-typed because the successor is not sufficiently
polymorphic. The retrieval and subsequent instantiation and application is
type-correct, however. If we change the program to

let
val r : (All ’a (’a -> ’a)) ref =
ref (Fun ’a in fn x:’a => x end)

in
r := (Fun ’a in fn x:’a => x end) ; (!r)[bool](true)

end

then the expression is well-typed, and behaves sanely, precisely because we
have assigned to r a sufficiently polymorphic function.

20.2 ML-style Type Inference

ML-style type inference may be viewed as a translation from the implicitly
typed syntax of ML to the explicitly-typed syntax of PolyMinML. Specifi-
cally, the type inference mechanism performs the following tasks:

• Attaching type labels to function arguments and results.

• Inserting polymorphic abstractions for declarations of polymorphic
type.

• Inserting polymorphic instantiations whenever a polymorphic de-
clared variable is used.

Thus in ML we may write

val I : ’a -> ’a = fn x => x
val n : int = I(I)(3)

This stands for the PolyMinML declarations1

1We’ve not equipped PolyMinML with a declaration construct, but you can see from the
example how this might be done.

WORKING DRAFT MARCH 9, 2005

20.3 Parametricity 159

val I : ∀t(t→t) = Fun t in fun (x:t):t is x
val n : int = inst(I,int→int)(inst(I,int))(3)

Here we apply the polymorphic identity function to itself, then apply the
result to 3. The identity function is explicitly abstracted on the type of its
argument and result, and its domain and range types are made explicit on
the function itself. The two occurrences of I in the ML code are replaced by
instantiations of I in the PolyMinML code, first at type int→int, the second
at type int.

With this in mind we can now explain the “value restriction” on poly-
morphism in ML. Referring to the example of the previous section, the
type inference mechanism of ML generates the first rendering of the ex-
ample give above in which the type of the reference cell is ∀t((t→t) ref).
As we’ve seen, when viewed in this way, the example is not problematic,
provided that polymorphic abstractions are seen as values. For in this case
the two instances of r generate two distinct reference cells, and no difficul-
ties arise. Unfortunately, ML does not treat polymorphic abstractions as
values! Only one reference cell is allocated, which, in the absence of the
value restriction, would lead to unsoundness.

Why does the value restriction save the day? In the case that the poly-
morphic expression is not a value (in the ML sense) the polymorphic ab-
straction that is inserted by the type inference mechanism changes a non-
value into a value! This changes the semantics of the expression (as we’ve
seen, from allocating one cell, to allocating two different cells), which vio-
lates the semantics of ML itself.2 However, if we limit ourselves to values
in the first place, then the polymorphic abstraction is only ever wrapped
around a value, and no change of semantics occurs. Therefore3, the inser-
tion of polymorphic abstraction doesn’t change the semantics, and every-
thing is safe. The example above involving reference cells is ruled out, be-
cause the expression ref (fn x => x) is not a value, but such is the nature
of the value restriction.

20.3 Parametricity

Our original motivation for introducing polymorphism was to enable more
programs to be written — those that are “generic” in one or more types,
such as the composition function give above. The idea is that if the behavior

2One could argue that the ML semantics is incorrect, which leads to a different language.
3This would need to be proved, of course.

MARCH 9, 2005 WORKING DRAFT

160 20.3 Parametricity

of a function does not depend on a choice of types, then it is useful to be able
to define such “type oblivious” functions in the language. Once we have
such a mechanism in hand, it can also be used to ensure that a particular
piece of code can not depend on a choice of types by insisting that it be
polymorphic in those types. In this sense polymorphism may be used to
impose restrictions on a program, as well as to allow more programs to be
written.

The restrictions imposed by requiring a program to be polymorphic un-
derlie the often-observed experience when programming in ML that if the
types are correct, then the program is correct. Roughly speaking, since the
ML type system is polymorphic, if a function type checks with a polymor-
phic type, then the strictures of polymorphism vastly cut down the set of
well-typed programs with that type. Since the intended program is one
these (by the hypothesis that its type is “right”), you’re much more likely
to have written it if the set of possibilities is smaller.

The technical foundation for these remarks is called parametricity. The
goal of this section is to give an account of parametricity for PolyMinML.
To keep the technical details under control, we will restrict attention to the
ML-like (prenex) fragment of PolyMinML. It is possibly to generalize to
first-class polymorphism, but at the expense of considerable technical com-
plexity. Nevertheless we will find it necessary to gloss over some technical
details, but wherever a “pedagogic fiction” is required, I will point it out.
To start with, it should be stressed that the following does not apply to lan-
guages with mutable references!

20.3.1 Informal Discussion

We will begin with an informal discussion of parametricity based on a “seat
of the pants” understanding of the set of well-formed programs of a type.

Suppose that a function value f has the type ∀t(t→t). What function
could it be?

1. It could diverge when instantiated — f [τ] goes into an infinite loop.
Since f is polymorphic, its behavior cannot depend on the choice of
τ, so in fact f [τ′] diverges for all τ′ if it diverges for τ.

2. It could converge when instantiated at τ to a function g of type τ→τ
that loops when applied to an argument v of type τ — i.e., g(v) runs
forever. Since f is polymorphic, g must diverge on every argument v
of type τ if it diverges on some argument of type τ.

WORKING DRAFT MARCH 9, 2005

20.3 Parametricity 161

3. It could converge when instantiated at τ to a function g of type τ→τ
that, when applied to a value v of type τ returns a value v′ of type
τ. Since f is polymorphic, g cannot depend on the choice of v, so v′

must in fact be v.

Let us call cases (1) and (2) uninteresting. The foregoing discussion sug-
gests that the only interesting function f of type ∀t(t→t) is the polymorphic
identity function.

Suppose that f is an interesting function of type ∀t(t). What function
could it be? A moment’s thought reveals that it cannot be interesting! That
is, every function f of this type must diverge when instantiated, and hence
is uninteresting. In other words, there are no interesting values of this type
— it is essentially an “empty” type.

For a final example, suppose that f is an interesting function of type
∀t(t list→t list). What function could it be?

1. The identity function that simply returns its argument.

2. The constantly-nil function that always returns the empty list.

3. A function that drops some elements from the list according to a pre-
determined (data-independent) algorithm — e.g., always drops the
first three elements of its argument.

4. A permutation function that reorganizes the elements of its argu-
ment.

The characteristic that these functions have in common is that their behav-
ior is entirely determined by the spine of the list, and is independent of
the elements of the list. For example, f cannot be the function that drops
all “even” elements of the list — the elements might not be numbers! The
point is that the type of f is polymorphic in the element type, but reveals
that the argument is a list of unspecified elements. Therefore it can only
depend on the “list-ness” of its argument, and never on its contents.

In general if a polymorphic function behaves the same at every type
instance, we say that it is parametric in that type. In PolyMinML all polymor-
phic functions are parametric. In Standard ML most functions are, except
those that involve equality types. The equality function is not parametric be-
cause the equality test depends on the type instance — testing equality of
integers is different than testing equality of floating point numbers, and we
cannot test equality of functions. Such “pseudo-polymorphic” operations
are said to be ad hoc, to contrast them from parametric.

MARCH 9, 2005 WORKING DRAFT

162 20.3 Parametricity

How can parametricity be exploited? As we will see later, parametric-
ity is the foundation for data abstraction in a programming language. To
get a sense of the relationship, let us consider a classical example of ex-
ploiting parametricity, the polymorphic Church numerals. Let N be the type
∀t(t→(t→t)→t). What are the interesting functions of the type N? Given
any type τ, and values z : τ and s : τ→τ, the expression

f [τ](z)(s)

must yield a value of type τ. Moreover, it must behave uniformly with
respect to the choice of τ. What values could it yield? The only way to
build a value of type τ is by using the element z and the function s passed
to it. A moment’s thought reveals that the application must amount to the
n-fold composition

s(s(. . . s(z) . . .)).

That is, the elements of N are in 1-to-1 correspondence with the natural
numbers.

Let us write n for the polymorphic function of type N representing the
natural number n, namely the function

Fun t in
fn z:t in

fn s:t->t in
s(s(... s)...))

end
end

end

where there are n occurrences of s in the expression. Observe that if we
instantiate n at the built-in type int and apply the result to 0 and succ,
it evaluates to the number n. In general we may think of performing an
“experiment” on a value of type N by instantiating it at a type whose values
will constitute the observations, the applying it to operations z and s for
performing the experiment, and observing the result.

Using this we can calculate with Church numerals. Let us consider how
to define the addition function on N. Given m and n of type N, we wish
to compute their sum m + n, also of type N. That is, the addition function
must look as follows:

WORKING DRAFT MARCH 9, 2005

20.3 Parametricity 163

fn m:N in
fn n:N in

Fun t in
fn z:t in

fn s:t->t in
...

end
end

end
end

end

The question is: how to fill in the missing code? Think in terms of ex-
periments. Given m and n of type N, we are to yield a value that when
“probed” by supplying a type t, an element z of that type, and a function s
on that type, must yield the (m + n)-fold composition of s with z. One way
to do this is to “run” m on t, z, and s, yielding the m-fold composition of s
with z, then “running” n on this value and s again to obtain the n-fold com-
position of s with the n-fold composition of s with z — the desired answer.
Here’s the code:

fn m:N in
fn n:N in

Fun t in
fn z:t in

fn s:t->t in
n[t](m[t](z)(s))(s)

end
end

end
end

end

To see that it works, instantiate the result at τ, apply it to z and s, and
observe the result.

20.3.2 Relational Parametricity

In this section we give a more precise formulation of parametricity. The
main idea is that polymorphism implies that certain equations between ex-
pressions must hold. For example, if f : ∀t(t→t), then f must be equal to

MARCH 9, 2005 WORKING DRAFT

164 20.3 Parametricity

the identity function, and if f : N, then f must be equal to some Church
numeral n. To make the informal idea of parametricity precise, we must
clarify what we mean by equality of expressions.

The main idea is to define equality in terms of “experiments” that we
carry out on expressions to “test” whether they are equal. The valid experi-
ments on an expression are determined solely by its type. In general we say
that two closed expressions of a type τ are equal iff either they both diverge,
or they both converge to equal values of that type. Equality of closed val-
ues is then defined based on their type. For integers and booleans, equality
is straightforward: two values are equal iff they are identical. The intu-
ition here is that equality of numbers and booleans is directly observable.
Since functions are “infinite” objects (when thought of in terms of their in-
put/output behavior), we define equality in terms of their behavior when
applied. Specifically, two functions f and g of type τ1→τ2 are equal iff
whenever they are applied to equal arguments of type τ1, they yield equal
results of type τ2.

More formally, we make the following definitions. First, we define
equality of closed expressions of type τ as follows:

e ∼=exp e′ : τ iff e 7→∗ v⇔ e′ 7→∗ v′ andv ∼=val v′ : τ.

Notice that if e and e′ both diverge, then they are equal expressions in this
sense. For closed values, we define equality by induction on the structure
of monotypes:

v ∼=val v′ : bool iff v = v′ = true or v = v′ = false
v ∼=val v′ : int iff v = v′ = n for some n ≥ 0

v ∼=val v′ : τ1→τ2 iff v1
∼=val v′1 : τ1 implies v(v1) ∼=exp v′(v′1) : τ2

The following lemma states two important properties of this notion of
equality.

Lemma 20.5
1. Expression and value equivalence are reflexive, symmetric, and tran-

sitive.

2. Expression equivalence is a congruence: we may replace any sub-
expression of an expression e by an equivalent sub-expression to ob-
tain an equivalent expression.

So far we’ve considered only equality of closed expressions of monomor-
phic type. The definition is made so that it readily generalizes to the poly-
morphic case. The idea is that when we quantify over a type, we are not

WORKING DRAFT MARCH 9, 2005

20.3 Parametricity 165

able to say a priori what we mean by equality at that type, precisely be-
cause it is “unknown”. Therefore we also quantify over all possible notions
of equality to cover all possible interpretations of that type. Let us write
R : τ ↔ τ′ to indicate that R is a binary relation between values of type τ
and τ′.

Here is the definition of equality of polymorphic values:

v ∼=val v′ : ∀t(σ) iff for all τ and τ′, and all R : τ ↔ τ′, v [τ] ∼=exp v′ [τ′] : σ

where we take equality at the type variable t to be the relation R (i.e., v ∼=val
v′ : t iff v R v′).

There is one important proviso: when quantifying over relations, we
must restrict attention to what are called admissible relations, a sub-class
of relations that, in a suitable sense, respects computation. Most natural
choices of relation are admissible, but it is possible to contrive examples
that are not. The rough-and-ready rule is this: a relation is admissible iff
it is closed under “partial computation”. Evaluation of an expression e to
a value proceeds through a series of intermediate expressions e 7→ e1 7→
e2 7→ · · · en. The expressions ei may be thought of as “partial computations”
of e, stopping points along the way to the value of e. If a relation relates
corresponding partial computations of e and e′, then, to be admissible, it
must also relate e and e′ — it cannot relate all partial computations, and
then refuse to relate the complete expressions. We will not develop this
idea any further, since to do so would require the formalization of partial
computation. I hope that this informal discussion suffices to give the idea.

The following is Reynolds’ Parametricity Theorem:

Theorem 20.6 (Parametricity)
If e : σ is a closed expression, then e ∼=exp e : σ.

This may seem obvious, until you consider that the notion of equality be-
tween expressions of polymorphic type is very strong, requiring equiva-
lence under all possible relational interpretations of the quantified type.

Using the Parametricity Theorem we may prove a result we stated in-
formally above.

Theorem 20.7
If f : ∀t(t→t) is an interesting value, then f ∼=val id : ∀t(t→t), where id is
the polymorphic identity function.

Proof: Suppose that τ and τ′ are monotypes, and that R : τ ↔ τ′. We wish
to show that

f [τ] ∼=exp id [τ′] : t→t,

MARCH 9, 2005 WORKING DRAFT

166 20.3 Parametricity

where equality at type t is taken to be the relation R.
Since f (and id) are interesting, there exists values fτ and idτ′ such that

f [τ] 7→∗ fτ

and
id [τ′] 7→∗ idτ′ .

We wish to show that
fτ
∼=val idτ′ : t→t.

Suppose that v1
∼=val v′1 : t, which is to say v1 R v′1 since equality at type

t is taken to be the relation R. We are to show that

fτ(v1) ∼=exp idτ′(v′1) : t

By the assumption that f is interesting (and the fact that id is interesting),
there exists values v2 and v′2 such that

fτ(v1) 7→∗ v2

and
idτ′(v′1) 7→∗ v′2.

By the definition of id, it follows that v′2 = v′1 (it’s the identity function!).
We must show that v2 R v′1 to complete the proof.

Now define the relation R′ : τ ↔ τ to be the set { (v, v) | v R v′1 }.
Since f : ∀t(t→t), we have by the Parametricity Theorem that f ∼=val f :
∀t(t→t), where equality at type t is taken to be the relation R′. Since v1 R v′1,
we have by definition v1 R′ v1. Using the definition of equality of polymor-
phic type, it follows that

fτ(v1) ∼=exp idτ′(v1) : t.

Hence v2 R v′1, as required. �

You might reasonably wonder, at this point, what the relationship f ∼=val
id : ∀t(t→t) has to do with f ’s execution behavior. It is a general fact, which
we will not attempt to prove, that equivalence as we’ve defined it yields re-
sults about execution behavior. For example, if f : ∀t(t→t), we can show
that for every τ and every v : τ, f [τ](v) evaluates to v. By the preceding
theorem f ∼=val id : ∀t(t→t). Suppose that τ is some monotype and v : τ is
some closed value. Define the relation R : τ ↔ τ by

v1 R v2 iff v1 = v2 = v.

WORKING DRAFT MARCH 9, 2005

20.3 Parametricity 167

Then we have by the definition of equality for polymorphic values

f [τ](v) ∼=exp id [τ](v) : t,

where equality at t is taken to be the relation R. Since the right-hand side
terminates, so must the left-hand side, and both must yield values related
by R, which is to say that both sides must evaluate to v.

MARCH 9, 2005 WORKING DRAFT

168 20.3 Parametricity

WORKING DRAFT MARCH 9, 2005

Chapter 21

Data Abstraction

Data abstraction is perhaps the most fundamental technique for structur-
ing programs to ensure their robustness over time and to facilitate team
development. The fundamental idea of data abstraction is the separation
of the client from the implementor of the abstraction by an interface. The
interface is a form of “contract” between the client and implementor. It
specifies the operations that may be performed on values of the abstract
type by the client and, at the same time, imposes the obligation on the im-
plementor to provide these operations with the specified functionality. By
limiting the client’s view of the abstract type to a specified set of operations,
the interface protects the client from depending on the details of the imple-
mentation of the abstraction, most especially its representation in terms of
well-known constructs of the programming language. Doing so ensures
that the implementor is free to change the representation (and, correspond-
ingly, the implementation of the operations) of the abstract type without
affecting the behavior of a client of the abstraction.

Our intention is to develop a rigorous account of data abstraction in an
extension of PolyMinML with existential types. Existential types provide the
fundamental linguistic mechanisms for defining interfaces, implementing
them, and using the implementation in client code. Using this extension
of PolyMinML we will then develop a formal treatment of representation
independence based on Reynolds’s Parametricity Theorem for PolyMinML.
The representation independence theorem will then serve as the basis for
proving the correctness of abstract type implementations using bisimula-
tion relations.

169

170 21.1 Existential Types

21.1 Existential Types

21.1.1 Abstract Syntax

The syntax of PolyMinML is extended with the following constructs:

Polytypes σ : : = . . .
| ∃t(σ)

Expressions e : : = . . .
| pack τ with e as σ
| open e1 as t with x:σ in e2

Values v : : = . . .
| pack τ with v as σ

The polytype ∃t(σ) is called an existential type. An existential type is the in-
terface of an abstract type. An implementation of the existential type ∃t(σ) is
a package value of the form pack τ with v as ∃t(σ) consisting of a monotype
τ together with a value v of type {τ/t}σ. The monotype τ is the represen-
tation type of the implementation; the value v is the implementation of the
operations of the abstract type. A client makes use of an implementation
by opening it within a scope, written open ei as t with x:σ in ec, where ei is
an implementation of the interface ∃t(σ), and ec is the client code defined
in terms of an unknown type t (standing for the representation type) and
an unknown value x of type σ (standing for the unknown operations).

