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Abstract— We discuss the problem of automatically discover-
ing different acoustic regions in the world, and then labeling the
trajectory of a robot using these region labels. We use quantized
Mel Frequency Cepstral Coefficients (MFCC) as low level fea-
tures, and a temporally smoothened variant of Latent Dirichlet
Allocation (LDA) to compute both the region models, and most
likely region labels associated with each time step in the robot’s
trajectory. We validate our technique by showing results from
two datasets containing sound recorded from 51 and 43 minute
long trajectories through downtown Montreal and the McGill
University campus. Our preliminary experiments indicate that
the regions discovered by the proposed technique correlate well
with ground truth, labeled by a human expert.

I. INTRODUCTION

In this paper we introduce an acoustic environment model-
ing framework, which can be used to automatically identify
different acoustic regions in the world from a continu-
ous audio recording of the environment, in a completely
unsupervised manner. Transitions in acoustic space often
correlate with transitions in other characteristic properties of
the environment. Hence, for an autonomous robot, the ability
to detect and recognize different acoustic regions can find
use in improving many common robotic tasks. For example,
sounds of people chatting could be used to trigger higher
safety gains for a mobile robot, even though no person might
yet be in sight; and the opposite where the ambient sounds of
a breezy quite outdoor space could be used to make the robot
lower its safety in the interest of higher speeds. If the robot
has a model of the acoustic region it is currently immersed in,
then this information could also be used to detect surprising
and interesting events. For a surveillance robot, surprises in
the environment could be used to request human attention,
or just simply collect data at a higher resolution.

An overview of our proposed technique is shown in
Fig. 1. As a robot traverses an environment, the goal is to
interpret the audio as observations, which are the result of
the robot being in a particular acoustic region. We would
simultaneously like to come up with a description of different
regions which exist in the world, and at the same time predict
what region was the robot present in at each time step. This
is akin to the well known Simultaneous Localization and
Mapping (SLAM) problem in robotics.

Previous work [1] in environmental sound classification
and recognition indicates that Mel Frequency Cepstral Co-
efficients (MFCC) perform well as low level features. We
first compute the MFCCs for short windows of the audio,
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Fig. 1. Overview: As the robot traverses a trajectory through an unknown
environment, we would like to model and recognize the different acoustic
regions faced by the robot. We use quantized MFCC features and a
temporally smoothened variant of LDA to discover these regions.

and then quantize MFCCs into acoustic “words” using of
bag-of-words technique, by applying a fixed sized, pre-
computed vocabulary generated from another sound source.
The acoustic words are then grouped together into documents
spanning a few seconds of sound.

In text analysis, Latent Dirichlet Allocation (LDA) [14]
has been used to model a set of documents as a mixture
of abstract topics. These topics have been shown to be
consistent with human understanding of the documents. Sim-
ilarly, we model different temporal windows of the recorded
sound as a mixture of sounds from different regions. Textual
words used in LDA are replaced by MFCC words, and
we hypothesize that the textual topics can be interpreted as
different acoustic regions in the world. To take advantage



of temporal continuity of these “documents”, we propose
an extension to the LDA which produces topic label dis-
tributions which are smooth in temporal space. We show
that by taking into account information from a document’s
temporal neighborhood, the performance of the algorithm is
vastly improved.

We present results using two datasets containing sound
recorded from 45 minute long trajectories through downtown
Montreal and the McGill University campus. Our preliminary
results indicate that the regions discovered by the proposed
technique correlate well with ground truth labeled by a
human expert.

II. RELATED WORK

In the context of robotics, Chu et al.[2] have worked
on recognizing sound environments, comparing K-Nearest
Neighbors, Gaussian Mixture Models, and Support Vector
Machines to model a wide set of audio features, including
MFCCs and others. In addition, Roy et al.[3] have used sound
captured by a boom-mounted microphone, tapping on the
floor for sensing the environment.

