ASSIGNMENT 5
Comparing DNA Strings

COMP-202, Summer 2010

Due: Tuesday, June 15th, 2010

1 Introduction

The field of bioinformatics uses computers and algorithms to solve problems from biology. This is useful, because
in biology scientists often need to analyze large amounts of data. One example is the analysis of DNA using
computers. We can use them to compare DNA strings, and find how similar they are, which gives us a measure of
how closely related two species are. Evolution is based on mutations of DNA strings. An atomic mutation is either
an insertion, deletion or substitution of one of the base pairs that makes up the DNA string, denoted by c, g, a and
t. We can look at two strings and find out what the least number of mutations are to go from one string to the
other. This notion in general is called the edit distance between two strings. It measures how many atomic edits
(insertions, deletions, substitutions) one needs to go from the one string to the other:

foo | bar | oar
foo | 0 3 3
bar | 3 0 1
oar | 3 1 0

There exists an algorithm to compute the edit distance, and you will need to implement it in this assignment.
The algorithm is presented below in something called pseudo code. Pseudo code is a precise description of an
algorithm using a syntax that is similar to a programming language, but it doesn’t really resemble any particular
one. It might use mathematical notation, slightly different syntax, like «+— or := as assignment operators, or just
indentation but no braces, or subscripts to denote array accesses. In Java, indexing always starts at 0, but in pseudo
code the first index may be 1. Sometimes English is used to describe certain aspects of an algorithm. There are
no fixed conventions on how to write pseudo code, as long as it is precise and makes clear what is meant, without
being actual code.

Algorithm: Edit Distance

input: two character strings si..m, t1.n
output: the edit distance between s and t
uses: an integer array do..m,0..n

fori=0..m
dio 1

for j =0..n
doj «—J

fori=1..m
forj=1..n
if s; =1; then
dij — di—1,j-1
else
dij < 1+ min(di—1,5, di j—1, di—1,j-1)

return dp, p
In this assignment we will read DNA sequences from files, and compare them using the edit distance algorithm.

The sequences describe the same gene from different species, and comparing them will give us an idea how closely
they are related. Once we found the relationships, we can draw a genealogical tree.

2 Specification

This assignment will consist of three classes, one just providing static methods, one a blue print for objects, and
one just providing a main method. You have to follow the interfaces (method names, input/output types) exactly
as specified, but you may add your own private helper methods. As usual, you should test every single method you
add. You may do so by adding a main method to every class that you write, which tetsts the functionality of the
class.

2.1 StringUtils

We will need a little helper library providing us with some useful String methods. The edit distance will be computed
here. All methods are static. getDistance takes two strings, and returns their edit distance as an integer. filter
takes two strings, a text and a mask. It will return a new string which is the same as the text, but only retaining
characters that are present in the mask (filter("hi how are you?","hoAi") — "hihoo").

2.2 DNAString

Our first class desribing on object, describes a dna sequence. Internally it stores the dna sequence and the species
name as a String, as private members. Our interface (the public members) consists only of instance methods.
Implement the methods in the following table:

method name | parameters function and return

<constructor> | Two strings: a species and a dna sequence | constructs the dna string using the arguments
<constructor> | A string denoting a file name reads the dna sequence from the given filename
toString - returns a String representation of the dna String
getSpecies - returns the species as a String

getMutations Another DNAString returns the edit distance to the other dna string

Hint: if you look at the sequence files you will see how they are formatted. When reading them from file, you
have to make sure that you only store the species description, and the dna sequence - but the sequence should only
consist of the letters ¢, g, a and t.

Note that the toString method allows us to directly print a DNAString using System.out.println. If you
implement the method, you can directly print the object, without converting it to a String. This is because
println will call the toString method automatically, if the argument is an object. Try to see what gets printed
if you do not add the toString method.

2.3 Main

The Main class only provides a main method. It should read two file names as command line arguments (from the
args parameter), load the dna sequences that exist at that location and compare them. The program should print
out the comparison in a user-friendly way. If less than two commmand line arguments are specified, the method
should print a welcome and a description of how to use the program.

2.4 Analyze data

Use your program to compare the n dna Sequence files that can be found on the webpage. Make a table to show
them. Try to come up with a genealogical tree. Keep this short and simple.

Submit both your program, and your analysis of the data.

Page 2