In an existential type ∃t(σ) the type variable t is bound in σ, and may be
renamed at will to satisfy uniqueness requirements. In an expression of the
form open ei as t with x:σ in ec the type variable t and the ordinary variable
x are bound in ec, and may also be renamed at will to satisfy non-occurrence
requirements. As we will see below, renaming of bound variables is crucial
for ensuring that an abstract type is “new” in the sense of being distinct
from any other type whenever it is opened for use in a scope. This is some-
times called generativity of abstract types, since each occurrence of open
“generates” a “new” type for use within the body of the client. In real-
ity this informal notion of generativity comes down to renaming of bound
variables to ensure their uniqueness in a context.

21.1.2 Correspondence With ML

To fix ideas, it is worthwhile to draw analogies between the present formal-
ism and (some aspects of) the Standard ML module system. We have the
following correspondences:

WORKING DRAFT MARCH 9, 2005

21.1 Existential Types 171

PolyMinML + Existentials Standard ML
Existential type Signature
Package Structure, with opaque ascription
Opening a package open declaration

Here is an example of these correspondences in action. In the sequel we
will use ML-like notation with the understanding that it is to be interpreted
in PolyMinML in the following fashion.

Here is an ML signature for a persistent representation of queues:

signature QUEUE =
sig
type queue
val empty : queue
val insert : int * queue -> queue
val remove : queue -> int * queue

end

This signature is deliberately stripped down to simplify the development.
In particular we leave undefined the meaning of remove on an empty queue.

The corresponding existential type is σq : = ∃q(τq), where

τq : = q*((int*q)→q)*(q→(int*q))

That is, the operations of the abstraction consist of a three-tuple of values,
one for the empty queue, one for the insert function, and one for the remove
function.

Here is a straightforward implementation of the QUEUE interface in ML:

structure QL :> QUEUE =
struct
type queue = int list
val empty = nil
fun insert (x, xs) = x::xs
fun remove xs =

let val (x,xs’) = rev xs in (x, rev xs’) end
end

A queue is a list in reverse enqueue order — the last element to be en-
queued is at the head of the list. Notice that we use opaque signature ascrip-
tion to ensure that the type queue is hidden from the client!

The corresponding package is eq : = pack int list with vq as σq, where

vq : = (nil,(vi,vr))

MARCH 9, 2005 WORKING DRAFT

172 21.1 Existential Types

where vi and vr are the obvious function abstractions corresponding to the
ML code given above.

Finally, a client of an abstraction in ML might typically open it within a
scope:

local
open QL

in
...

end

This corresponds to writing

open QL as q with <n,i,r> : τq in ... end

in the existential type formalism, using pattern matching syntax for tuples.

21.1.3 Static Semantics

The static semantics is an extension of that of PolyMinML with rules gov-
erning the new constructs. The rule of formation for existential types is as
follows:

∆ ∪ { t } ` σ ok t /∈ ∆
∆ ` ∃t(σ) ok (21.1)

The requirement t /∈ ∆ may always be met by renaming the bound vari-
able.

The typing rule for packages is as follows:

∆ ` τ ok ∆ ` ∃t(σ) ok Γ `∆ e : {τ/t}σ
Γ `∆ pack τ with e as ∃t(σ) (21.2)

The implementation, e, of the operations “knows” the representation type,
τ, of the ADT.

The typing rule for opening a package is as follows:

∆ ` τc ok Γ, x:σ `∆∪{ t } ec : τc Γ `∆ ei : ∃t(σ) t /∈ ∆

Γ `∆ open ei as t with x:σ in ec : τc (21.3)

This is a complex rule, so study it carefully! Two things to note:

1. The type of the client, τc, must not involve the abstract type t. This
prevents the client from attempting to export a value of the abstract
type outside of the scope of its definition.

WORKING DRAFT MARCH 9, 2005

21.1 Existential Types 173

2. The body of the client, ec, is type checked without knowledge of the
representation type, t. The client is, in effect, polymorphic in t.

As usual, the condition t /∈ ∆ can always be met by renaming the bound
variable t of the open expression to ensure that it is distinct from all other
active types ∆. It is in this sense that abstract types are “new”! Whenever
a client opens a package, it introduces a local name for the representation
type, which is bound within the body of the client. By our general con-
ventions on bound variables, this local name may be chosen to ensure that
it is distinct from any other such local name that may be in scope, which
ensures that the “new” type is different from any other type currently in
scope. At an informal level this ensures that the representation type is
“held abstract”; we will make this intuition more precise in Section 21.2
below.

21.1.4 Dynamic Semantics

We will use structured operational semantics (SOS) to specify the dynamic
semantics of existential types. Here is the rule for evaluating package ex-
pressions:

e 7→ e′

pack τ with e as σ 7→ pack τ with e′ as σ (21.4)

Opening a package begins by evaluating the package expressions:

ei 7→ e′i
open ei as t with x:σ in ec 7→ open e′i as t with x:σ in ec (21.5)

Once the package is fully evaluated, we bind t to the representation type
and x to the implementation of the operations within the client code:

(σ = ∃t(σ′))
open (pack τ with v as σ) as t with x:σ′ in ec 7→ {τ, v/t, x}ec (21.6)

Observe that there are no abstract types at run time! During execution of
the client, the representation type is fully exposed. It is held abstract only
during type checking to ensure that the client does not (accidentally or ma-
liciously) depend on the implementation details of the abstraction. Once
the program type checks there is no longer any need to enforce abstraction.
The dynamic semantics reflects this intuition directly.

MARCH 9, 2005 WORKING DRAFT

174 21.2 Representation Independence

21.1.5 Safety

The safety of the extension is stated and proved as usual. The argument is
a simple extension of that used for PolyMinML to the new constructs.

Theorem 21.1 (Preservation)
If e : τ and e 7→ e′, then e′ : τ.

Lemma 21.2 (Canonical Forms)
If v : ∃t(σ) is a value, then v = pack τ with v′ as ∃t(σ) for some monotype
τ and some value v′ : {τ/t}σ.

Theorem 21.3 (Progress)
If e : τ then either e value or there exists e′ such that e 7→ e′.

21.2 Representation Independence

Parametricity is the essence of representation independence. The typing
rules for open given above ensure that the client of an abstract type is poly-
morphic in the representation type. According to our informal understand-
ing of parametricity this means that the client’s behavior is in some sense
“independent” of the representation type.

More formally, we say that an (admissible) relation R : τ1 ↔ τ2 is a
bisimulation between the packages

pack τ1 with v1 as ∃t(σ)

and
pack τ2 with v2 as ∃t(σ)

of type ∃t(σ) iff v1
∼=val v2 : σ, taking equality at type t to be the relation

R. The reason for calling such a relation R a bisimulation will become ap-
parent shortly. Two packages are said to be bisimilar whenever there is a
bisimulation between them.

Since the client ec of a data abstraction of type ∃t(σ) is essentially a
polymorphic function of type ∀t(σ→τc), where t /∈ FTV(τc), it follows from
the Parametricity Theorem that

{τ1, v1/t, x}ec ∼=exp {τ2, v2/t, x}ec : τc

whenever R is such a bisimulation. Consequently,

open e1 as t with x:σ in ec ∼=exp open e2 as t with x:σ in ec : τc.

WORKING DRAFT MARCH 9, 2005

21.2 Representation Independence 175

That is, the two implementations are indistinguishable by any client of the
abstraction, and hence may be regarded as equivalent. This is called Repre-
sentation Independence; it is merely a restatement of the Parametricity Theo-
rem in the context of existential types.

This observation licenses the following technique for proving the cor-
rectness of an ADT implementation. Suppose that we have an implemen-
tation of an abstract type ∃t(σ) that is “clever” in some way. We wish to
show that it is a correct implementation of the abstraction. Let us therefore
call it a candidate implementation. The Representation Theorem suggests
a technique for proving the candidate correct. First, we define a reference
implementation of the same abstract type that is “obviously correct”. Then
we establish that the reference implementation and the candidate imple-
mentation are bisimilar. Consequently, they are equivalent, which is to say
that the candidate is “equally correct as” the reference implementation.

Returning to the queues example, let us take as a reference implemen-
tation the package determined by representing queues as lists. As a candi-
date implementation we take the package corresponding to the following
ML code:

structure QFB :> QUEUE =
struct
type queue = int list * int list
val empty = (nil, nil)
fun insert (x, (bs, fs)) = (x::bs, fs)
fun remove (bs, nil) = remove (nil, rev bs)

| remove (bs, f::fs) = (f, (bs, fs))
end

We will show that QL and QFB are bisimilar, and therefore indistinguishable
by any client.

Define the relation R : int list↔ int list*int list as follows:

R = { (l, (b, f))) | l ∼=val b@rev(f) }

We will show that R is a bisimulation by showing that implementations of
empty, insert, and remove determined by the structures QL and QFB are
equivalent relative to R.

To do so, we will establish the following facts:

1. QL.empty R QFB.empty.

MARCH 9, 2005 WORKING DRAFT

176 21.2 Representation Independence

2. Assuming that m ∼=val n : int and l R (b, f), show that

QL.insert((m,l)) R QFB.insert((n,(b, f))).

3. Assuming that l R (b, f), show that

QL.remove(l) ∼=exp QFB.remove((b, f)) : int*t,

taking t equality to be the relation R.

Observe that the latter two statements amount to the assertion that the op-
erations preserve the relation R — they map related input queues to related
output queues. It is in this sense that we say that R is a bisimulation, for
we are showing that the operations from QL simulate, and are simulated by,
the operations from QFB, up to the relationship R between their representa-
tions.

The proofs of these facts are relatively straightforward, given some rel-
atively obvious lemmas about expression equivalence.

1. To show that QL.empty R QFB.empty, it suffices to show that

nil@rev(nil) ∼=exp nil : int list,

which is obvious from the definitions of append and reverse.

2. For insert, we assume that m ∼=val n : int and l R (b, f), and prove
that

QL.insert(m, l) R QFB.insert(n, (b, f)).

By the definition of QL.insert, the left-hand side is equivalent to
m::l, and by the definition of QR.insert, the right-hand side is equiv-
alent to (n::b, f). It suffices to show that

m::l ∼=exp (n::b)@rev(f) : int list.

Calculating, we obtain

(n::b)@rev(f) ∼=exp n::(b@rev(f))
∼=exp n::l

since l ∼=exp b@rev(f). Since m ∼=val n : int, it follows that m = n,
which completes the proof.

WORKING DRAFT MARCH 9, 2005

21.2 Representation Independence 177

3. For remove, we assume that l is related by R to (b, f), which is to say
that l ∼=exp b@rev(f). We are to show

QL.remove(l) ∼=exp QFB.remove((b, f)) : int*t,

taking t equality to be the relation R. Assuming that the queue is non-
empty, so that the remove is defined, we have l ∼=exp l′@[m] for some
l′ and m. We proceed by cases according to whether or not f is empty.
If f is non-empty, then f ∼=exp n:: f ′ for some n and f ′. Then by the
definition of QFB.remove,

QFB.remove((b, f)) ∼=exp (n,(b, f ′)) : int*t,

relative to R. We must show that

(m,l′) ∼=exp (n,(b, f ′)) : int*t,

relative to R. This means that we must show that m = n and l′ ∼=exp
b@rev(f ′) : int list.

Calculating from our assumptions,

l = l′@[m]
= b@rev(f)
= b@rev(n:: f ′)
= b@(rev(f ′)@[n])
= (b@rev(f ′))@[n]

From this the result follows. Finally, if f is empty, then b ∼=exp b′@[n]
for some b′ and n. But then rev(b) ∼=exp n::rev(b′), which reduces
to the case for f non-empty.

This completes the proof — by Representation Independence the refer-
ence and candidate implementations are equivalent.

MARCH 9, 2005 WORKING DRAFT

178 21.2 Representation Independence

WORKING DRAFT MARCH 9, 2005

Part VIII

Lazy Evaluation

179

Chapter 22

Lazy Types

The language MinML is an example of an eager, or strict, functional lan-
guage. Such languages are characterized by two, separable features of their
operational semantics.

1. Call-by-value. The argument to a function is evaluated before control
is passed to the body of the function. Function parameters are only
ever bound to values.

2. Strict data types. A value of a data type is constructed, possibly from
other values, at the point at which the constructor is used.

Since most familiar languages are eager, this might seem to be the most
natural, or even the only possible, choice. The subject of this chapter is
to explore an alternative, lazy evaluation, that seeks to delay evaluation of
expressions as long as possible, until their value is actually required to com-
plete a computation. This strategy is called “lazy” because we perform only
the evaluation that is actually required to complete a computation. If the
value of an expression is never required, it is never (needlessly) computed.
Moreover, the lazy evaluation strategy memoizes delayed computations so
that they are never performed more than once. Once (if ever) the value
has been determined, it is stored away to be used in case the value is ever
needed again.

Lazy languages are characterized by the following features of their op-
erational semantics.

1. Call-by-need. The argument to a function is passed to the body of the
function without evaluating it. The argument is only evaluated if it
is needed in the computation, and then its value is saved for future
reference in case it is needed again.

181

182

2. Lazy data types. An expression yielding a value of a data type is not
evaluated until its value is actually required to complete a computa-
tion. The value, once obtained, is saved in case it is needed again.

While it might seem, at first glance, that lazy evaluation would lead to
more efficient programs (by avoiding unnecessary work), it is not at all ob-
vious that this is the case. In fact it’s not the case. The main issue is that
memoization is costly, because of the bookkeeping overhead required to
manage the transition from unevaluated expression to evaluated value. A
delayed computation must store the code that determines the value of an
expression (should it be required), together with some means of triggering
its evaluation once it is required. If the value is ever obtained, the value de-
termined by the code must be stored away, and we must somehow ensure
that this value is returned on subsequent access. This can slow down many
programs. For example, if we know that a function will inspect the value
of every element of a list, it is much more efficient to simply evaluate these
elements when the list is created, rather than fruitlessly delaying the com-
putation of each element, only to have it be required eventually anyway.
Strictness analysis is used in an attempt to discover such cases, so that the
overhead can be eliminated, but in general it is impossible (for decidability
reasons) to determine completely and accurately whether the value of an
expression is surely needed in a given program.

The real utility of lazy evaluation lies not in the possible efficiency gains
it may afford in some circumstances, but rather in a substantial increase
in expressive power that it brings to a language. By delaying evaluation
of an expression until it is needed, we can naturally model situations in
which the value does not even exist until it is required. A typical example
is interactive input. The user can be modelled as a “delayed computation”
that produces its values (i.e., enters its input) only upon demand, not all
at once before the program begins execution. Lazy evaluation models this
scenario quite precisely.

Another example of the use of lazy evaluation is in the representation
of infinite data structures, such as the sequence of all natural numbers. Ob-
viously we cannot hope to compute the entire sequence at the time that it
is created. Fortunately, only a finite initial segment of the sequence is ever
needed to complete execution of a program. Using lazy evaluation we can
compute this initial segment on demand, avoiding the need to compute the
part we do not require.

Lazy evaluation is an important and useful concept to have at your dis-
posal. The question that we shall explore in this chapter is how best to

WORKING DRAFT MARCH 9, 2005

22.1 Lazy Types 183

provide such a feature in a programming language. Historically, there has
been a division between eager and lazy languages, exemplified by ML and
Haskell, respectively, which impose one or the other evaluation strategy
globally, leaving no room for combining the best of both approaches.

More recently, it has come to be recognized by both communities that
it is important to support both forms of evaluation. This has led to two,
distinct approaches to supporting laziness:

1. Lazy types in a strict language. The idea is to add support for lazy
data types to a strict language by providing a means of defining such
types, and for creating and destroying values of these types. Con-
structors are implicitly memoized to avoid redundant re-computation
of expressions. The call-by-value evaluation strategy for functions is
maintained.

2. Strict types in a lazy language. The idea is to add support for construc-
tors that forcibly evaluate their arguments, avoiding the overhead of
managing the bookkeeping associated with delayed, memoized com-
putation. The call-by-need evaluation strategy for function calls is
maintained.

We will explore both alternatives.

22.1 Lazy Types

We will first explore the addition of lazy data types to a strict functional
language. We will focus on a specific example, the type of lazy lists. For
the sake of simplicity we’ll consider only lazy lists of integers, but noth-
ing hinges on this assumption.1 For the rest of this section we’ll drop the
modifier “lazy”, and just write “list”, instead of “lazy list”.

The key idea is to treat a computation of a list element as a value of list
type, where a computation is simply a memoized, delayed evaluation of
an expression. By admitting computations as values we can support lazy
lists in a strict language. In particular the call-by-value evaluation strat-
egy is not disrupted. Passing a lazy list to a function does not cause the
delayed computation to be evaluated; rather, it is passed in delayed form to
the function as a computation of that type. Pattern matching on a value of
list type requires that the computation be forced to expose the underlying

1It simply allows us to avoid forward-referencing the concept of polymorphism.

MARCH 9, 2005 WORKING DRAFT

184 22.1 Lazy Types

list element, which is then analyzed and deconstructed. It is very impor-
tant to keep in mind the distinction between evaluation of an expression of
list type, and forcing a value of list type. The former simply yields a com-
putation as value, whereas the latter evaluates and memoizes the delayed
computation.

One consequence of laziness is that the tail of a (non-empty) lazy list,
need not “exist” at the time the non-empty list is created. Being itself a lazy
list, the tail need only be produced “on demand”, by forcing a computation.
This is the key to using lazy lists to model interactive input and to represent
infinite data structures. For example, we might define the infinite list of
natural numbers by the equation

nats = iterate successor 0

where the function iterate is defined (informally) by the equation

iterate f x = lcons (x, iterate f (f x)),

where lcons creates a non-empty lazy list with the specified head and tail.
We must think of nats as being created on demand. Successive elements of
nats are created by succcessive recursive calls to iterate, which are only
made as we explore the list.