A. Classification of Environmental Sounds

In general, the classification and recognition of environ-
mental sounds has received substantial attention in the do-
main of context-aware computing systems [4] and in forensic
audio surveillance [5]. These approaches use Hidden Markov
Models and other supervised learning techniques to classify
sound clips as belonging to one of several predefined classes
[4][5][6][7]. In general, they have achieved high degrees of
accuracy, however the supervised approach depends on a pre-
knowledge of the kinds of sounds which will be presented.
This can be problematic in robotics, where we often do not
know what kinds of environment will be encountered, either
because the robot is exploring them for the first time or
because we do not want to have to predict where the robot
will go. Previous works, however, have mostly been focused
on picking the best features, rather than how to model them,
and we rely on their insights in this question.

Two kinds of features have been most commonly used; the
Mel Frequency Cepstral Coefficients and the MPEG-7 [8]
Standard. Both feature sets were designed for other applica-
tions, and criticisms of their application to ambient sounds do
exist. Specifically, both feature sets rely on spectral character-
istics of the audio, which work well for speech and music, but
are problematic for more non-stationary signals. Nevertheless
both have been used commonly as benchmarks for features
in environmental sound models[9]. In addition, it has been
shown that both feature sets do give acceptable results [10].
Because of the relative complexity involved in calculating the
MPEG-7 features, with the potential application of running
our algorithm online in mind we have chosen to use MFCCs.

III. APPROACH

Given the audio captured by the robot as it traverses an
environment, we first compute the Mel Frequency Cepstral

Coefficients (Section III-A) for small overlapping sound win-
dows. We then use the bag-of-words representation for each
20 second segment of the sound (Section III-B), and describe
it as a histogram over these audio words. Finally, we use a
temporally smoothened topic modeling framework (Section
III-C) to model the hidden random variable representing the
source of the audio words.

A. MFCC

The Mel Frequency Cepstral Coefficients are a compact
representation of the spectrum of a signal, which like human
perception, give stronger weight to lower frequencies than
higher ones. Decorrelating the weighted spectral components
using a discrete cosine transform, we get a concise descrip-
tion of the timbre of a window. To achieve such a weighting,
we construct a filterbank ĥl[k] with L overlapping bands with
triangular magnitude responses weighted such that each has
equal area. Let x̂[k, p] be the DFT of input signal x[n] taken
on the window from n = [k, p] of length P . Then the MFCCs
are defined:

ccx[m, p] = β(m)

L∑
l=1

(
P−1∑
k=0

|x̂[k, p]ĥl[k]|

)

cos

[
mπ

L

(
l − 1

2

)] (1)

where the normalization factor β is defined:

β(m) :=


√

1
L , m = 0√
2
L , m > 0

(2)

More detail on the construction of the filterbank and on
choosing appropriate parameters for the window size and
number of coefficients to calculate can be found in [11].

B. MFCC Bag-of-Words

The bag-of-words descriptor for text document is essen-
tially a histogram of words, where similar words contribute
towards the same bin. This idea has been borrowed from
image modelling, where a textual word could be replaced by
visual words, as described by Sivic et al. [12]. For images,
first a vocabulary is generated by extracting visual features
from an unrelated dataset, and clustering these features using
the k-means algorithm with a large k value. The cluster
centers can then be used as a vocabulary. Now, for a new
image, we simply extract the visual features, and map each
feature to the closest vocabulary word.

Similar to visual bag-of-words technique, we first extract
MFCC features from a unrelated audio sample, and cluster
them to generate a vocabulary. Then for the given audio
sample, we simply map each of its extracted MFCC feature
to the closest audio word in the vocabulary. It is important
to use an unrelated audio sample to generate the vocabulary
to ensure an unbiased bag-of-words descriptor.
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Fig. 2. Four-loops dataset: (a) Map showing the path traversed while
recording the dataset. Different regions from the ground truth are shown
with different colors. The loop was traversed four times in the dataset.
(b) Ground truth similarity matrix, in which element (i, j) is colored if the
robot was in the same region at times i and j. Regions are colored to match
the colors in the map. (c) Best performing similarity matrix produced by
matching only the most frequent MFCC words at each time step. The matrix
correspond to a neighborhood size g = 12. (d). Similarity matrix produced
by matching the most frequent topic label for each time window. Topics were
generated using simple LDA, with no use of temporal neighborhood. (e).
Best performing similarity matrix produced by matching the most frequent
topic label for each time window, using topics generated by temporally
smoothened LDA with neighborhood size g = 4.