Another approach to defining the infinite list of natural numbers is to
make use of self-reference, as illustrated by the following example. The in-
finite sequence of natural numbers may be thought as a solution to the
recursion equation

nats = lcons (0, lmap successor nats),

where successor and lmap are the evident functions. Here again we must
think of nats as being created on demand. Successive elements of nats
are created as follows. When we inspect the first element of nats, it is
immediately revealed to be 0, as specified. When we inspect the second
element, we apply lmap successor to nats, then inspect the head element
of the result. This is successor(0), or 1; it’s tail is the result of mapping
successor over that list — that is, the result of adding 2 to every element
of the original list, and so on.

WORKING DRAFT MARCH 9, 2005

22.1 Lazy Types 185

22.1.1 Lazy Lists in an Eager Language

The additional constructs required to add lazy lists to MinML are given by
the following grammar:

Types τ : : = llist
Expressions e : : = lnil | lcons(e1,e2) | lazy x is e |

lcase e of lnil => e0 | lcons(x,y) => e1

In the expression lazy x is e the variable x is bound within e; in the ex-
pression lcase e of lnil => e0 | lcons(x,y) => e1 the variables x and y are
bound in e1. As usual we identify expressions that differ only in the names
of their bound variables.

Lazy lists may be defined either by explicit construction — using lnil
and lcons — or by a recursion equation — using lazy x is e, where e is
a lazy list expression. The idea is that the variable x stands for the list
constructed by e, and may be used within e to refer to the list itself. For
example, the infinite list of 1’s is given by the expression

lazy x is lcons(1,x).

More interesting examples can be expressed using recursive definitions
such as the following definition of the list of all natural numbers:

lazy x is lcons (1, lmap successor x).

To complete this definition we must define lmap. This raises a subtle issue
that is very easy to overlook. A natural choice is as follows:

fun map(f:int->int):llist->llist is
fun lmapf(l:llist) is
lcase l

of lnil => lnil
| lcons(x,y) => lcons (f x, lmapf y).

Unfortunately this definition doesn’t work as expected! Suppose that f
is a function of type int->int and that l is a non-empty lazy list. Con-
sider what happens when we evaluate the expression map f l. The lcase
forces evaluation of l, which leads to a recursive call to the internal func-
tion lmapf, which forces the evaluation of the tail of l, and so on. If l is an
infinite list, the application diverges.

The problem is that the result of a call to map f l should be represented
by a computation of a list, in which subsequent calls to map on the tail(s) of
that list are delayed until they are needed. This is achieved by the following
coding trick:

MARCH 9, 2005 WORKING DRAFT

186 22.1 Lazy Types

fun map(f:int->int):llist->llist is
fun lmapf(l:llist) is

lazy is
lcase l

of lnil => lnil
| lcons(x,y) => lcons (f x, lmapf y).

All we have done is to interpose a lazy constructor (with no name, indi-
cated by writing an underscore) to ensure that the evaluation of the lcase
expression is deferred until it is needed. Check for yourself that map f l
terminates even if l is an infinite list, precisely because of the insertion of
the use of lazy in the body of lmapf. This usage is so idiomatic that we
sometimes write instead the following definition:

fun map(f:int->int):llist->llist is
fun lazy lmapf(l:llist) is

lcase l
of lnil => lnil
| lcons(x,y) => lcons (f x, lmapf y).

The keyword lazy on the inner fun binding ensures that the body is eval-
uated lazily.

Exercise 22.1
Give a formal definition of nats in terms of iterate according to the in-
formal equation given earlier. You will need to make use of lazy function
definitions.

The static semantics of these lazy list expressions is given by the follow-
ing typing rules:

Γ ` lnil : llist (22.1)

Γ ` e1 : int Γ ` e2 : llist
Γ ` lcons(e1,e2) : llist (22.2)

Γ, x:llist ` e : llist
Γ ` lazy x is e : llist (22.3)

Γ ` e : llist Γ ` e0 : τ Γ, x:int, y:llist ` e1 : τ

Γ ` lcase e of lnil => e0 | lcons(x,y) => e1 : τ (22.4)

WORKING DRAFT MARCH 9, 2005

22.1 Lazy Types 187

In Rule 22.2 the body, e, of the lazy list expression lazy x is e is type checked
under the assumption that x is a lazy list.

We will consider two forms of dynamic semantics for lazy lists. The
first, which exposes the “evaluate on demand” character of lazy evaluation,
but neglects the “evaluate at most once” aspect, is given as follows. First,
we regard lnil, lcons(e1,e2), and lazy x is e to be values, independently
of whether their constituent expressions are values. Second, we evaluate
case analyses according to the following transition rules:

lcase lnil of lnil => e0 | lcons(x,y) => e1 7→ e0 (22.5)

lcase lcons(eh,et) of lnil => e0 | lcons(x,y) => e1
7→

let x:int be eh in let y:llist be et in e1

(22.6)

lcase (lazy z is e) of lnil => e0 | lcons(x,y) => e1
7→

lcase {lazy z is e/z}e of lnil => e0 | lcons(x,y) => e1

(22.7)

e 7→ e′

lcase e of lnil => e0 | lcons(x,y) => e1
7→

lcase e′ of lnil => e0 | lcons(x,y) => e1

(22.8)

Observe that lazy list expressions are evaluated only when they appear as
the subject of a case analysis expression. In the case of a non-empty list
evaluation proceeds by first evaluating the head and tail of the list, then
continuing with the appropriate clause. In the case of a recursively-defined
list the expression is “unrolled” once before continuing analysis. This ex-
poses the outermost structure of the list for further analysis.

Exercise 22.2
Define the functions lhd:llist->int and ltl:llist->llist. Trace the
evaluation of lhd(ltl(...(ltl(nats))...)), with n iterations of ltl, and
verify that it evaluates to the number n.

Exercise 22.3
State and prove the soundness of the non-memoizing dynamic semantics
with respect to the static semantics given above.

MARCH 9, 2005 WORKING DRAFT

188 22.1 Lazy Types

Consider the lazy list value v = lazy x is x. It is easy to verify that e
is well-typed, with type llist. It is also easy to see that performing a case
analysis on v leads to an infinite regress, since {v/x}x = v. The value v is
an example of a “black hole”, a value that, when forced, will lead back to
the value itself, and, moreover, is easily seen to lead to divergence. Another
example of a black hole is the value

lazy x is (lmap succ x)

that, when forced, maps the successor function over itself.
What is it that makes the recursive list

lazy nats is lcons (0, lmap succ nats)

well-defined? This expression is not a black hole because the occurrence of
nats in the body of the recursive list expression is “guarded” by the call to
lcons.

Exercise 22.4
Develop a type discipline that rules out black holes as ill-formed. Hint:
Define a judgement Γ ` e ↓ x, which means that x is guarded within e.
Ensure that lazy x is e is well-typed only if x is guarded within e.

Exercise 22.5
It is often convenient to define several lists simultaneously by mutual re-
cursion. Generalize lazy x is e to admit simultaneous recursive definition
of several lists at once.

The foregoing dynamic semantics neglects the “evaluate at most once”
aspect of laziness — if a lazy list expression is ever evaluated, its value
should be stored so that re-evaluation is avoided should it ever be analyzed
again. This can be modeled by introducing a memory that holds delayed
computations whenever they are created. The memory is updated if (and
only if) the value of that computation is ever required. Thus no evaluation
is ever repeated, and some pending evaluations may never occur at all.
This is called memoization.

The memoizing dynamic semantics is specified by an abstract machine
with states of the form (M, e), where M is a memory, a finite mapping of
variables to values, and e is an expression whose free variables are all in
the domain of M. Free variables are used to stand for the values of list
expressions; they are essentially pointers into the memory, which stores
the value of the expression. We therefore regard free variables as values;
these are in fact the only values of list type in this semantics.

WORKING DRAFT MARCH 9, 2005

22.1 Lazy Types 189

The transition rules for the memoizing dynamic semantics are as fol-
lows:

(x /∈ dom(M))
(M, lazy z is e) 7→ (M[x=lazy z is e], x) (22.9)

(x /∈ dom(M))
(M, lnil) 7→ (M[x=lnil], x) (22.10)

(x /∈ dom(M))
(M, lcons(e1,e2)) 7→ (M[x=lcons(e1,e2)], x) (22.11)

(M(z) = lnil)
(M, lcase z of lnil => e0 | lcons(x,y) => e1)

7→
(M, e0)

(22.12)

(M(z) = lcons(vh,vt))
(M, lcase z of lnil => e0 | lcons(x,y) => e1) 7→ (M, {vh, vt/x, y}e1)

(22.13)

(M(z) = lcons(eh,et)) (M[z=•], eh) 7→∗ (M′, vh) (M′[z=•], et) 7→∗ (M′′, vt)
(M, lcase z of lnil => e0 | lcons(x,y) => e1)

7→
(M′′[z=lcons(vh,vt)], {vh, vt/x, y}e1)

(22.14)

(M(z) = lazy z is e) (M[z=•], e) 7→∗ (M′, v)
(M, lcase z of lnil => e0 | lcons(x,y) => e1)

7→
(M′[z=v], lcase v of lnil => e0 | lcons(x,y) => e1)

(22.15)

(M, e) 7→ (M′, e′)
(M, lcase e of lnil => e0 | lcons(x,y) => e1)

7→
(M′, lcase e′ of lnil => e0 | lcons(x,y) => e1)

(22.16)

Warning: These rules are very subtle! Here are some salient points to
keep in mind when studying them.

First, observe that the list-forming constructs are no longer values, but
instead have evaluation rules associated with them. These rules simply

MARCH 9, 2005 WORKING DRAFT

190 22.1 Lazy Types

store a pending computation in the memory and return a “pointer” to it
as result. Thus a value of lazy list type is always a variable referring to a
pending computation in the store.

Second, observe that the rules for case analysis inspect the contents of
memory to determine how to proceed. The case for lnil is entirely straight-
forward, but the other two cases are more complex. Suppose that location
z contains lcons(e1,e2). First, we check whether we’ve already evaluated
this list cell. If so, we continue by evaluating e1, with x and y replaced
by the previously-computed values of the head and tail of the list. Other-
wise, the time has come to evaluate this cell. We evaluate the head and tail
completely to obtain their values, then continue by substituting these values
for the appropriate variables in the clause for non-empty lists. Moreover,
we update the memory to record the values of the head and tail of the list
so that subsequent accesses avoid re-evaluation. Similarly, if z contains a
recursively-defined list, we fully evaluate its body, continuing with the re-
sult and updating the memory to reflect the result of evaluation.

Third, we explicitly check for “black holes” by ensuring that a run-time
error occurs whenever they are encountered. This is achieved by temporar-
ily setting the contents of a list cell to the special “black hole” symbol,
•, during evaluation of a list expression, thereby ensuring the evaluation
“gets stuck” (i.e., incurs a run-time error) in the case that evaluation of a list
expression requires the value of the list itself.

Exercise 22.6
Convince yourself that the replacement of z by • in the second premise of
Rule 22.14 is redundant — the location z is already guaranteed to be bound
to •.

Exercise 22.7
State and prove the soundness of the memoizing dynamic semantics with
respect to the static semantics given above. Be certain that your treatment
of the memory takes account of cyclic dependencies.

Exercise 22.8
Give an evaluation semantics for memoized lazy lists by a set of rules for
deriving judgements of the form (M, e) ⇓ (M′, v).

Exercise 22.9
Consider once again the augmented static semantics in which black holes
are ruled out. Prove that evaluation never “gets stuck” by accessing a cell
that contains the black hole symbol.

WORKING DRAFT MARCH 9, 2005

22.1 Lazy Types 191

Exercise 22.10
Consider again the definition of the natural numbers as the lazy list

lazy nats is (lcons (0, lmap succ nats)).

Prove that, for the non-memoized semantics, that accessing the nth element
requires O(n2) time, whereas in the memoized semantics the same compu-
tation requires O(n) time. This shows that memoization can improve the
asymptotic complexity of an algorithm (not merely lower the constant fac-
tors).

22.1.2 Delayed Evaluation and Lazy Data Structures

Another approach to lazy evaluation in the context of a strict language is
to isolate the notion of a delayed computation as a separate concept. The
crucial idea is that a delayed computation is a value that can, for example,
appear in a component of a data structure. Evaluation of a delayed com-
putation occurs as a result of an explicit force operation. Computations are
implicitly memoized in the sense that the first time it is forced, its value is
stored and returned immediately should it ever be forced again. Lazy data
structures can then be built up using standard means, but with judicious
use of delayed computations to ensure laziness.

Since the technical details of delayed computation are very similar to
those just outlined for lazy lists, we will go through them only very briefly.
Here is a syntactic extension to MinML that supports delayed evaluation:

Types τ : : = τ computation
Expressions e : : = delay x is e | eval e1 as x in e2

In the expression delay x is e the variable x is bound within e, and in the
expression eval e1 as x in e2 the variable x is bound within e2. The ex-
pression delay x is e both delays evaluation of e and gives it a name that
can be used within e to stand for the computation itself. The expression
eval e1 as x in e2 forces the evaluation of the delayed computation e1, binds
that value to x, and continues by evaluating e2.

The static semantics is given by the following rules:

Γ ` e : τ
Γ ` delay x is e : τ computation (22.17)

Γ ` e1 : τ1 computation Γ, x:τ1 ` e2 : τ2

Γ ` eval e1 as x in e2 : τ2 (22.18)

MARCH 9, 2005 WORKING DRAFT

192 22.1 Lazy Types

A memoizing dynamic semantics for computations is given as follows.
We admit, as before, variables as values; they serve as references to memo
cells that contain delayed computations. The evaluation rules are as fol-
lows:

(x /∈ dom(M))
(M, delay x is e) 7→ (M[x=delay x is e], x) (22.19)

(M(z) = delay z is e) (M[z=•], e) 7→∗ (M′, v)
(M, eval z as x in e) 7→ (M′[z=v], {v/x}e) (22.20)

(M(z) = v)
(M, eval z as x in e) 7→ (M′, {v/x}e) (22.21)

(M, e1) 7→ (M′, e′1)
(M, eval e1 as x in e2) 7→ (M′, eval e′1 as x in e2) (22.22)

Exercise 22.11
State and prove the soundness of this extension to MinML.

One advantage of such a type of memoized, delayed computations is
that it isolates the machinery of lazy evaluation into a single type construc-
tor that can be used to define many different lazy data structures. For ex-
ample, the type llist of lazy lists may be defined to be the type lcell
computation, where lcell has the following constructors and destructors:

Γ ` cnil : lcell (22.23)

Γ ` eh : int Γ ` et : llist
Γ ` ccons(eh,et) : lcell (22.24)

Γ ` e : lcell Γ ` en : τ Γ, x:int, y:llist ` ec : τ

Γ ` ccase e of cnil => en | ccons(x, y)=> ec : τ (22.25)

Observe that the “tail” of a ccons is of type llist, not lcell. Using these
primitives we may define the lazy list constructors as follows:

WORKING DRAFT MARCH 9, 2005

22.1 Lazy Types 193

lnil = lazy is cnil

lcons(eh,et) = lazy is ccons(eh, et)

lcase e of nil => en | cons(x, y) => ec =
force z=e in
case z of cnil => en | ccons(x,y) => ec

Observe that case analysis on a lazy list forces the computation of that list,
then analyzes the form of the outermost lazy list cell.

This “two-stage” construction of lazy lists in terms of lazy cells is often
short-circuited by simply identifying llist with lcell. However, this is a
mistake! The reason is that according to this definition every lazy list ex-
pression must immediately determine whether the list is empty, and, if not,
must determine its first element. But this conflicts with the “computation
on demand” interpretation of laziness, according to which a lazy list might
not even have a first element at the time that the list is defined, but only at
the time that the code inspects it. It is therefore imperative to distinguish,
as we have done, between the type llist of lazy lists (delayed computa-
tions of cells) and the type lcell of lazy cells (which specify emptiness and
define the first element of non-empty lists).

MARCH 9, 2005 WORKING DRAFT

194 22.1 Lazy Types

WORKING DRAFT MARCH 9, 2005

Chapter 23

Lazy Languages

So far we’ve been considering the addition of lazy types to eager languages.
Now we’ll consider the alternative, the notion of a lazy lanuage and, briefly,
the addition of eager types to a lazy language.

As we said in the introduction the main features of a lazy language are
the call-by-need argument-passing discipline together with lazy value con-
structors that construct values of a type from delayed computations. Under
call-by-value the arguments to functions and constructors are evaluated
before the function is called or the constructor is applied. Variables are
only ever bound to fully-evaluated expressions, or values, and construc-
tors build values out of other values. Under call-by-need arguments are
passed to functions in delayed, memoized form, without evaluating them
until they are needed. Moreover, value constructors build delayed, memo-
ized computations out of other delayed, memoized computations, without
evaluation. Variables are, in general, bound to pending computations that
are only forced when (and if) that value is required. Once forced, the bind-
ing is updated to record the computed value, should it ever be required
again.

The interesting thing is that the static typing rules for the lazy variant of
MinML are exactly the same as those for the eager version. What is differ-
ent is how those types are interpreted. In an eager language values of type
int are integer values (i.e., numbers); in a lazy language they are integer
computations, some of which might not even terminate when evaluated.
Similarly, in an eager language values of list type are finite sequences of
values of the element type; in a lazy language values of list type are com-
putations of such sequences, which need not be finite. And so on. The
important point is that the types have different meanings in lazy languages

195

196

than they do in strict languages.
One symptom of this difference is that lazy languages are very liberal in

admitting recursive definitions compared to eager languages. In an eager
language it makes no sense to admit recursive definitions such as

val x : int = 1+x

or

val x : int list = cons (1, x).

Roughly speaking, neither of these recursion equations has a solution. There
is no integer value x satisfying the equation x = 1 + x, nor is there any finite
list satisfying the equation x = cons(1,x).

However, as we’ve already seen, equations such as

val x : int delayed = delay (1 + x)

and

val x : int list delayed = delay (lcons (1, x))

do make sense, precisely because they define recursive computations, rather
than values. The first example defines a computation of an integer that,
when forced, diverges; the second defines a computation of a list that, when
forced, computes a non-empty list with 1 as first element and the list itself
as tail.

In a lazy language every expression stands for a computation, so it is
always sensible to make a recursive definition such as

val rec x : int = 1+x.

Syntactically this looks like the inadmissible definition discussed above,
but, when taken in the context of a lazy interpretation, it makes perfect
sense as a definition of a recursive computation — the value of x is the
divergent computation of an integer.

The downside of admitting such a liberal treatment of computations is
that it leaves no room in the language for ordinary values! Everything’s
a computation, with values emerging as those computations that happen
to have a trivial evaluation (e.g., numerals are trivial computations in the
sense that no work is required to evaluate them). This is often touted as
an advantage of lazy languages — the “freedom” to ignore whether some-
thing is a value or not. But this appearance of freedom is really bondage.
By admitting only computations, you are deprived of the ability to work

WORKING DRAFT MARCH 9, 2005

197

with plain values. For example, lazy languages do not have a type of nat-
ural numbers, but rather only a type of computations of natural numbers.
Consequently, elementary programming techniques such as definition by
mathematical induction are precluded. The baby’s been thrown out with
the bathwater.

In recognition of this most lazy languages now admit eager types as
well as lazy types, moving them closer in spirit to eager languages that
admit lazy types, but biased in the opposite direction. This is achieved in
a somewhat unsatisfactory manner, by relying on data abstraction mecha-
nisms to ensure that the only values of a type are those that are generated
by specified strict functions (those that evaluate their arguments). The rea-
son it is unsatisfactory is that this approach merely limits the possible set of
computations of a given type, but still admits, for example, the undefined
computation as an element of every type.

23.0.3 Call-by-Name and Call-by-Need

To model lazy languages we simply extend MinML with an additional con-
struct for recursively-defined computations, written rec x:τ is e. The vari-
able x is bound in e, and may be renamed at will. Recursive computations
are governed by the following typing rule:

Γ, x:τ ` e : τ

Γ ` rec x:τ is e : τ (23.1)

In addition we replace the recursive function expression fun f (x:τ1):τ2 is e
with the non-recursive form fn τ:x in e, since the former may be defined by
the expression

rec f:τ1→τ2 is fn τ1:x in e.

As before, it is simpler to start with a non-memoizing dynamic seman-
tics to better expose the core ideas. We’ll work with core MinML enriched
with recursive computations. Closed values are precisely as for the eager
case, as are nearly all of the evaluation rules. The only exception is the rule
for function application, which is as follows:

fn τ:x in e(e′) 7→ {fn τ:x in e, e′/x}e (23.2)

This is known as the call-by-name1 rule, according to which arguments are

1The terminology is well-established, but not especially descriptive. As near as I can tell
the idea is that we pass the “name” of the computation (i.e., the expression that engenders
it), rather than its value.

MARCH 9, 2005 WORKING DRAFT

198

passed to functions in unevaluated form, deferring their evaluation until
the point at which they are actually used.

The only additional rule required is the one for recursive computations.
But this is entirely straightforward:

rec x:τ is e 7→ {rec x:τ is e/x}e (23.3)

To evaluate a recursive computation, simply unroll the recursion by one
step and continue from there.

Exercise 23.1
Show that the behavior of the recursive function expression fun f (x:τ1):τ2 is e
is correctly defined by

rec f:τ1→τ2 is fn τ1:x in e

in the sense that an application of the latter mimicks the behavior of the
former (under call-by-name).

To model the “at most once” aspect of lazy evaluation we introduce,
as before, a memory in which we store computations, initially in their un-
evaluated, and later, if ever, in their evaluated forms. The difference here
is that all expressions define computations that must be stored. Since the
main ideas are similar to those used to define lazy lists, we simply give the
evaluation rules here.

The state of computation is a pair (M, e) where M is a finite memory
mapping variables to values, and e is an expression whose free variables
lie within the domain of M. Final states have the form (M, v), where v is a
closed value. In particular, v is not a variable.

Nearly all of the rules of MinML carry over to the present case nearly un-
changed, apart from propagating the memory appropriately. For example,
the rules for evaluating addition expressions is as follows:

(M, e1) 7→ (M′, e′1)
(M, +(e1, e2)) 7→ (M′, +(e′1, e2)) (23.4)

(M, e2) 7→ (M′, e′2)
(M, +(v1, e2)) 7→ (M′, +(v1, e′2)) (23.5)

(M, +(n1, n2)) 7→ (M, n1 + n2) (23.6)

WORKING DRAFT MARCH 9, 2005

199

The main differences are in the rule for function application and the
need for additional rules for variables and recursive computations.

(x /∈ dom(M))
(M, fn τ:x in e(e′)) 7→ (M[x = e′], e) (23.7)

(M(x) = v)
(M, x) 7→ (M, v) (23.8)

(M(x) = e) (M[x = •], e) 7→∗ (M′, v)
(M, x) 7→ (M′[x = v], v) (23.9)

(x /∈ dom(M))
(M, rec x:τ is e) 7→ (M[x = e], e) (23.10)

Observe that we employ the “black holing” technique to catch ill-defined
recursive definitions.

23.0.4 Strict Types in a Lazy Language

As discussed above, lazy languages are committed to the fundamental prin-
ciple that the elements of a type are computations, which include values,
and not just values themselves. This means, in particular, that every type
contains a “divergent” element, the computation that, when evaluated,
goes into an infinite loop.2

One consequence, alluded to above, is that recursive type equations
have overly rich solutions. For example, in this setting the recursive type
equation

data llist = lnil | lcons of int * list

does not correspond to the familiar type of finite integer lists. In fact this
type contains as elements both divergent computations of lists and also

2This is often called “bottom”, written ⊥, for largely historical reasons. I prefer to avoid
this terminology because so much confusion has been caused by it. In particular, it is not
always correct to identify the least element of a domain with the divergent computation of
that type! The domain of values of partial function type contains a least element, the totally
undefined function, but this element does not correspond to the divergent computation of
that type.

MARCH 9, 2005 WORKING DRAFT

200

computations of infinite lists. The reason is that the tail of every list is a
computation of another list, so we can easily use recursion equations such
as

rec ones is lcons (1, ones)

to define an infinite element of this type.
The inclusion of divergent expressions in every type is unavoidable in

a lazy language, precisely because of the commitment to the interpretation
of types as computations. However, we can rule out infinite lists (for ex-
ample) by insisting that cons evaluate its tail whenever it is applied. This
is called a strictness annotation. If cons is strict in its seond argument, then
the equation

rec ones is cons (1, ones)

denotes the divergent computation, rather than the infinite list of ones.
These informal ideas correspond to different rules for evaluating con-

structors. We will illustrate this by giving a non-memoizing semantics for
lazy MinML extended with eager lists. It is straightforward to adapt this to
the memoizing case.

In the fully lazy case the rules for evaluation are these. First, we regard
lnil as a value, and regard lcons(e1,e2) as a value, regardless of whether
e1 or e2 are values. Then we define the transition rules for case analysis as
follows:

lcase lnil of lnil => en | lcons(x,y) => ec 7→ en (23.11)

lcase lcons(e1,e2) of lnil => en | lcons(x,y) => ec 7→ {e1, e2/x, y}ec
(23.12)

If instead we wish to rule out infinite lists, then we may choose to regard
lcons(e1,e2) to be a value only if e2 is a value, without changing the rules
for case analysis. If we wish the elements of the list to be values, then we
consider lcons(e1,e2) to be a value only in the case that e1 is a value, and
so on for all the possible combinations of choices.

As we stated earlier, this cuts down the set of possible computations of,
say, list type, but retains the fundamental commitment to the interpretation
of all types as types of computations.

WORKING DRAFT MARCH 9, 2005

Part IX

Dynamic Typing

201

Chapter 24

Dynamic Typing

The formalization of type safety given in Chapter 10 states that a language
is type safe iff it satisfies both preservation and progress. According to this
account, “stuck” states — non-final states with no transition — must be
rejected by the static type system as ill-typed. Although this requirement
seems natural for relatively simple languages such as MinML, it is not im-
mediately clear that our formalization of type safety scales to larger lan-
guages, nor is it entirely clear that the informal notion of safety is faithfully
captured by the preservation and progress theorems.

One issue that we addressed in Chapter 10 was how to handle expres-
sions such as 3 div 0, which are well-typed, yet stuck, in apparent vio-
lation of the progress theorem. We discussed two possible ways to handle
such a situation. One is to enrich the type system so that such an expression
is ill-typed. However, this takes us considerably beyond the capabilities of
current type systems for practical programming languages. The alternative
is to ensure that such ill-defined states are not “stuck”, but rather make a
transition to a designated error state. To do so we introduced the notion
of a checked error, which is explicitly detected and signalled during exe-
cution. Checked errors are constrasted with unchecked errors, which are
ruled out by the static semantics.

In this chapter we will concern ourselves with question of why there
should unchecked errors at all. Why aren’t all errors, including type er-
rors, checked at run-time? Then we can dispense with the static semantics
entirely, and, in the process, execute more programs. Such a language is
called dynamically typed, in contrast to MinML, which is statically typed.

One advantage of dynamic typing is that it supports a more flexible
treatment of conditionals. For example, the expression

203

204

(if true then 7 else "7")+1

is statically ill-typed, yet it executes successfully without getting stuck or
incurring a checked error. Why rule it out, simply because the type checker
is unable to “prove” that the else branch cannot be taken? Instead we may
shift the burden to the programmer, who is required to maintain invari-
ants that ensure that no run-time type errors can occur, even though the
program may contain conditionals such as this one.

Another advantage of dynamic typing is that it supports heterogeneous
data structures, which may contain elements of many different types. For
example, we may wish to form the “list”

[true, 1, 3.4, fn x=>x]

consisting of four values of distinct type. Languages such as ML preclude
formation of such a list, insisting instead that all elements have the same
type; these are called homogenous lists. The argument for heterogeneity is
that there is nothing inherently “wrong” with such a list, particularly since
its constructors are insensitive to the types of the components — they sim-
ply allocate a new node in the heap, and initialize it appropriately.

Note, however, that the additional flexibility afforded by dynamic typ-
ing comes at a cost. Since we cannot accurately predict the outcome of
a conditional branch, nor the type of a value extracted from a heteroge-
neous data structure, we must program defensively to ensure that nothing
bad happens, even in the case of a type error. This is achieved by turn-
ing type errors into checked errors, thereby ensuring progress and hence
safety, even in the absence of a static type discipline. Thus dynamic typing
catches type errors as late as possible in the development cycle, whereas
static typing catches them as early as possible.

In this chapter we will investigate a dynamically typed variant of MinML
in which type errors are treated as checked errors at execution time. Our
analysis will reveal that, rather than being opposite viewpoints, dynamic
typing is a special case of static typing! In this sense static typing is more
expressive than dynamic typing, despite the superficial impression created
by the examples given above. This viewpoint illustrates the pay-as-you-go
principle of language design, which states that a program should only in-
cur overhead for those language features that it actually uses. By viewing
dynamic typing as a special case of static typing, we may avail ourselves of
the benefits of dynamic typing whenever it is required, but avoid its costs
whenever it is not.

WORKING DRAFT MARCH 9, 2005

24.1 Dynamic Typing 205

24.1 Dynamic Typing

The fundamental idea of dynamic typing is to regard type clashes as checked,
rather than unchecked, errors. Doing so puts type errors on a par with divi-
sion by zero and other checked errors. This is achieved by augmenting the
dynamic semantics with rules that explicitly check for stuck states. For ex-
ample, the expression true+7 is such an ill-typed, stuck state. By checking
that the arguments of an addition are integers, we can ensure that progress
may be made, namely by making a transition to error.

The idea is easily illustrated by example. Consider the rules for func-
tion application in MinML given in Chapter 9, which we repeat here for
convenience:

v value v1 value (v = fun f (x:τ1):τ2 is e)
apply(v, v1) 7→ {v, v1/ f , x}e

e1 7→ e′1
apply(e1, e2) 7→ apply(e′1, e2)

v1 value e2 7→ e′2
apply(v1, e2) 7→ apply(v1, e′2)

In addition to these rules, which govern the well-typed case, we add
the following rules governing the ill-typed case:

v value v1 value (v 6= fun f (x:τ1):τ2 is e)
apply(v, v1) 7→ error

apply(error, e2) 7→ error

v1 value

apply(v1, error) 7→ error

The first rule states that a run-time error arises from any attempt to apply
a non-function to an argument. The other two define the propagation of
such errors through other expressions — once an error occurs, it propagates
throughout the entire program.

By entirely analogous means we may augment the rest of the semantics
of MinML with rules to check for type errors at run time. Once we have
done so, it is safe to eliminate the static semantics in its entirety.1 Having

1We may then simplify the language by omitting type declarations on variables and
functions, since these are no longer of any use.

MARCH 9, 2005 WORKING DRAFT

206 24.2 Implementing Dynamic Typing

done so, every expression is well-formed, and hence preservation holds
vacuously. More importantly, the progress theorem also holds because we
have augmented the dynamic semantics with transitions from every ill-
typed expression to error, ensuring that there are no “stuck” states. Thus,
the dynamically typed variant of MinML is safe in same sense as the stati-
cally typed variant. The meaning of safety does not change, only the means
by which it is achieved.

24.2 Implementing Dynamic Typing

Since both the statically- and the dynamically typed variants of MinML are
safe, it is natural to ask which is better. The main difference is in how early
errors are detected — at compile time for static languages, at run time for
dynamic languages. Is it better to catch errors early, but rule out some
useful programs, or catch them late, but admit more programs? Rather
than attempt to settle this question, we will sidestep it by showing that
the apparent dichotomy between static and dynamic typing is illusory by
showing that dynamic typing is a mode of use of static typing. From this
point of view static and dynamic typing are matters of design for a par-
ticular program (which to use in a given situation), rather than a doctrinal
debate about the design of a programming language (which to use in all
situations).

To see how this is possible, let us consider what is involved in imple-
menting a dynamically typed language. The dynamically typed variant of
MinML sketched above includes rules for run-time type checking. For ex-
ample, the dynamic semantics includes a rule that explicitly checks for an
attempt to apply a non-function to an argument. How might such a check
be implemented? The chief problem is that the natural representations of
data values on a computer do not support such tests. For example, a func-
tion might be represented as a word representing a pointer to a region of
memory containing a sequence of machine language instructions. An in-
teger might be represented as a word interpreted as a two’s complement
integer. But given a word, you cannot tell, in general, whether it is an inte-
ger or a code pointer.

To support run-time type checking, we must adulterate our data rep-
resentations to ensure that it is possible to implement the required checks.
We must be able to tell by looking at the value whether it is an integer, a
boolean, or a function. Having done so, we must be able to recover the un-
derlying value (integer, boolean, or function) for direct calculation. When-

WORKING DRAFT MARCH 9, 2005

24.2 Implementing Dynamic Typing 207

ever a value of a type is created, it must be marked with appropriate infor-
mation to identify the sort of value it represents.

There are many schemes for doing this, but at a high level they all
amount to attaching a tag to a “raw” value that identifies the value as an in-
teger, boolean, or function. Dynamic typing then amounts to checking and
stripping tags from data during computation, transitioning to error when-
ever data values are tagged inappropriately. From this point of view, we
see that dynamic typing should not be described as “run-time type check-
ing”, because we are not checking types at run-time, but rather tags. The
difference can be seen in the application rule given above: we check only
that the first argument of an application is some function, not whether it is
well-typed in the sense of the MinML static semantics.

To clarify these points, we will make explicit the manipulation of tags
required to support dynamic typing. To begin with, we revise the gram-
mar of MinML to make a distinction between tagged and untagged values, as
follows:

Expressions e : : = x | v | o(e1, . . . , en) | if e then e1 else e2 |
apply(e1, e2)

TaggedValues v : : = Int (n) | Bool (true) | Bool (false) |
Fun (fun x (y:τ1):τ2 is e)

UntaggedValues u : : = true | false | n | fun x (y:τ1):τ2 is e

Note that only tagged values arise as expressions; untagged values are used
strictly for “internal” purposes in the dynamic semantics. Moreover, we do
not admit general tagged expressions such as Int (e), but only explicitly-
tagged values.

Second, we introduce tag checking rules that determine whether or not
a tagged value has a given tag, and, if so, extracts its underlying untagged
value. In the case of functions these are given as rules for deriving judge-
ments of the form v is fun u, which checks that v has the form Fun (u), and
extracts u from it if so, and for judgements of the form v isnt fun, that checks
that v does not have the form Fun (u) for any untagged value u.

Fun (u) is fun u

Int () isnt fun Bool () isnt fun

Similar judgements and rules are used to identify integers and booleans,
and to extract their underlying untagged values.

MARCH 9, 2005 WORKING DRAFT

208 24.3 Dynamic Typing as Static Typing

Finally, the dynamic semantics is re-formulated to make use of these
judgement forms. For example, the rules for application are as follows:

v1 value v is fun fun f (x:τ1):τ2 is e
apply(v, v1) 7→ {v, v1/ f , x}e

v value v isnt fun
apply(v, v1) 7→ error

Similar rules govern the arithmetic primitives and the conditional ex-
pression. For example, here are the rules for addition:

v1 value v2 value v1 is int n1 v2 is int n2 (n = n1 + n2)
+(v1, v2) 7→ Int (n)

Note that we must explicitly check that the arguments are tagged as inte-
gers, and that we must apply the integer tag to the result of the addition.

v1 value v2 value v1 isnt int

+(v1, v2) 7→ error

v1 value v2 value v1 is int n1 v2 isnt int

+(v1, v2) 7→ error

These rules explicitly check for non-integer arguments to addition.

24.3 Dynamic Typing as Static Typing

Once tag checking is made explicit, it is easier to see its hidden costs in
both time and space — time to check tags, to apply them, and to extract
the underlying untagged values, and space for the tags themselves. This is
a significant overhead. Moreover, this overhead is imposed whether or not
the original program is statically type correct. That is, even if we can prove
that no run-time type error can occur, the dynamic semantics nevertheless
dutifully performs tagging and untagging, just as if there were no type
system at all.