C. Audio Topics

We would like to model different regions responsible for
producing different MFCC words described above. Let there
be K different acoustic regions in the world. Let dt denote a
time window around t, and {wt

i} be the set of words observed
in the time window. For each word we would like to compute
the most likely region responsible for producing that word.
Let zti be this region label, responsible for producing word
wt

i .
Topic modeling methods were originally developed for

text analysis. Hofmann [13] introduced the idea of proba-
bilistic Latent Semantic Analysis (PLSA) for text documents,
where the probability of observing word wi in a given
document (or in our case, temporal window) dt was defined
as:

P(wt
i |dt) =

K∑
k=1

P(wt
i |zti = k)P(zti = k|dt), (3)

where wt
i takes a value between 1 . . . V , and zti is the hidden

region or topic label for wt
i , which takes a value between

1 . . .K. The central idea being the introduction of a hidden
variable z, which models the underlying topic, or the context
responsible for generating the word. We can model each
temporal window using a distribution θt(k) = P(zti = k|dt)
over these topics, and model each topic using a distribution
φk(v) = P(w = v|z = k) over the set of vocabulary words.

Latent Dirichlet Allocations, proposed by Blei et al. [14]
places Dirichlet priors on θ and φ, which have been shown
to result in semantically more relevant topics. Griffiths et
al.[15] subsequently proposed a collapsed Gibbs sampler for
LDA, where the state is topic assignments for all the words
in all the documents. The Gibbs sampler proposes to sample
the topic labels from the distribution:

P(zi = k|z−i,w) ∝
nvk,−i + β∑V

v=1(n
v
k,−i + β)

·

nkt,−i + α∑K
k=1(n

k
t,−i + α)

(4)

where v = wi is the word label, k = zi is the new topic
label, nvk,−i is the number of words of type v with topic
label k, excluding the current word, and nkt,−i is the number
of words with topic label k that are in the temporal window
dt, excluding the current word, z−i is the set of all topic
assignments except zi.

D. Temporally Smoothened LDA

A straightforward application of Latent Dirichlet Alloca-
tions, as proposed above, requires the assumption that each
temporal window has topic labels that are independent of
the topic labels of its neighboring windows. This can lead
to very noisy results. We propose to instead model the joint
word distribution as:

P(wt
i |dt) =

K∑
k=1

P(wt
i |zti = k)P(zti = k|G(t, g)), (5)
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Fig. 3. Figure-8 dataset: (a) Map showing the path traversed while
recording the dataset. Different regions from the ground truth are shown
with different colors. The path is topologically equivalent to figure-8, and
was looped twice. (b) Ground truth similarity matrix, in which element (i, j)
is colored if the robot was in the same region at times i and j. Regions
are colored to match the colors in the map. (c) Best performing similarity
matrix produced by matching only the most frequent MFCC words at each
time step. The matrix correspond to a neighborhood size g = 14. (d).
Similarity matrix produced by matching the most frequent topic label for
each time window. Topics were generated using simple LDA, with no use
of temporal neighborhood. (e). Best similarity matrix produced by matching
the most frequent topic label for each time window, using topics generated
by temporally smoothened LDA with neighborhood size g = 2.

where G(t, g) = {dt−g, · · · , dt, · · · , dt+g} is the set of
temporal windows in the neighborhood of dt, including dt.
The bigger the size of this neighborhood, the more consistent
the topic labels over adjacent temporal windows will be.