This violates a basic principle of language design, called the pay-as-you-
go principle. This principle states that a language should impose the cost
of a feature only to the extent that it is actually used in a program. With
dynamic typing we pay for the cost of tag checking, even if the program
is statically well-typed! For example, if all of the lists in a program are

WORKING DRAFT MARCH 9, 2005

24.3 Dynamic Typing as Static Typing 209

homogeneous, we should not have to pay the overhead of supporting het-
erogeneous lists. The choice should be in the hands of the programmer, not
the language designer.

It turns out that we can eat our cake and have it too! The key is a simple,
but powerful, observation: dynamic typing is but a mode of use of static
typing, provided that our static type system includes a type of tagged data!
Dynamic typing emerges as a particular style of programming with tagged
data.

The point is most easily illustrated using ML. The type of tagged data
values for MinML may be introduced as follows:

(* The type of tagged values. *)
datatype tagged =

Int of int |
Bool of bool |
Fun of tagged -> tagged

Values of type tagged are marked with a value constructor indicating their
outermost form. Tags may be manipulated using pattern matching.

Second, we introduce operations on tagged data values, such as addi-
tion or function call, that explicitly check for run-time type errors.

exception TypeError

fun checked add (m:tagged, n:tagged):tagged =
case (m,n) of

(Int a, Int b) => Int (a+b)
| (,) => raise TypeError

fun checked apply (f:tagged, a:tagged):tagged =
case f of

Fun g => g a
| => raise TypeError

Observe that these functions correspond precisely to the instrumented dy-
namic semantics given above.

Using these operations, we can then build heterogeneous lists as values
of type tagged list.

val het list : tagged list =
[Int 1, Bool true, Fun (fn x => x)]

val f : tagged = hd(tl(tl het list))

val x : tagged = checked apply (f, Int 5)

MARCH 9, 2005 WORKING DRAFT

210 24.3 Dynamic Typing as Static Typing

The tags on the elements serve to identify what sort of element it is: an
integer, a boolean, or a function.

It is enlightening to consider a dynamically typed version of the facto-
rial function:

fun dyn fact (n : tagged) =
let fun loop (n, a) =

case n
of Int m =>

(case m
of 0 => a
| m => loop (Int (m-1),

checked mult (m, a)))
| => raise RuntimeTypeError

in loop (n, Int 1)
end

Notice that tags must be manipulated within the loop, even though we
can prove (by static typing) that they are not necessary! Ideally, we would
like to hoist these checks out of the loop:

fun opt dyn fact (n : tagged) =
let fun loop (0, a) = a

| loop (n, a) = loop (n-1, n*a)
in case n

of Int m => Int (loop (m, 1))
| => raise RuntimeTypeError

end

It is very hard for a compiler to do this hoisting reliably. But if you consider
dynamic typing to be a special case of static typing, as we do here, there is
no obstacle to doing this optimization yourself, as we have illustrated here.

WORKING DRAFT MARCH 9, 2005

Chapter 25

Featherweight Java

We will consider a tiny subset of the Java language, called Featherweight
Java, or FJ, that models subtyping and inheritance in Java. We will then
discuss design alternatives in the context of FJ. For example, in FJ, as in
Java, the subtype relation is tightly coupled to the subclass relation. Is this
necessary? Is it desirable? We will also use FJ as a framework for dis-
cussing other aspects of Java, including interfaces, privacy, and arrays.

25.1 Abstract Syntax

The abstract syntax of FJ is given by the following grammar:

Classes C : : = class c extends c {c f; k d}
Constructors k : : = c(c x) {super(x); this. f=x;}
Methods d : : = c m(c x) {return e;}
Types τ : : = c
Expressions e : : = x | e. f | e.m(e) | new c(e) | (c) e

The variable f ranges over a set of field names, c over a set of class names, m
over a set of method names, and x over a set of variable names. We assume
that these sets are countably infinite and pairwise disjoint. We assume that
there is a distinguished class name, Object, standing for the root of the
class hierarchy. It’s role will become clear below. We assume that there is
a distinguished variable this that cannot otherwise be declared in a pro-
gram.

As a notational convenience we use “underbarring” to stand for se-
quences of phrases. For example, d stands for a sequence of d’s, whose

211

212 25.1 Abstract Syntax

individual elements we designate d1, . . . , dk, where k is the length of the se-
quence. We write c f for the sequence c1 f1, . . . , ck fk, where k is the length
of the sequences c and f . Similar conventions govern the other uses of se-
quence notation.

The class expression

class c extends c′ {c f; k d}

declares the class c to be a subclass of the class c′. The subclass has addi-
tional fields c f , single constructor k, and method suite d. The methods of
the subclass may override those of the superclass, or may be new methods
specific to the subclass.

The constructor expression

c(c′ x′, c x) {super(x′); this. f=x;}

declares the constructor for class c with arguments c′ x′, c x, corresponding
to the fields of the superclass followed by those of the subclass. The vari-
ables x′ and x are bound in the body of the constructor. The body of the
constructor indicates the initialization of the superclass with the arguments
x′ and of the subclass with arguments x.

The method expression

c m(c x) {return e;}

declares a method m yielding a value of class c, with arguments x of class c
and body returning the value of the expression e. The variables x and this
are bound in e.

The set of types is, for the time being, limited to the set of class names.
That is, the only types are those declared by a class. In Java there are more
types than just these, including the primitive types integer and boolean
and the array types.

The set of expressions is the minimal “interesting” set sufficient to illus-
trate subtyping and inheritance. The expression e. f selects the contents of
field f from instance e. The expression e.m(e) invokes the method m of in-
stance e with arguments e. The expression new c(e) creates a new instance
of class c, passing arguments e to the constructor for c. The expression (c) e
casts the value of e to class c.

The methods of a class may invoke one another by sending messages
to this, standing for the instance itself. We may think of this as a bound
variable of the instance, but we will arrange things so that renaming of this
is never necessary to avoid conflicts.

WORKING DRAFT MARCH 9, 2005

25.1 Abstract Syntax 213

class Pt extends Object {
int x;
int y;

Pt (int x, int y) {
super(); this.x = x; this.y = y;

}
int getx () { return this.x; }
int gety () { return this.y; }

}

class CPt extends Pt {
color c;

CPt (int x, int y, color c) {
super(x,y);
this.c = c;

}
color getc () { return this.c; }

}

Figure 25.1: A Sample FJ Program

A class table T is a finite function assigning classes to class names. The
classes declared in the class table are bound within the table so that all
classes may refer to one another via the class table.

A program is a pair (T, e) consisting of a class table T and an expression
e. We generally suppress explicit mention of the class table, and consider
programs to be expressions.

A small example of FJ code is given in Figure 25.1. In this example we
assume given a class Object of all objects and make use of types int and
color that are not, formally, part of FJ.

MARCH 9, 2005 WORKING DRAFT

214 25.2 Static Semantics

25.2 Static Semantics

The static semantics of FJ is defined by a collection of judgments of the
following forms:

τ <: τ′ subtyping
Γ ` e : τ expression typing
d ok in c well-formed method
C ok well-formed class
T ok well-formed class table
fields(c) = c f field lookup
type(m, c) = c→ c method type

The rules defining the static semantics follow.
Every variable must be declared:

Γ(x) = τ

Γ ` x : τ (25.1)

The types of fields are defined in the class table.

Γ ` e0 : c0 fields(c0) = c f

Γ ` e0. fi : ci (25.2)

The argument and result types of methods are defined in the class table.

Γ ` e0 : c0 Γ ` e : c
type(m, c0) = c′ → c c <: c′

Γ ` e0.m(e) : c (25.3)

Instantiation must provide values for all instance variables as argu-
ments to the constructor.

Γ ` e : c c <: c′ fields(c) = c′ f

Γ ` new c(e) : c (25.4)

All casts are statically valid, but must be checked at run-time.

Γ ` e0 : d
Γ ` (c) e0 : c (25.5)

WORKING DRAFT MARCH 9, 2005

25.2 Static Semantics 215

The subtyping relation is read directly from the class table. Subtyping
is the smallest reflexive, transitive relation containing the subclass relation:

τ <: τ (25.6)

τ <: τ′ τ′ <: τ′′

τ <: τ′′ (25.7)

T(c) = class c extends c′ {. . . ; . . . }
c <: c′ (25.8)

A well-formed class has zero or more fields, a constructor that initial-
izes the superclass and the subclass fields, and zero or more methods. To
account for method override, the typing rules for each method are relative
to the class in which it is defined.

k = c(c′ x′, c x) {super(x′); this. f=x;}
fields(c′) = c′ f ′ d ok in c

class c extends c′ {c f; k d} ok (25.9)

Method overriding takes account of the type of the method in the su-
perclass. The subclass method must have the same argument types and
result type as in the superclass.

T(c) = class c extends c′ {. . . ; . . . }
type(m, c′) = c→ c0 x:c, this:c ` e0 : c0

c0 m(c x) {return e0;} ok in c (25.10)

A class table is well-formed iff all of its classes are well-formed:

∀c ∈ dom(T) T(c) ok

T ok (25.11)

Note that well-formedness of a class is relative to the class table!
A program is well-formed iff its method table is well-formed and the

expression is well-formed:

T ok ∅ ` e : τ
(T, e) ok (25.12)

MARCH 9, 2005 WORKING DRAFT

216 25.3 Dynamic Semantics

The auxiliary lookup judgments determine the types of fields and meth-
ods of an object. The types of the fields of an object are determined by the
following rules:

fields(Object) = • (25.13)

T(c) = class c extends c′ {c f; . . . } fields(c′) = c′ f ′

fields(c) = c′ f ′, c f (25.14)

The type of a method is determined by the following rules:

T(c) = class c extends c′ {. . . ; . . . d}
di = ci m(ci x) {return e;}

type(mi, c) = ci → ci (25.15)

T(c) = class c extends c′ {. . . ; . . . d}
m /∈ d type(m, c′) = ci → ci

type(m, c) = ci → ci (25.16)

25.3 Dynamic Semantics

The dynamic semantics of FJ may be specified using SOS rules similar to
those for MinML. The transition relation is indexed by a class table T, which
governs the semantics of casting and dynamic dispatch (which see below).
In the rules below we omit explicit mention of the class table for the sake
of brevity.

An instance of a class has the form new c(e), where each ei is a value.

e value

new c(e) value (25.17)

Since we arrange that there be a one-to-one correspondence between in-
stance variables and constructor arguments, an instance expression of this
form carries all of the information required to determine the values of the
fields of the instance. This makes clear that an instance is essentially just a
labelled collection of fields. Each instance is labelled with its class, which
is used to guide method dispatch.

WORKING DRAFT MARCH 9, 2005

25.3 Dynamic Semantics 217

Field selection retrieves the value of the named field from either the
subclass or its superclass, as appropriate.

fields(c) = c′ f ′, c f e′ value e value

new c(e′, e). f ′i 7→ e′i (25.18)

fields(c) = c′ f ′, c f e′ value e value

new c(e′, e). fi 7→ ei (25.19)

Message send replaces this by the instance itself, and replaces the method
parameters by their values.

body(m, c) = x → e0 e value e′ value

new c(e).m(e′) 7→ {e′/x}{new c(e)/this}e0 (25.20)

Casting checks that the instance is of a sub-class of the target class, and
yields the instance.

c <: c′ e value

(c′) new c(e) 7→ new c(e) (25.21)

These rules determine the order of evaluation:

e0 7→ e′0
e0. f 7→ e′0. f (25.22)

e0 7→ e′0
e0.m(e) 7→ e′0.m(e) (25.23)

e0 value e 7→ e′

e0.m(e) 7→ e0.m(e′) (25.24)

e 7→ e′

new c(e) 7→ new c(e′) (25.25)

e0 7→ e′0
(c) e0 7→ (c) e′0 (25.26)

MARCH 9, 2005 WORKING DRAFT

218 25.4 Type Safety

Dynamic dispatch makes use of the following auxiliary relation to find
the correct method body.

T(c) = class c extends c′ {. . . ; . . . d}
di = ci mi(ci x) {return e;}

body(mi, c) = x → e (25.27)

T(c) = class c extends c′ {. . . ; . . . d}
m /∈ d body(m, c′) = x → e

body(m, c) = x → e (25.28)

Finally, we require rules for evaluating sequences of expressions from
left to right, and correspondingly defining when a sequence is a value (i.e.,
consists only of values).

e1 value . . . ei−1 value ei 7→ e′i
e1, . . . , ei−1, ei, ei+1, . . . , en 7→ e1, . . . , ei−1, e′i, ei+1, . . . , en (25.29)

e1 value . . . en value

e value (25.30)

This completes the dynamic semantics of FJ.

25.4 Type Safety

The safety of FJ is stated in the usual manner by the Preservation and
Progress Theorems.

Since the dynamic semantics of casts preserves the “true” type of an
instance, the type of an expression may become “smaller” in the subtype
ordering during execution.

Theorem 25.1 (Preservation)
Assume that T is a well-formed class table. If e : τ and e 7→ e′, then e′ : τ′

for some τ′ such that τ′ <: τ.

The statement of Progress must take account of the possibility that a cast
may fail at execution time. Note, however, that field selection or message
send can never fail — the required field or method will always be present.

WORKING DRAFT MARCH 9, 2005

25.5 Acknowledgement 219

Theorem 25.2 (Progress)
Assume that T is a well-formed class table. If e : τ then either

1. v value, or

2. e contains an instruction of the form (c) new c′(e0) with e0 value and
c′ 6<: c, or

3. there exists e′ such that e 7→ e′.

It follows that if no casts occur in the source program, then the second
case cannot arise. This can be sharpened somewhat to admit source-level
casts for which it is known statically that the type of casted expression is a
subtype of the target of the cast. However, we cannot predict, in general,
statically whether a given cast will succeed or fail dynamically.

Lemma 25.3 (Canonical Forms)
If e : c and e value, then e has the form new c′(e0) with e0 value and c′ <: c.

25.5 Acknowledgement

This chapter is based on “Featherweight Java: A Minimal Core Calculus
for Java and GJ” by Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.

MARCH 9, 2005 WORKING DRAFT

220 25.5 Acknowledgement

WORKING DRAFT MARCH 9, 2005

Part X

Subtyping and Inheritance

221

Chapter 26

Subtyping

A subtype relation is a pre-order1 on types that validates the subsumption
principle: if σ is a subtype of τ, then a value of type σ may be provided
whenever a value of type τ is required. This means that a value of the
subtype should “act like” a value of the supertype when used in supertype
contexts.

26.1 Adding Subtyping

We will consider two extensions of MinML with subtyping. The first, MinML
with implicit subtyping, is obtained by adding the following rule of implicit
subsumption to the typing rules of MinML:

Γ ` e : σ σ <: τ
Γ ` e : τ

With implicit subtyping the typing relation is no longer syntax-directed,
since the subsumption rule may be applied to any expression e, without
regard to its form.

The second, called MinML with explicit subtyping, is obtained by adding
to the syntax by adding an explicit cast expression, (τ) e, with the following
typing rule:

Γ ` e : σ σ <: τ
Γ ` (τ) e : τ

The typing rules remain syntax-directed, but all uses of subtyping must be
explicitly indicated.

1A pre-order is a reflexive and transitive binary relation.

223

224 26.1 Adding Subtyping

We will refer to either variation as MinML<: when the distinction does
not matter. When it does, the implicit version is designated MinMLi

<:, the
implicit MinMLe

<:.

To obtain a complete instance of MinML<: we must specify the subtype
relation. This is achieved by giving a set of subtyping axioms, which deter-
mine the primitive subtype relationships, and a set of variance rules, which
determine how type constructors interact with subtyping. To ensure that
the subtype relation is a pre-order, we tacitly include the following rules of
reflexivity and transitivity:

τ <: τ
ρ <: σ σ <: τ

ρ <: τ

Note that pure MinML is obtained as an instance of MinMLi
<: by giving no

subtyping rules beyond these two, so that σ <: τ iff σ = τ.

The dynamic semantics of an instance of MinML<: must be careful to
take account of subtyping. In the case of implicit subsumption the dynamic
semantics must be defined so that the primitive operations of a supertype
apply equally well to a value of any subtype. In the case of explicit sub-
sumption we need only ensure that there be a means of casting a value of
the subtype into a corresponding value of the supertype.

The type safety of MinML<:, in either formulation, is assured, provided
that the following subtyping safety conditions are met:

• For MinMLe
<:, if σ <: τ, then casting a value of the subtype σ to the

supertype τ must yield a value of type τ.

• For MinMLi
<:, the dynamic semantics must ensure that the value of

each primitive operation is defined for closed values of any subtype of
the expected type of its arguments.

Under these conditions we may prove the Progress and Preservation
Theorems for either variant of MinML<:.

Theorem 26.1 (Preservation)
For either variant of MinML<:, under the assumption that the subtyping
safety conditions hold, if e : τ and e 7→ e′, then e′ : τ.

Proof: By induction on the dynamic semantics, appealing to the casting
condition in the case of the explicit subsumption rule of MinMLe

<:. �

WORKING DRAFT MARCH 9, 2005

26.2 Varieties of Subtyping 225

Theorem 26.2 (Progress)
For either variant of MinML<:, under the assumption that the subtyping
safety conditions hold, if e : τ, then either e is a value or there exists e′ such
that e 7→ e′.

Proof: By induction on typing, appealing to the subtyping condition on
primitive operations in the case of primitive instruction steps. �

26.2 Varieties of Subtyping

In this section we will explore several different forms of subtyping in the
context of extensions of MinML. To simplify the presentation of the exam-
ples, we tacitly assume that the dynamic semantics of casts is defined so
that (τ) v 7→ v, unless otherwise specified.

26.2.1 Arithmetic Subtyping

In informal mathematics we tacitly treat integers as real numbers, even
though Z 6⊆ R. This is justified by the observation that there is an in-
jection ι : Z ↪→ R that assigns a canonical representation of an integer as
a real number. This injection preserves the ordering, and commutes with
the arithmetic operations in the sense that ι(m + n) = ι(m) + ι(n), where
m and n are integers, and the relevant addition operation is determined by
the types of its arguments.

In most cases the real numbers are (crudely) approximated by floating
point numbers. Let us therefore consider an extension of MinML with an
additional base type, float, of floating point numbers. It is not necessary
to be very specific about this extension, except to say that we enrich the
language with floating point constants and arithmetic operations. We will
designate the floating point operations using a decimal point, writing +.
for floating point addition, and so forth.2

By analogy with mathematical practice, we will consider taking the
type int to be a subtype of float. The analogy is inexact, because of the
limitations of computer arithmetic, but it is, nevertheless, informative to
consider it.

To ensure the safety of explicit subsumption we must define how to cast
an integer to a floating point number, written (float) n. We simply postu-

2This convention is borrowed from O’Caml.

MARCH 9, 2005 WORKING DRAFT

226 26.2 Varieties of Subtyping

late that this is possible, writing n.0 for the floating point representation of
the integer n, and noting that n.0 has type float.3

To ensure the safety of implicit subsumption we must ensure that the
floating point arithmetic operations are well-defined for integer arguments.
For example, we must ensure that an expression such as +.(3, 4) has a well-
defined value as a floating point number. To achieve this, we simply require
that floating point operations implicitly convert any integer arguments to
floating point before performing the operation. In the foregoing example
evaluation proceeds as follows:

+.(3, 4) 7→ +.(3.0, 4.0) 7→ 7.0.

This strategy requires that the floating point operations detect the presence
of integer arguments, and that it convert any such arguments to floating
point before carrying out the operation. We will have more to say about
this inefficiency in Section 26.4 below.

26.2.2 Function Subtyping

Suppose that int <: float. What subtyping relationships, if any, should
hold among the following four types?

1. int→int

2. int→float

3. float→int

4. float→float

To determine the answer, keep in mind the subsumption principle, which
says that a value of the subtype should be usable in a supertype context.

Suppose f : int→int. If we apply f to x : int, the result has type
int, and hence, by the arithmetic subtyping axiom, has type float. This
suggests that

int→int <: int→float

is a valid subtype relationship. By similar reasoning, we may derive that

float→int <: float→float

3We may handle the limitations of precision by allowing for a cast operation to fail in
the case of overflow. We will ignore overflow here, for the sake of simplicity.

WORKING DRAFT MARCH 9, 2005

26.2 Varieties of Subtyping 227

is also valid.
Now suppose that f : float→int. If x : int, then x : float by sub-

sumption, and hence we may apply f to x to obtain a result of type int.
This suggests that

float→int <: int→int

is a valid subtype relationship. Since int→int <: int→float, it follows
that

float→int <: int→float

is also valid.
Subtyping rules that specify how a type constructor interacts with sub-

typing are called variance principles. If a type constructor preserves subtyp-
ing in a given argument position, it is said to be covariant in that position. If,
instead, it inverts subtyping in a given position it is said to be contravariant
in that position. The discussion above suggests that the function space con-
structor is covariant in the range position and contravariant in the domain
position. This is expressed by the following rule:

τ1 <: σ1 σ2 <: τ2
σ1→σ2 <: τ1→τ2

Note well the inversion of subtyping in the domain, where the function
constructor is contravariant, and the preservation of subtyping in the range,
where the function constructor is covariant.

To ensure safety in the explicit case, we define the dynamic semantics
of a cast operation by the following rule:

(τ1→τ2) v 7→ fn x:τ1 in (τ2) v((σ1) x)

Here v has type σ1→σ2, τ1 <: σ1, and σ2 <: τ2. The argument is cast to
the domain type of the function prior to the call, and its result is cast to the
intended type of the application.

To ensure safety in the implicit case, we must ensure that the primi-
tive operation of function application behaves correctly on a function of a
subtype of the “expected” type. This amounts to ensuring that a function
can be called with an argument of, and yields a result of, a subtype of the
intended type. One way is to adopt a semantics of procedure call that is
independent of the types of the arguments and results. Another is to intro-
duce explicit run-time checks similar to those suggested for floating point
arithmetic to ensure that calling conventions for different types can be met.

MARCH 9, 2005 WORKING DRAFT

228 26.2 Varieties of Subtyping

26.2.3 Product and Record Subtyping

In Chapter 19 we considered an extension of MinML with product types.
In this section we’ll consider equipping this extension with subtyping. We
will work with n-ary products of the form τ1* · · · *τn and with n-ary records
of the form {l1:τ1, . . . ,ln:τn}. The tuple types have as elements n-tuples
of the form <e1, . . . ,en> whose ith component is accessed by projection, e.i.
Similarly, record types have as elements records of the form {l1:e1, . . . ,ln:en}
whose lth component is accessed by field selection, e.l.

Using the subsumption principle as a guide, it is natural to consider a
tuple type to be a subtype of any of its prefixes:

m > n
τ1* · · · *τm <: τ1* · · · *τn

Given a value of type τ1* · · · *τn, we can access its ith component, for any
1 ≤ i ≤ n. If m > n, then we can equally well access the ith component
of an m-tuple of type τ1* · · · *τm, obtaining the same result. This is called
width subtyping for tuples.

For records it is natural to consider a record type to be a subtype of
any record type with any subset of the fields of the subtype. This may be
written as follows:

m > n
{l1:τ1, . . . ,lm:τm} <: {l1:τ1, . . . ,ln:τn}

Bear in mind that the ordering of fields in a record type is immaterial, so
this rule allows us to neglect any subset of the fields when passing to a
supertype. This is called width subtyping for records. The justification for
width subtyping is that record components are accessed by label, rather
than position, and hence the projection from a supertype value will apply
equally well to the subtype.

What variance principles apply to tuples and records? Applying the
principle of subsumption, it is easy to see that tuples and records may be
regarded as covariant in all their components. That is,

∀1 ≤ i ≤ n σi <: τi
σ1* · · · *σn <: τ1* · · · *τn

and
∀1 ≤ i ≤ n σi <: τi

{l1:σ1, . . . ,ln:σn} <: {l1:τ1, . . . ,ln:τn}.

These are called depth subtyping rules for tuples and records, respectively.

WORKING DRAFT MARCH 9, 2005

26.2 Varieties of Subtyping 229

To ensure safety for explicit subsumption we must define the meaning
of casting from a sub- to a super-type. The two forms of casting corre-
sponding to width and depth subtyping may be consolidated into one, as
follows:

m ≥ n
(τ1* · · · *τn) <v1, . . . ,vm> 7→ <(τ1) v1, . . . ,(τn) vn>.

An analogous rule defines the semantics of casting for record types.
To ensure safety for implicit subsumption we must ensure that projec-

tion is well-defined on a subtype value. In the case of tuples this means
that the operation of accessing the ith component from a tuple must be in-
sensitive to the size of the tuple, beyond the basic requirement that it have
size at least i. This can be expressed schematically as follows:

<v1, . . . ,vi,. . .>.i 7→ vi.

The ellision indicates that fields beyond the ith are not relevant to the op-
eration. Similarly, for records we postulate that selection of the lth field is
insensitive to the presence of any other fields:

{l:v,. . .}.l 7→ v.

The ellision expresses the independence of field selection from any “extra”
fields.

26.2.4 Reference Subtyping

Finally, let us consider the reference types of Chapter 14. What should be
the variance rule for reference types? Suppose that r has type σ ref. We
can do one of two things with r:

1. Retrieve its contents as a value of type σ.

2. Replace its contents with a value of type σ.

If σ <: τ, then retrieving the contents of r yields a value of type τ, by
subsumption. This suggests that references are covariant:

σ <: τ

σ ref
?
<: τ ref.

MARCH 9, 2005 WORKING DRAFT

230 26.3 Type Checking With Subtyping

On the other hand, if τ <: σ, then we may store a value of type τ into r.
This suggests that references are contravariant:

τ <: σ

σ ref
?
<: τ ref.

Given that we may perform either operation on a reference cell, we
must insist that reference types are invariant:

σ <: τ τ <: σ
σ ref <: τ ref .

The premise of the rule is often strengthened to the requirement that σ and
τ be equal:

σ = τ
σ ref <: τ ref

since there are seldom situations where distinct types are mutual subtypes.
A similar analysis may be applied to any mutable data structure. For

example, immutable sequences may be safely taken to be covariant, but mu-
table sequences (arrays) must be taken to be invariant, lest safety be com-
promised.

26.3 Type Checking With Subtyping

Type checking for MinML<:, in either variant, clearly requires an algorithm
for deciding subtyping: given σ and τ, determine whether or not σ <:
τ. The difficulty of deciding type checking is dependent on the specific
rules under consideration. In this section we will discuss type checking for
MinML<:, under the assumption that we can check the subtype relation.

Consider first the explicit variant of MinML<:. Since the typing rules
are syntax directed, we can proceed as for MinML, with one additional case
to consider. To check whether (σ) e has type τ, we must check two things:

1. Whether e has type σ.

2. Whether σ <: τ.

The former is handled by a recursive call to the type checker, the latter by
a call to the subtype checker, which we assume given.

This discussion glosses over an important point. Even in pure MinML
it is not possible to determine directly whether or not Γ ` e : τ. For sup-
pose that e is an application e1(e2). To check whether Γ ` e : τ, we must

WORKING DRAFT MARCH 9, 2005

26.3 Type Checking With Subtyping 231

find the domain type of the function, e1, against which we must check the
type of the argument, e2. To do this we define a type synthesis function that
determines the unique (if it exists) type τ of an expression e in a context
Γ, written Γ ` e ⇒ τ. To check whether e has type τ, we synthesize the
unique type for e and check that it is τ.

This methodology applies directly to MinMLe
<: by using the following

rule to synthesize a type for a cast:

Γ ` e⇒ σ σ <: τ
Γ ` (τ) e⇒ τ

Extending this method to MinMLi
<: is a bit harder, because expressions

no longer have unique types! The rule of subsumption allows us to weaken
the type of an expression at will, yielding many different types for the same
expression. A standard approach is define a type synthesis function that
determines the principal type, rather than the unique type, of an expression
in a given context. The principal type of an expression e in context Γ is the
least type (in the subtyping pre-order) for e in Γ. Not every subtype system
admits principal types. But we usually strive to ensure that this is the case
whenever possible in order to employ this simple type checking method.

The rules synthesizing principal types for expressions of MinMLi
<: are

as follows:
(Γ(x) = τ)
Γ ` x ⇒ τ Γ ` n⇒ int

Γ ` true⇒ bool Γ ` false⇒ bool
Γ ` e1 ⇒ σ1 σ1 <: τ1 · · · Γ ` en ⇒ σn σn <: τn

Γ ` o(e1, . . . , en)⇒ τ

where o is an n-ary primitive operation with arguments of type τ1,. . . , τn,
and result type τ. We use subsumption to ensure that the argument types
are subtypes of the required types.

Γ ` e⇒ σ σ <: bool Γ ` e1 ⇒ τ1 τ1 <: τ Γ ` e2 ⇒ τ2 τ2 <: τ

Γ ` if e then e1 else e2 ⇒ τ

We use subsumption to ensure that the type of the test is a subtype of bool.
Moreover, we rely on explicit specification of the type of the two clauses of
the conditional.4

Γ[f :τ1→τ2][x:τ1] ` e⇒ τ2

Γ ` fun f (x:τ1):τ2 is e⇒ τ1→τ2

4This may be avoided by requiring that the subtype relation have least upper bounds
“whenever necessary”; we will not pursue this topic here.

MARCH 9, 2005 WORKING DRAFT

232 26.4 Implementation of Subtyping

Γ ` e1 ⇒ τ2→τ Γ ` e2 ⇒ σ2 σ2 <: τ2

Γ ` e1(e2)⇒ τ

We use subsumption to check that the argument type is a subtype of the
domain type of the function.

Theorem 26.3
1. If Γ ` e⇒ σ, then Γ ` e : σ.

2. If Γ ` e : τ, then there exists σ such that Γ ` e⇒ σ and σ <: τ.

Proof:

1. By a straightforward induction on the definition of the type synthesis
relation.

2. By induction on the typing relation.

�

26.4 Implementation of Subtyping

26.4.1 Coercions

The dynamic semantics of subtyping sketched above suffices to ensure type
safety, but is in most cases rather impractical. Specifically,

• Arithmetic subtyping relies on run-time type recognition and conver-
sion.

• Tuple projection depends on the insensitivity of projection to the ex-
istence of components after the point of projection.

• Record field selection depends on being able to identify the lth field
in a record with numerous fields.

• Function subtyping may require run-time checks and conversions to
match up calling conventions.

These costs are significant. Fortunately they can be avoided by taking a
slightly different approach to the implementation of subtyping. Consider,
for example, arithmetic subtyping. In order for a mixed-mode expression
such as +.(3,4) to be well-formed, we must use subsumption to weaken

WORKING DRAFT MARCH 9, 2005

26.4 Implementation of Subtyping 233

the types of 3 and 4 from int to float. This means that type conversions
are required exactly insofar as subsumption is used during type checking
— a use of subsumption corresponds to a type conversion.

Since the subsumption rule is part of the static semantics, we can in-
sert the appropriate conversions during type checking, and omit entirely
the need to check for mixed-mode expressions during execution. This is
called a coercion interpretation of subsumption. It is expressed formally by
augmenting each subtype relation σ <: τ with a function value v of type
σ→τ (in pure MinML) that coerces values of type σ to values of type τ. The
augmented subtype relation is written σ <: τ v.

Here are the rules for arithmetic subtyping augmented with coercions:

τ <: τ idτ

ρ <: σ v σ <: τ v′

ρ <: τ v;v′

int <: float to float
τ1 <: σ1 v1 σ2 <: τ2 v2

σ1→σ2 <: τ1→τ2 v1→v2

These rules make use of the following auxiliary functions:

1. Primitive conversion: to float.

2. Identity: idτ = fn x:τ in x.

3. Composition: v;v′ = fn x:τ in v′(v(x)).

4. Functions: v1→v2 =
fn f:σ1→σ2 in fn x:τ1 in v2(f(v1(x))).

The coercion interpretation is type correct. Moreover, there is at most
one coercion between any two types:

Theorem 26.4
1. If σ <: τ v, then `− v : σ→τ.

2. If σ <: τ v1 and σ <: τ v2, then `− v1
∼= v2 : σ→τ.

Proof:

1. By a simple induction on the rules defining the augmented subtyping
relation.

2. Follows from these equations:

(a) Composition is associative with id as left- and right-unit ele-
ment.

MARCH 9, 2005 WORKING DRAFT

234 26.4 Implementation of Subtyping

(b) id→id ∼= id.

(c) (v1→v2);(v′1→v′2) ∼= (v′1;v1)→(v2;v′2).

�

The type checking relation is augmented with a translation from MinMLi
<:

to pure MinML that eliminates uses of subsumption by introducing coer-
cions:

Γ ` e : σ e′ σ <: τ v
Γ ` e : τ v(e′)

The remaining rules simply commute with the translation. For example,
the rule for function application becomes

Γ ` e1 : τ2→τ e′1 Γ ` e2 : τ2 e′2
Γ ` e1(e2) : τ e′1(e′2)

Theorem 26.5
1. If Γ ` e : τ e′, then Γ ` e′ : τ in pure MinML.

2. If Γ ` e : τ e1 and Γ ` e : τ e2, then Γ ` e1
∼= e2 : τ in pure

MinML.

3. If e : int e′ is a complete program, then e ⇓ n iff e′ ⇓ n.

The coercion interpretation also applies to record subtyping. Here the
problem is how to implement field selection efficiently in the presence of
subsumption. Observe that in the absence of subtyping the type of a record
value reveals the exact set of fields of a record (and their types). We can
therefore implement selection efficiently by ordering the fields in some
canonical manner (say, alphabetically), and compiling field selection as a
projection from an offset determined statically by the field’s label.

In the presence of record subtyping this simple technique breaks down,
because the type no longer reveals the fields of a record, not their types. For
example, every expression of record type has the record type {} with no
fields whatsoever! This makes it difficult to predict statically the position
of the field labelled l in a record. However, we may restore this important
property by using coercions. Whenever the type of a record is weakened
using subsumption, insert a function that creates a new record that exactly
matches the supertype. Then use the efficient record field selection method
just described.

WORKING DRAFT MARCH 9, 2005

26.4 Implementation of Subtyping 235

Here, then, are the augmented rules for width and depth subtyping for
records:

m > n
{l1:τ1, . . . ,lm:τm} <: {l1:τ1, . . . ,ln:τn} dropm,n,l,τ

σ1 <: τ1 v1 . . . σn <: τn vn

{l1:σ1, . . . ,ln:σn} <: {l1:τ1, . . . ,ln:τn} copyn,l,σ,v

These rules make use of the following coercion functions:

dropm,n,l,σ =
fn x:{l1:σ1, . . . ,lm:σm} in {l1:x.l1, . . . ,ln:x.ln}

copyn,l,σ,v =
fn x:{l1:σ1, . . . ,ln:σn} in {l1:v1(x.l1), . . . ,ln:vn(x.ln)}

In essence this approach represents a trade-off between the cost of sub-
sumption and the cost of field selection. By creating a new record whenever
subsumption is used, we make field selection cheap. On the other hand, we
can make subsumption free, provided that we are willing to pay the cost of
a search whenever a field is selected from a record.

But what if record fields are mutable? This approach to coercion is out
of the question, because of aliasing. Suppose that a mutable record value
v is bound to two variables, x and y. If coercion is applied to the binding
of x, creating a new record, then future changes to y will not affect the
new record, nor vice versa. In other words, uses of coercion changes the
semantics of a program, which is unreasonable.

One widely-used approach is to increase slightly the cost of field se-
lection (by a constant factor) by separating the “view” of a record from its
“contents”. The view determines the fields and their types that are present
for each use of a record, whereas the contents is shared among all uses. In
essence we represent the record type {l1:τ1, . . . ,ln:τn} by the product type

{l1:int, . . . ,ln:int}*(τ array).

The field selection l.e becomes a two-stage process:

snd(e)[fst(e).l]

Finally, coercions copy the view, without modifying the contents. If σ =
{l1:σ1, . . . ,ln:σn} and τ = {l1:int, . . . ,ln:int}, then

dropm,n,l,σ = fn x in (dropm,n,l,τ(fst(x)),snd(x)).