E. Region Labels for Temporal Windows

Given the region labels zti for each wordwt
i , we would like

to compute the region label rt for each temporal window dt.
We use the maximum likelihood estimation:

rt = argmax
k

P(zti = k|dt) (6)

= argmax
k

nkt , (7)

where nkt is the number of times a word in documen dt is
assigned topic label k.

Using these region labels for each temporal window, we
can now define two different locations in a robot’s trajectory
to be the same regions if their region labels are the same.

IV. EXPERIMENTS

A. Datasets

We recorded two datasets, 51 and 43 minutes long, cor-
responding to sound recorded from trajectories with loops
through the McGill Campus and the surrounding downtown
area of Montreal. The audio was recorded in stereo from a
standard hand-held video camera at a 44.1 kHZ samplerate,
while walking at approximately constant speed, and later
combined into a single channel. The loops were chosen to
contain varied sound environments, and contain both indoor
and outdoor sounds, as well as sounds from busy and quiet
environments. The map of these trajectories is shown in
Fig. 2(a) and 3(a). The dotted paths segments correspond to
indoor environments. The Four-loops dataset shown in Fig.
2 consists of four loops through the trajectory shown in the
map, and the Figure-8 dataset shown in Fig. 3 corresponds
to a trajectory which is topologically equivalent to figure ‘8’,
and is looped twice.

B. Ground Truth

Fig. 2(b), 3(b) show the ground truth similarity matrix,
where element (i, j) is colored (non black) if the robot was
labeled to be in the same region at time i and j, i.e., region
labels ri = rj . The color of the element (i, j) corresponds to
the color of the path segments shown in Fig. 2(a) and 3(a).
Thus, colored blocks in the ground truth similarity matrix
correspond to sets of locations that belong to a single spatial
region with a consistent acoustic fingerprint. The red squares
in Fig. 2(b) thus correspond to sets of pairs of points along
the trajectory that all have acoustic fingerprints that sound
like the roadway marked as region 1 in Fig. 2(a).

Ground truth was produced by a human expert, by identi-
fying points on the map where environment transitions occur.
Doorways for entering and exiting buildings as well as the
edges of campus were the main landmarks. Some gradual
environment transitions occur in the datasets, for instance
going from quiet outdoors parts of campus to busy ones. We
do not try to model these gradual transitions, and instead just
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Fig. 4. ROC curves for the two dataset, showing performance of the proposed technique. Each curve shows true positive rate vs false positive rates in
predicting whether time-windows i and j correspond to the same region, for all i and j, as we change the size of the neighborhood. The prediction is
done by matching the most frequent word or region label in the temporal neighborhood of the given times. The first point on the topics curve correspond
to simple LDA, with neighborhood size of zero. We see that the proposed technique (temporally smoothened LDA) produces significantly better results
than MFCC words or simple LDA based predictions. First and the third points on the topics curve , and eighth point on the words curve in (b) correspond
to the similarity matrices shown in Fig. 3. First and the fifth points on the topics curve , and seventh point on the words curve in (a) correspond to the
similarity matrices shown in Fig. 2.

pick a single point where this transition occurs, as is in the
transition from region 2 to 3 in Fig. 2(a).

C. Algorithm Evaluation

We first generated two vocabularies by clustering MFCC
features from the two datasets, and then used the vocabulary
from the first dataset to generate MFCC words for the
second, and vice versa. Each MFCC word corresponds to
92 millisecond window of the sound, with a 50% overlap
with the previous window. We then grouped these words into
“documents”, each representing 20 seconds of sound, with
no overlap. The Four-loops dataset has 151 such documents,
and the Figure-8 dataset we has 128 documents. We ran the
temporally smoothened LDA on these document-sets with
varying neighborhood size g mentioned in Eq. 5. For each
document, we then compute the region label rt by counting
the most popular topic label in that document. Now, for each
pair of documents, we compare the corresponding region
labels, and mark the corresponding times to belong to the
same region if the region labels match.