MARCH 9, 2005 WORKING DRAFT

236 26.4 Implementation of Subtyping

WORKING DRAFT MARCH 9, 2005

Chapter 27

Inheritance and Subtyping in
Java

In this note we discuss the closely-related, but conceptually distinct, no-
tions of inheritance, or subclassing, and subtyping as exemplified in the Java
language. Inheritance is a mechanism for supporting code re-use through
incremental extension and modification. Subtyping is a mechanism for ex-
pressing behavioral relationships between types that allow values of a sub-
type to be provided whenever a value of a supertype is required.

In Java inheritance relationships give rise to subtype relationships, but
not every subtype relationship arises via inheritance. Moreover, there are
languages (including some extensions of Java) for which subclasses do not
give rise to subtypes, and there are languages with no classes at all, but
with a rich notion of subtyping. For these reasons it is best to keep a clear
distinction between subclassing and subtyping.

27.1 Inheritance Mechanisms in Java

27.1.1 Classes and Instances

The fundamental unit of inheritance in Java is the class. A class consists
of a collection of fields and a collection of methods. Fields are assignable
variables; methods are procedures acting on these variables. Fields and
methods can be either static (per-class) or dynamic (per-instance).1 Static
fields are per-class data. Static methods are just ordinary functions acting
on static fields.

1Fields and methods are assumed dynamic unless explicitly declared to be static.

237

238 27.1 Inheritance Mechanisms in Java

Classes give rise to instances, or objects, that consist of the dynamic meth-
ods of the class together with fresh copies (or instances) of its dynamic
fields. Instances of classes are created by a constructor, whose role is to allo-
cate and initialize fresh copies of the dynamic fields (which are also known
as instance variables). Constructors have the same name as their class, and
are invoked by writing new C(e1, . . . , en), where C is a class and e1, . . . , en
are arguments to the constructor.2 Static methods have access only to the
static fields (and methods) of its class; dynamic methods have access to
both the static and dynamic fields and methods of the class.

The components of a class have a designated visibility attribute, either
public, private, or protected. The public components are those that are
accessible by all clients of the class. Public static components are accessi-
ble to any client with access to the class. Public dynamic components are
visible to any client of any instance of the class. Protected components are
“semi-private; we’ll have more to say about protected components later.

The components of a class also have a finality attribute. Final fields are
not assignable — they are read-only attributes of the class or instance. Ac-
tually, final dynamic fields can be assigned exactly once, by a constructor
of the class, to initialize their values. Final methods are of interest in con-
nection with inheritance, to which we’ll return below.

The components of a class have types. The type of a field is the type of its
binding as a (possibly assignable) variable. The type of a method specifies
the types of its arguments (if any) and the type of its results. The type of a
constructor specifies the types of its arguments (if any); its “result type” is
the instance type of the class itself, and may not be specified explicitly. (We
will say more about the type structure of Java below.)

The public static fields and methods of a class C are accessed using
“dot notation”. If f is a static field of C, a client may refer to it by writ-
ing C. f . Similarly, if m is a static method of C, a client may invoke it by
writing C.m(e1,...,en), where e1, . . . , en are the argument expressions of
the method. The expected type checking rules govern access to fields and
invocations of methods.

The public dynamic fields and methods of an instance c of a class C
are similarly accessed using “dot notation”, albeit from the instance, rather
than the class. That is, if f is a public dynamic field of C, then c. f refers
to the f field of the instance c. Since distinct instances have distinct fields,
there is no essential connection between c. f and c′. f when c and c′ are

2Classes can have multiple constructors that are distinguished by overloading. We will
not discuss overloading here.

WORKING DRAFT MARCH 9, 2005

27.1 Inheritance Mechanisms in Java 239

distinct instances of class C. If m is a public dynamic method of C, then
c.m(e1, . . . , en) invokes the method m of the instance c with the specified
arguments. This is sometimes called sending a message m to instance c with
arguments e1, . . . , en.

Within a dynamic method one may refer to the dynamic fields and
methods of the class via the pseudo-variable this, which is bound to the
instance itself. The methods of an instance may call one another (or them-
selves) by sending a message to this. Although Java defines conventions
whereby explicit reference to this may be omitted, it is useful to eschew
these conveniences and always use this to refer to the components of an
instance from within code for that instance. We may think of this as an
implicit argument to all methods that allows the method to access to object
itself.

27.1.2 Subclasses

A class may be defined by inheriting the visible fields and methods of an-
other class. The new class is said to be a subclass of the old class, the su-
perclass. Consequently, inheritance is sometimes known as subclassing. Java
supports single inheritance — every class has at most one superclass. That
is, one can only inherit from a single class; one cannot combine two classes
by inheritance to form a third. In Java the subclass is said to extend the
superclass.

There are two forms of inheritance available in Java:

1. Enrichment. The subclass enriches the superclass by providing addi-
tional fields and methods not present in the superclass.

2. Overriding. The subclass may re-define a method in the superclass by
giving it a new implementation in the subclass.

Enrichment is a relatively innocuous aspect of inheritance. The true power
of inheritance lies in the ability to override methods.

Overriding, which is also known as method specialization, is used to “spe-
cialize” the implementation of a superclass method to suit the needs of the
subclass. This is particularly important when the other methods of the class
invoke the overridden method by sending a message to this. If a method
m is overridden in a subclass D of a class C, then all methods of D that
invoke m via this will refer to the “new” version of m defined by the over-
ride. The “old” version can still be accessed explicitly from the subclass by

MARCH 9, 2005 WORKING DRAFT

240 27.1 Inheritance Mechanisms in Java

referring to super.m. The keyword super is a pseudo-variable that may be
used to refer to the overridden methods.

Inheritance can be controlled using visibility constraints. A sub-class
D of a class C automatically inherits the private fields and methods of C
without the possibility of overriding, or otherwise accessing, them. The
public fields and methods of the superclass are accessible to the subclass
without restriction, and retain their public attribute in the subclass, unless
overridden. A protected component is “semi-private” — accessible to the
subclass, but not otherwise publically visible.3

Inheritance can also be limited using finality constraints. If a method
is declared final, it may not be overridden in any subclass — it must be
inherited as-is, without further modification. However, if a final method
invokes, via this, a non-final method, then the behavior of the final method
can still be changed by the sub-class by overriding the non-final method.
By declaring an entire class to be final, no class can inherit from it. This
serves to ensure that any instance of this class invokes the code from this
class, and not from any subclass of it.

Instantiation of a subclass of a class proceeds in three phases:

1. The instance variables of the subclass, which include those of the su-
perclass, are allocated.

2. The constructor of the superclass is invoked to initialize the super-
class’s instance variables.

3. The constructor of the subclass is invoked to initialize the subclass’s
instance variables.

The superclass constructor can be explicitly invoked by a subclass construc-
tor by writing super(e1, . . . , en), but only as the very first statement of the
subclass’s constructor. This ensures proper initialization order, and avoids
certain anomalies and insecurities that arise if this restriction is relaxed.

27.1.3 Abstract Classes and Interfaces

An abstract class is a class in which one or more methods are declared,
but left unimplemented. Abstract methods may be invoked by the other
methods of an abstract class by sending a message to this, but since their
implementation is not provided, abstract classes do not themselves have

3Actually, Java assigns protected components “package scope”, but since we are not
discussing packages here, we will ignore this issue.

WORKING DRAFT MARCH 9, 2005

27.1 Inheritance Mechanisms in Java 241

instances. Instead the obligation is imposed on a subclass of the abstract
class to provide implementations of the abstract methods to obtain a con-
crete class, which does have instances. Abstract classes are useful for setting
up “code templates” that are instantiated by inheritance. The abstract class
becomes the locus of code sharing for all concretions of that class, which
inherit the shared code and provide the missing non-shared code.

Taking this idea to the extreme, an interface is a “fully abstract” class,
which is to say that

• All its fields are public static final (i.e., they are constants).

• All its methods are abstract public; they must be implemented by
a subclass.

Since interfaces are a special form of abstract class, they have no instances.
The utility of interfaces stems from their role in implements declara-

tions. As we mentioned above, a class may be declared to extend a single
class to inherit from it.4 A class may also be declared to implement one or
more interfaces, meaning that the class provides the public methods of the
interface, with their specified types. Since interfaces are special kinds of
classes, Java is sometimes said to provide multiple inheritance of interfaces,
but only single inheritance of implementation. For similar reasons an inter-
face may be declared to extend multiple interfaces, provided that the result
types of their common methods coincide.

The purpose of declaring an interface for a class is to support writing
generic code that works with any instance providing the methods specified
in the interface, without requiring that instance to arise from any particular
position in the inheritance hierarchy. For example, we may have two un-
related classes in the class hierarchy providing a method m. If both classes
are declared to implement an interface that mentions m, then code pro-
grammed against this interface will work for an instance of either class.

The literature on Java emphasizes that interfaces are descriptive of be-
havior (to the extend that types alone allow), whereas classes are prescrip-
tive of implementation. While this is surely a noble purpose, it is curious
that interfaces are classes in Java, rather than types. In particular interfaces
are unable to specify the public fields of an instance by simply stating their
types, which would be natural were interfaces a form of type. Instead fields
in interfaces are forced to be constants (public, static, final), precluding their
use for describing the public instance variables of an object.

4Classes that do not specify a superclass implicitly extend the class Object of all objects.

MARCH 9, 2005 WORKING DRAFT

242 27.2 Subtyping in Java

27.2 Subtyping in Java

The Java type system consists of the following types:

1. Base types, including int, float, void, and boolean.

2. Class types C, which classify the instances of a class C.

3. Array types of the form τ [], where τ is a type, representing mutable
arrays of values of type τ.

The basic types behave essentially as one would expect, based on pre-
vious experience with languages such as C and C++. Unlike C or C++ Java
has true array types, with operations for creating and initializing an array
and for accessing and assigning elements of an array. All array operations
are safe in the sense that any attempt to exceed the bounds of the array
results in a checked error at run-time.

Every class, whether abstract or concrete, including interfaces, has as-
sociated with it the type of its instances, called (oddly enough) the instance
type of the class. Java blurs the distinction between the class as a program
structure and the instance type determined by the class — class names
serve not only to identify the class but also the instance type of that class. It
may seem odd that abstract classes, and interfaces, all define instance types,
even though they don’t have instances. However, as will become clear be-
low, even abstract classes have instances, indirectly through their concrete
subclasses. Similarly, interfaces may be thought of as possessing instances,
namely the instances of concrete classes that implement that interface.

27.2.1 Subtyping

To define the Java subtype relation we need two auxiliary relations. The
subclass relation, C C C′, is the reflexive and transitive closure of the extends
relation among classes, which holds precisely when one class is declared to
extend another. In other words, C C C′ iff C either coincides with C′, in-
herits directly from C′, or inherits from a subclass of C′. Since interfaces are
classes, the subclass relation also applies to interfaces, but note that multi-
ple inheritance of interfaces means that an interface can be a subinterface
(subclass) of more than one interface. The implementation relation, C J I, is
defined to hold exactly when a class C is declared to implement an interface
that inherits from I.

WORKING DRAFT MARCH 9, 2005

27.2 Subtyping in Java 243

The Java subtype relation is inductively defined by the following rules.
Subtyping is reflexive and transitive:

τ <: τ (27.1)

τ <: τ′ τ′ <: τ′′

τ <: τ′′ (27.2)

Arrays are covariant type constructors, in the sense of this rule:

τ <: τ′

τ [] <: τ′ [] (27.3)

Inheritance implies subtyping:

C C C′

C <: C′ (27.4)

Implementation implies subtyping:

C J I
C <: I (27.5)

Every class is a subclass of the distinguished “root” class Object:

τ <: Object (27.6)

The array subtyping rule is a structural subtyping principle — one need
not explicitly declare subtyping relationships between array types for them
to hold. On the other hand, the inheritance and implementation rules of
subtyping are examples of nominal subtyping — they hold when they are
declared to hold at the point of definition (or are implied by further sub-
typing relations).

27.2.2 Subsumption

The subsumption principle tells us that if e is an expression of type τ and
τ <: τ′, then e is also an expression of type τ′. In particular, if a method
is declared with a parameter of type τ, then it makes sense to provide an
argument of any type τ′ such that τ′ <: τ. Similarly, if a constructor takes
a parameter of a type, then it is legitimate to provide an argument of a
subtype of that type. Finally, if a method is declared to return a value of
type τ, then it is legitimate to return a value of any subtype of τ.

MARCH 9, 2005 WORKING DRAFT

244 27.2 Subtyping in Java

This brings up an awkward issue in the Java type system. What should
be the type of a conditional expression e ? e1: e2? Clearly e should have type
boolean, and e1 and e2 should have the same type, since we cannot in gen-
eral predict the outcome of the condition e. In the presence of subtyping,
this amounts to the requirement that the types of e1 and e2 have an up-
per bound in the subtype ordering. To avoid assigning an excessively weak
type, and to ensure that there is a unique choice of type for the conditional,
it would make sense to assign the conditional the least upper bound of the
types of e1 and e2. Unfortunately, two types need not have a least upper
bound! For example, if an interface I extends incomparable interfaces K
and L, and J extends both K and L, then I and J do not have a least upper
bound — both K and L are upper bounds of both, but neither is smaller
than the other. To deal with this Java imposes the rather ad hoc requirement
that either the type of e1 be a subtype of the type of e2, or vice versa, to avoid
the difficulty.

A more serious difficulty with the Java type system is that the array sub-
typing rule, which states that the array type constructor is covariant in the
type of the array elements, violates the subsumption principle. To under-
stand why, recall that we can do one of two things with an array: retrieve
an element, or assign to an element. If τ <: τ′ and A is an array of type
τ [], then retrieving an element of A yields a value of type τ, which is by
hypothesis an element of type τ′. So we are OK with respect to retrieval.
Now consider array assignment. Suppose once again that τ <: τ′ and that
A is an array of type τ []. Then A is also an array of type τ′ [], according
to the Java rule for array subtyping. This means we can assign a value x
of type τ′ to an element of A. But this violates the assumption that A is an
array of type τ [] — one of its elements is of type τ′.

With no further provisions the language would not be type safe. It is
a simple matter to contrive an example involving arrays that incurs a run-
time type error (“gets stuck”). Java avoids this by a simple, but expensive,
device — every array assignment incurs a “run-time type check” that en-
sures that the assignment does not create an unsafe situation. In the next
subsection we explain how this is achieved.

27.2.3 Dynamic Dispatch

According to Java typing rules, if C is a sub-class of D, then C is a sub-type
of D. Since the instances of a class C have type C, they also, by subsump-
tion, have type D, as do the instances of class D itself. In other words, if
the static type of an instance is D, it might be an instance of class C or an

WORKING DRAFT MARCH 9, 2005

27.2 Subtyping in Java 245

instance of class D. In this sense the static type of an instance is at best an
approximation of its dynamic type, the class of which it is an instance.

The distinction between the static and the dynamic type of an object is
fundamental to object-oriented programming. In particular method spe-
cialization is based on the dynamic type of an object, not its static type.
Specifically, if C is a sub-class of D that overrides a method m, then invok-
ing the method m of a C instance o will always refer to the overriding code
in C, even if the static type of o is D. That is, method dispatch is based
on the dynamic type of the instance, not on its static type. For this reason
method specialization is sometimes called dynamic dispatch, or, less perspic-
uously, late binding.

How is this achieved? Essentially, every object is tagged with the class
that created it, and this tag is used to determine which method to invoke
when a message is sent to that object. The constructors of a class C “label”
the objects they create with C. The method dispatch mechanism consults
this label when determining which method to invoke.5

The same mechanism is used to ensure that array assignments do not
lead to type insecurities. Suppose that the static type of A is C [], and
that the static type of instance o is C. By covariance of array types the
dynamic type of A might be D [] for some sub-class D of C. But unless the
dynamic type of o is also D, the assignment of o to an element of A should
be prohibited. This is ensured by an explicit run-time check. In Java every
single array assignment incurs a run-time check whenever the array contains
objects.6

27.2.4 Casting

A container class is one whose instances “contain” instances of another class.
For example, a class of lists or trees or sets would be a container class in
this sense. Since the operations on containers are largely (or entirely) inde-
pendent of the type of their elements, it makes sense to define containers
generally, rather than defining one for each element type. In Java this is
achieved by exploiting subsumption. Since every object has type Object,
a general container is essentially a container whose elements are of type
Object. This allows the container operations to be defined once for all el-

5In practice the label is a pointer to the vector of methods of the class, and the method is
accessed by indexing into this vector. But we can just as easily imagine this to be achieved
by a case analysis on the class name to determine the appropriate method vector.

6Arrays of integers and floats do not incur this overhead, because numbers are not ob-
jects.

MARCH 9, 2005 WORKING DRAFT

246 27.2 Subtyping in Java

ement types. However, when retrieving an element from a container its
static type is Object; we lost track of its dynamic type during type check-
ing. If we wish to use such an object in any meaningful way, we must
recover its dynamic type so that message sends are not rejected at compile
time.

Java supports a safe form of casting, or change of type. A cast is written
(τ) e. The expression e is called the subject of the cast, and the type τ is the
target type of the cast. The type of the cast is τ, provided that the cast makes
sense, and its value is that of e. In general we cannot determine whether
the cast makes sense until execution time, when the dynamic type of the
expression is available for comparison with the target type. For example,
every instance in Java has type Object, but its true type will usually be
some class further down the type hierarchy. Therefore a cast applied to an
expression of type Object cannot be validated until execution time.

Since the static type is an attenuated version of the dynamic type of an
object, we can classify casts into three varieties:

1. Up casts, in which the static type of the expression is a subtype of
the target type of the cast. The type checker accepts the cast, and no
run-time check is required.

2. Down casts, in which the static type of the expression is a supertype of
the target type. The true type may or may not be a subtype of the
target, so a run-time check is required.

3. Stupid casts, in which the static type of the expression rules out the
possibility of its dynamic type matching the target of the cast. The
cast is rejected.

Similar checks are performed to ensure that array assignments are safe.
Note that it is up to the programmer to maintain a sufficiently strong

invariant to ensure that down casts do not fail. For example, if a container
is intended to contain objects of a class C, then retrieved elements of that
class will typically be down cast to a sub-class of C. It is entirely up to the
programmer to ensure that these casts do not fail at execution time. That
is, the programmer must maintain the invariant that the retrieved element
really contains an instance of the target class of the cast.

WORKING DRAFT MARCH 9, 2005

27.3 Methodology 247

27.3 Methodology

With this in hand we can (briefly) discuss the methodology of inheritance
in object-oriented languages. As we just noted, in Java subclassing entails
subtyping — the instance type of a subclass is a subtype of the instance type
of the superclass. It is important to recognize that this is a methodological
commitment to certain uses of inheritance.

Recall that a subtype relationship is intended to express a form of be-
havioral equivalence. This is expressed by the subsumption principle, which
states that subtype values may be provided whenever a supertype value is
required. In terms of a class hierarchy this means that a value of the sub-
class can be provided whenever a value of the superclass is required. For
this to make good sense the values of the subclass should “behave prop-
erly” in superclass contexts — they should not be distinguishable from
them.

But this isn’t necessarily so! Since inheritance admits overriding of
methods, we can make almost arbitrary7 changes to the behavior of the
superclass when defining the subclass. For example, we can turn a stack-
like object into a queue-like object (replacing a LIFO discipline by a FIFO
discipline) by inheritance, thereby changing the behavior drastically. If we
are to pass off a subclass instance as a superclass instance using subtyping,
then we should refrain from making such drastic behavioral changes.

The Java type system provides only weak tools for ensuring a behav-
ioral subtyping relationship between a subclass and its superclass. Fun-
damentally, the type system is not strong enough to express the desired
constraints.8. To compensate for this Java provides the finality mechanism
to limit inheritance. Final classes cannot be inherited from at all, ensuring
that values of its instance type are indeed instances of that class (rather than
an arbitrary subclass). Final methods cannot be overridden, ensuring that
certain aspects of behavior are “frozen” by the class definition.

Nominal subtyping may also be seen as a tool for enforcing behavioral
subtyping relationships. For unless a class extends a given class or is de-
clared to implement a given interface, no subtyping relationship holds.
This helps to ensure that the programmer explicitly considers the behav-
ioral subtyping obligations that are implied by such declarations, and is
therefore an aid to controlling inheritance.

7Limited only by finality declarations in the superclass.
8Nor is the type system of any other language that I am aware of, including ML

MARCH 9, 2005 WORKING DRAFT

248 27.3 Methodology

WORKING DRAFT MARCH 9, 2005

Part XI

Concurrency

249

Chapter 28

Concurrent ML

251

252

WORKING DRAFT MARCH 9, 2005

Part XII

Storage Management

253

Chapter 29

Storage Management

The dynamic semantics for MinML given in Chapter 9, and even the C-
machine given in Chapter 11, ignore questions of storage management. In
particular, all values, be they integers, booleans, functions, or tuples, are
treated the same way. But this is unrealistic. Physical machines are capable
of handling only rather “small” values, namely those that can fit into a
word. Thus, while it is reasonable to treat, say, integers and booleans as
values directly, it is unreasonable to do the same with “large” objects such
as tuples or functions.

In this chapter we consider an extension of the C-machine to account for
storage management. We proceed in two steps. First, we give an abstract
machine, called the A-machine, that includes a heap for allocating “large”
objects. This introduces the problem of garbage, storage that is allocated for
values that are no longer needed by the program. This leads to a discussion
of automatic storage management, or garbage collection, which allows us to
reclaim unused storage in the heap.

29.1 The A Machine

The A-machine is defined for an extension of MinML in which we add an
additional form of expression, a location, l, which will serve as a “reference”
or “pointer” into the heap.

Values are classified into two categories, small and large, by the follow-
ing rules:

(l ∈ Loc)
l svalue (29.1)

255

256 29.1 The A Machine

(n ∈ Z)
n svalue (29.2)

true svalue (29.3)

false svalue (29.4)

x var y var e expr

fun x (y:τ1):τ2 is e lvalue (29.5)

A state of the A-machine has the form (H, k, e), where H is a heap, a
finite function mapping locations to large values, k is a control stack, and e
is an expression. A heap H is said to be self-contained iff FL(H) ⊆ dom(H),
where FL(H) is the set of locations occuring free in any location in H, and
dom H is the domain of H.

Stack frames are similar to those of the C-machine, but refined to ac-
count for the distinction between small and large values.

e2 expr

+(�, e2) frame (29.6)

v1 svalue

+(v1,�) frame (29.7)

(There are analogous frames associated with the other primitive opera-
tions.)

e1 expr e2 expr

if� then e1 else e2 frame (29.8)

e2 expr

apply(�, e2) frame (29.9)

v1 svalue

apply(v1,�) frame (29.10)

Notice that v1 is required to be a small value; a function is represented by a
location in the heap, which is small.

As with the C-machine, a stack is a sequence of frames:

• stack (29.11)

WORKING DRAFT MARCH 9, 2005

29.1 The A Machine 257

f frame k stack

f . k stack (29.12)

The dynamic semantics of the A-machine is given by a set of rules defin-
ing the transition relation (H, k, e) 7→A (H′, k′, e′). The rules are similar to
those for the C-machine, except for the treatment of functions.

Arithmetic expressions are handled as in the C-machine:

(H, k, +(e1, e2)) 7→A (H, +(�, e2) . k, e1) (29.13)

(H, +(�, e2) . k, v1) 7→A (H, +(v1,�) . k, e2) (29.14)

(H, +(n1,�) . k, n2) 7→A (H, k, n1 + n2) (29.15)

Note that the heap is simply “along for the ride” in these rules.
Booleans are also handled similarly to the C-machine:

(H, k, if e then e1 else e2)
7→A

(H, if� then e1 else e2 . k, e)
(29.16)

(H, if� then e1 else e2 . k, true) 7→A (H, k, e1) (29.17)

(H, if� then e1 else e2 . k, false) 7→A (H, k, e2) (29.18)

Here again the heap plays no essential role.
The real difference between the C-machine and the A-machine is in the

treatment of functions. A function expression is no longer a (small) value,
but rather requires an execution step to allocate it on the heap.

(H, k, fun x (y:τ1):τ2 is e)
7→A

(H[l 7→ fun x (y:τ1):τ2 is e], k, l)
(29.19)

where l is chosen so that l /∈ dom H.
Evaluation of the function and argument position of an application is

handled similarly to the C-machine.

(H, k, apply(e1, e2)) 7→A (H, apply(�, e2) . k, e1) (29.20)

MARCH 9, 2005 WORKING DRAFT

258 29.1 The A Machine

(H, apply(�, e2) . k, v1) 7→A (H, apply(v1,�) . k, e2) (29.21)

Execution of a function call differs from the corresponding C-machine
instruction in that the function must be retrieved from the heap in order
to determine the appropriate instance of its body. Notice that the location
of the function, and not the function itself, is substituted for the function
variable!

v1 loc H(v1) = fun f (x:τ1):τ2 is e
(H, apply(v1,�) . k, v2) 7→A (H, k, {v1, v2/ f , x}e) (29.22)

The A-machine preserves self-containment of the heap. This follows
from observing that whenever a location is allocated, it is immediately
given a binding in the heap, and that the bindings of heap locations are
simply those functions that are encountered during evaluation.

Lemma 29.1
If H is self-contained and (H, k, e) 7→A (H′, k′, e′), then H′ is also self-
contained. Moreover, if FL(k) ∪ FL(e) ⊆ dom H, then FL(k′) ∪ FL(e′) ⊆
dom H′.

It is not too difficult to see that the A-machine and the C-machine have
the same “observable behavior” in the sense that both machines deter-
mine the same value for closed expressions of integer type. However, it is
somewhat technically involved to develop a precise correspondence. The
main idea is to define the heap expansion of an A-machine state to be the
C-machine state obtained by replacing all locations in the stack and expres-
sion by their values in the heap. (It is important to take care that the loca-
tions occurring in a value stored are themselves replaced by their values in
the heap!) We then prove that an A-machine state reaches a final state in ac-
cordance with the transition rules of the A-machines iff its expansion does
in accordance with the rules of the C-machine. Finally, we observe that the
value of a final state of integer type is the same for both machines.

Formally, let Ĥ(e) stand for the substitution

{H(l1), . . . , H(ln)/l1, . . . , ln}e,

where dom H = { l1, . . . , ln }. Similarly, let Ĥ(k) denote the result of per-
forming this substitution on every expression occurring in the stack k.

WORKING DRAFT MARCH 9, 2005

29.2 Garbage Collection 259

Theorem 29.2
If (H, k, e) 7→A (H′, k′, e′), then (Ĥ(k), Ĥ(e)) 7→0,1

C (Ĥ′(k′), Ĥ′(e′)).

Notice that the allocation of a function in the A-machine corresponds to
zero steps of execution on the C-machine, because in the latter case func-
tions are values.

29.2 Garbage Collection

The purpose of the A-machine is to model the memory allocation that would
be required in an implementation of MinML. This raises the question of
garbage, storage that is no longer necessary for a computation to complete.
The purpose of a garbage collector is to reclaim such storage for further use.
Of course, in a purely abstract model there is no reason to perform garbage
collection, but in practice we must contend with the limitations of finite,
physical computers. For this reason we give a formal treatment of garbage
collection for the A-machine.

The crucial issue for any garbage collector is to determine which lo-
cations are unnecessary for computation to complete. These are deemed
garbage, and are reclaimed so as to conserve memory. But when is a loca-
tion unnecessary for a computation to complete? Consider the A-machine
state (H, k, e). A location l ∈ dom(H) is unnecessary, or irrelevant, for this
machine state iff execution can be completed without referring to the con-
tents of l. That is, l ∈ dom H is unnecessary iff (H, k, e) 7→∗A (H′, •, v) iff
(Hl , k, e) 7→∗A (H′′, •, v), where Hl is H with the binding for l removed, and
H′′ is some heap.

Unfortunately, a machine cannot decide whether a location is unneces-
sary!

Theorem 29.3
It is mechanically undecidable whether or not a location l is unnecessary
for a given state of the A-machine.

Intuitively, we cannot decide whether l is necessary without actually run-
ning the program. It is not hard to formulate a reduction from the halting
problem to prove this theorem: simply arrange that l is used to complete a
computation iff some given Turing machine diverges on blank input.

Given this fundamental limitation, practical garbage collectors must
employ a conservative approximation to determine which locations are un-
necessary in a given machine state. The most popular criterion is based

MARCH 9, 2005 WORKING DRAFT

260 29.2 Garbage Collection

on reachability. A location ln is unreachable, or inaccessible, iff there is no
sequence of locations l1, . . . , ln such that l1 occurs in either the current ex-
pression or on the control stack, and li occurs in li+1 for each 1 ≤ i < n.

Theorem 29.4
If a location l is unreachable in a state (H, k, e), then it is also unnecessary
for that state.

Each transition depends only on the locations occurring on the control stack
or in the current expression. Some steps move values from the heap onto
the stack or current expression. Therefore in a multi-step sequence, execu-
tion can depend only on reachable locations in the sense of the definition
above.

The set of unreachable locations in a state may be determined by tracing.
This is easily achieved by an iterative process that maintains a finite set of
of locations, called the roots, containing the locations that have been found
to be reachable up to that point in the trace. The root set is initialized to
the locations occurring in the expression and control stack. The tracing
process completes when no more locations can be added. Having found the
reachable locations for a given state, we then deem all other heap locations
to be unreachable, and hence unnecessary for computation to proceed. For
this reason the reachable locations are said to be live, and the unreachable
are said to be dead.

Essentially all garbage collectors used in practice work by tracing. But
since reachability is only a conservative approximation of necessity, all prac-
tical collectors are conservative! So-called conservative collectors are, in fact,
incorrect collectors that may deem as garbage storage that is actually nec-
essary for the computation to proceed. Calling such a collector “conserva-
tive” is misleading (actually, wrong), but it is nevertheless common practice
in the literature.

The job of a garbage collector is to dispose of the unreachable loca-
tions in the heap, freeing up memory for later use. In an abstract setting
where we allow for heaps of unbounded size, it is never necessary to col-
lect garbage, but of course in practical situations we cannot afford to waste
unlimited amounts of storage. We will present an abstract model of a par-
ticular form of garbage collection, called copying collection, that is widely
used in practice. The goal is to present the main ideas of copying collec-
tion, and to prove that garbage collection is semantically “invisible” in the
sense that it does not change the outcome of execution.

WORKING DRAFT MARCH 9, 2005

29.2 Garbage Collection 261

The main idea of copying collection is to simultaneously determine
which locations are reachable, and to arrange that the contents of all reach-
able locations are preserved. The rest are deemed garbage, and are re-
claimed. In a copying collector this is achieved by partitioning storage into
two parts, called semi-spaces. During normal execution allocation occurs in
one of the two semi-spaces until it is completely filled, at which point the
collector is invoked. The collector proceeds by copying all reachable stor-
age from the current, filled semi-space, called the from space, to the other
semi-space, called the to space. Once this is accomplished, execution con-
tinues using the “to space” as the new heap, and the old “from space” is
reclaimed in bulk. This exchange of roles is called a flip.

By copying all and only the reachable locations the collector ensures
that unreachable locations are reclaimed, and that no reachable locations
are lost. Since reachability is a conservative criterion, the collector may pre-
serve more storage than is strictly necessary, but, in view of the fundamen-
tal undecidability of necessity, this is the price we pay for mechanical col-
lection. Another important property of copying collectors is that their exe-
cution time is proportion to the size of the live data; no work is expended
manipulating reclaimable storage. This is the fundamental motivation for
using semi-spaces: once the reachable locations have been copied, the un-
reachable ones are eliminated by the simple measure of “flipping” the roles
of the spaces. Since the amount of work performed is proportional to the
live data, we can amortize the cost of collection across the allocation of the
live storage, so that garbage collection is (asymptotically) “free”. However,
this benefit comes at the cost of using only half of available memory at any
time, thereby doubling the overall storage required.

Copying garbage collection may be formalized as an abstract machine
with states of the form (H f , S, Ht), where H f is the “ from” space, Ht is
the “to” space, and S is the scan set, the set of reachable locations. The
initial state of the collector is (H, S, ∅), where H is the “current” heap and
∅ 6= S ⊆ dom(H f) is the set of locations occurring in the program or
control stack. The final state of the collector is (H f , ∅, Ht), with an empty
scan set.

The collector is invoked by adding the following instruction to the A-
machine:

(H, FL(k) ∪ FL(e), ∅) 7→∗G (H′′, ∅, H′)
(H, k, e) 7→A (H′, k, e) (29.23)

The scan set is initialized to the set of free locations occurring in either
the current stack or the current expression. These are the locations that are

MARCH 9, 2005 WORKING DRAFT

262 29.2 Garbage Collection

immediately reachable in that state; the collector will determine those that
are transitively reachable, and preserve their bindings. Once the collector
has finished, the “to” space is installed as the new heap.

Note that a garbage collection can be performed at any time! This cor-
rectly models the unpredictability of collection in an implementation, but
avoids specifying the exact criteria under which the collector is invoked. As
mentioned earlier, this is typically because the current heap is exhausted,
but in an abstract setting we impose no fixed limit on heap sizes, preferring
instead to simply allow collection to be performed spontaneously accord-
ing to unspecified criteria.

The collection machine is defined by the following two rules:

(H f [l = v], S ∪ { l }, Ht) 7→G (H f , S ∪ FL(v), Ht[l = v]) (29.24)

(H f , S ∪ { l }, Ht[l = v]) 7→G (H f , S, Ht[l = v]) (29.25)

The first rule copies a reachable binding in the “from” space to the “to”
space, and extends the scan set to include those locations occurring in the
copied value. This ensures that we will correctly preserve those locations
that occur in a reachable location. The second rule throws away any lo-
cation in the scan set that has already been copied. This rule is necessary
because when the scan set is updated by the free locations of a heap value,
we may add locations that have already been copied, and we do not want
to copy them twice!

The collector is governed by a number of important invariants.

1. The scan set contains only “valid” locations: S ⊆ dom H f ∪ dom Ht;

2. The “from” and “to” space are disjoint: dom H f ∩ dom Ht = ∅;

3. Every location in “to” space is either in “to” space, or in the scan set:
FL(Ht) ⊆ S ∪ dom Ht;

4. Every location in “from” space is either in “from” or “to” space: FL(H f) ⊆
dom H f ∪ dom Ht.

The first two invariants are minimal “sanity” conditions; the second two
are crucial to the operation of the collector. The third states that the “to”
space contains only locations that are either already copied into “to” space,
or will eventually be copied, because they are in the scan set, and hence in
“from” space (by disjointness). The fourth states that locations in “from”

WORKING DRAFT MARCH 9, 2005

29.2 Garbage Collection 263

space contain only locations that either have already been copied or are yet
to be copied.

These invariants are easily seen to hold of the initial state of the col-
lector, since the “to” space is empty, and the “from” space is assumed to
be self-contained. Moreover, if these invariants hold of a final state, then
FL(Ht) ⊆ dom Ht, since S = ∅ in that case. Thus the heap remains self-
contained after collection.

Theorem 29.5 (Preservation of Invariants)
If the collector invariants hold of (H f , S, Ht) and (H f , S, Ht) 7→G (H′f , S′, H′t),
then the same invariants hold of (H′f , S′, H′t).

The correctness of the collector follows from the following lemma.

Lemma 29.6
If (H f , S, Ht) 7→G (H′f , S′, H′t), then H f ∪ Ht = H′f ∪ H′t and S ∪ dom Ht ⊆
S′ ∪ dom H′t.

The first property states that the union of the semi-spaces never changes;
bindings are only copied from one to the other. The second property states
that the domain of the “to” space together with the scan set does not change.

From this lemma we obtain the following crucial facts about the collec-
tor. Let S = FL(k) ∪ FL(e), and suppose that

(H, S, ∅) 7→∗G (H′′, ∅, H′).

Then we have the following properties:

1. The reachable locations are bound in H′: FL(k) ∪ FL(e) ⊆ dom H′.
This follows from the lemma, since the inital “to” space and the final
scan set are empty.

2. The reachable data is correctly copied: H′ ⊆ H. This follows from the
lemma, which yields H = H′′ ∪ H′.

MARCH 9, 2005 WORKING DRAFT

264 29.2 Garbage Collection

WORKING DRAFT MARCH 9, 2005

Bibliography

265