We experimented with neighborhoods size g = 0 · · · 10,
and computed the true positive rates (TPR) and false positive
rates (FPR) resulting from comparison with the ground truth
matrix. TPR refers to the fraction of true positives similarity
matches out of all positive results returned by the algorithm.
Similarly, FPR refers to the fraction of false positive simi-
larity matches out of all negative matches returned by the
algorithm. An ideal algorithm has TPR of 1.0 and FPR
of 0.0. The resulting plots of TPR vs FPR (known as a
ROC curve) are shown in Fig. 4(a), 4(b). Fig. 2(e), 3(e)
show the similarity matrices with the best performance,
chosen by their distance from the baseline performance
on the ROC curve. Fig. 2(d), 3(d) correspond to region
similarity matrix for neighborhood size g = 0, referring to
the use of simple LDA, with no information sharing between

neighboring documents, shown here for comparison. These
matrices correspond to the first point on the “topics” ROC
curve.

To show the advantage of using temporally smoothened
LDA over the relatively lower level bag-of-words represen-
tation, we also computed the region assignment matrix using
just the word distributions. Similar to region assignment
for topics, we mark the region label for each time step
by the most popular MFCC word in the document and its
neighborhood. Now if a pair of timesteps have the same
region label, then they are marked to be from the same
region. Fig. 2(c), 3(c) show the best case similarity matrices.

V. RESULTS

Our experiments indicate that the use of temporally
smoothened LDA to discover acoustic regions in the world
perform significantly better than using simple LDA, or
MFCC words. Fixing the false positive rate to be less than
0.25, Table I shows the best detection accuracy for each
algorithm for both the datasets.

TABLE I
OVERALL RESULTS

Dataset Best Detection Accuracy
(False positive rate < 0.25)

MFCC-words LDA Temp. Smooth. LDA
TPR FPR TPR FPR TPR FPR

Four-loops 0.29 0.15 0.19 0.04 0.61 0.21
Figure-8 0.63 0.23 0.50 0.12 0.80 0.23

We see that in both datasets, the temporally smoothened
topics-based region labels outperformed the top-word-based
region labels. It should be noted that the reported false
positive rate is probably higher than the actual false positive
rate because similar sounding regions at physically different



locations were marked as distinct in our ground truth. For
example, regions (1) and (4) from the Figure-8 dataset are
both recorded from busy streets, and sound the same, and
as result are detected to be the same region by the proposed
algorithm (Fig. 3(e)).

Looking at the document similarity matrices produced by
the system for the two datasets (Fig. 2(e), 3(e)), we can
see that the algorithm is successfully able to detect loop
closure at many, but not all locations. This points to a
potential application to loop-closure problem in situations
where standard vision based loop closure techniques are not
adequate or need to be augmented.

VI. CONCLUSIONS

We have presented an acoustic topic modeling framework
suitable for discovering regions in the world, based on the
changing sound environment around a robot. The proposed
technique works in a unsupervised way, and can therefore
be used in situations where there is limited knowledge
about the places the robot will encounter. We use quantized
Mel Frequency Cepstral Coefficients (MFCC) as low level
features, and a temporally smoothened variant of Latent
Dirichlet Allocation (LDA) to compute both, the region
models, and most likely region labels associated with each
time step. Our experiments with two, over 45 minute long
datasets, show that the proposed technique does better than
using simple LDA in matching the performance of a human
expert labeled similarity map. We were able to achieve a true
positive detection rate of 0.80, while having a false positive
rate of 0.23 on one dataset, and true positive rate of 0.61 and
false positive rate of 0.21 for the other.

In our ongoing work, we are looking at ways to make
the proposed technique work online and in realtime, which
would allow the system to be used by a robot exploring
previously unknown territories. An online spatiotemporal
topic modeling framework such as ROST [?] could be used to
enable this. The probabilistic nature of the pose matches that
ensue from our algorithm suggest that it should be straight-
forward to combine these estimates with those from other
sensing media, such as vision, using traditional information
filtering methods. We have not done that in this paper since
we have chosen to focus on the core issues in interpreting
audio data, but this should be a fruitful application of our
approach.
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