
Source Control

Comp-361 : Source Control
Lecture 6

Alexandre Denault
Computer Science
McGill University

Winter 2008



Chicken Pox

■ A student in the class was diagnose with Chicken Pox.
 If you didn't get it as a child, or not vaccinated, time to get 

vaccinated.
 If you suffer from a form of immune-deficiency, time to see a 

doctor.
■ Your official McGill email box contains more information.



Pong 36-Hour Challenge

■ Gabriel Lemonde-Labrecque
■ Luke Bayly
■ Marc-Olivier Dozois Lyrette
■ Mitch Shum-lok
■ Robert Rolnick
■ Winston Lin



Winner : Mario Pong

Gabriel Lemonde-Labrecque



Participation : VotE

Luke Bayly



Question

Who knows about source control systems?



Question

Who has use a source control system in a previous 
project?



Question

Who has done a project where they find that the 
source control system was useful?



Source Control

It's not enough to set it up, you need to use it!

– Emmanuel



Question

Have you ever been working on a source file and 
wished you could retrieve a previous version of a 

file?



Question

Have you ever worked on a team project and had 
difficult sharing files with your partner?



What?

■ Source Control is about the management of revision
 changes are noted with a revision number



Why?

■ For sharing purposes (team work)
■ For tracking / auditing purposes (accountability)
■ For debugging purposes (history)



How?

■ The code is located in one central location 
 Code repository
 Always contains the latest official version

■ Each developer acquires his copy of the code
 Local development

■ To share changes, he must commit them to the 
repository.
 Each change is assigned a revision number



Can't avoid it

■ If you work in industry, you will use a source control 
system.



Team Overlap

■ Source control allows large groups of developers to work 
on the same project
 Minimizes the risks of overlapping changes.

■ Each developer can work on his local copy
 Doesn't affecting other developers.
 Only commits once changes are stable.



Question

What happens if several developers 
want to work on a separate experimental 

version of an application?



Question

How can I record important revisions?



Trunk / Branch / Tags

A source tree is separated into three categories: the 
trunk, branches and tags (tree analogy).
 The trunk is the main copy of your code.
 Branches are separate copies of your main code.
 Tags are snapshots of the trunk or branches.



CVS

■ CVS is the Concurrent Versions System, was created in 
the mid 1980's.

■ It was recreated as a follow up to an earlier version 
system called Revision Control System (RCS).
 RCS was great for individual files, bad for large projects.



SVN

■ Subversion (a.k.a. SVN) was developed as a modern 
day replacement to CVS.

■ Subversion has many key features:
 Commits are truly atomic (can't have problem with 2 people 

committing at the same time).
 You can now move or rename files.
 Strong integration with Apache.
 Etc ...



To set up a SVN at School

■ You will need to collect the CS user names of each team 
members.

■ Send a request to help@cs.mcgill.ca for SVN directory 
for your Comp-361 project along with the collected user 
names.



Creating a repository

■ To create a repository, you simply need to use the 
svnadmin command.
svnadmin create  /xtra/2008/cs361/team1
 This creates an svn directory in /xtra/2008/cs361/team1

■ The next step would be to set up a trunk/branch/tag 
structure.
 But you don't need it.



URL of repository

■ To use a repository, you need it's location (URL)

■ The URL depends on which access method you use.
file:///directory
svn+ssh://username@server/directory
http://server/xtra/directory

svn+ssh://bob@svn.cs.mcgill.ca/xtra/2008/cs361/team1



SVN Client

■ All OS: command line svn
■ Windows : SVN Tortoise
■ Eclipse : Subclipse
■ NetBeans : built-in

SVN Tortoise



svn command

■ The svn command is an all purposes tool. It contains all 
the necessary functionality to 
 checkout code from a repository
 adding files to a repository
 update a local repository
 merge two revisions
 compare two revisions
 commit code to a repository
 Etc.



svn help
■ You type in the svn help command to see 
usage: svn <subcommand> [options] [args]
Subversion command-line client, version 1.2.3.
Type 'svn help <subcommand>' for help on a specific subcommand.

Most subcommands take file and/or directory arguments, recursing
on the directories.  If no arguments are supplied to such a
command, it recurses on the current directory (inclusive) by 

default.

Available subcommands:
   add
   blame (praise, annotate, ann)
   cat
   checkout (co)
   cleanup
   commit (ci)
   copy (cp)
...



Checking Out

svn checkout URL [PATH]
■ To modify code in a repository, you need to check out a 

local copy of the code. 
svn checkout 
svn+ssh://adenau@svn.cs.mcgill.ca/xtra/mammoth
/trunk mammoth-trunk



Adding

svn add FILES
■ To add a file to a repository, you need to first place it in 

your checkout directory (in the correct location).
■ Then call the svn add command.
■ The file will be added next time you commit your 

changes.



Committing

svn commit [PATH]
■ Once you've tested your changes, you can commit them 

to the repository.
■ When committing, you will be asked to supply a short 

message.
■ This short message should explain what you are 

committing:
 Changes you did
 Reasons for the change
 Bugs you fixed (including bug id if available)



Updating

svn update [PATH]
■ Other people are continuously contributing to the svn 

repository. 
■ To update your code with their latest changes, just use 

the svn update command.
■ If somebody changed lines in a file that you also 

changed, a conflict occurs.
 The file is going to be tagged as in a conflicted state.
 Before you can commit your changes, you need to resolve the 

conflict.



Resolving

svn resolved FILE
■ Once both piece of code have been merge, the svn 

resolve command must be used to indicate the new state 
of the file.



Conflict Avoidances

■ To minimize the risk of conflicts, some companies have 
established “manual” locking scheme.



Conflict Avoidances

■ To minimize the risk of conflicts, some companies have 
established “manual” locking scheme.

■ One of the most memorable is the stuffed toy locking 
system.
 Only the person with the stuffed toy on his desk can commit his 

code to repository.
 A programmer can “acquire” the toy by getting it from its 

designated storage.
 Once he is finished committing his code, he must return the toy 

to its designated storage.
■ Although this solution solves some problems of 

simultaneous commits, it
 shares a lot of problems with file locking.
 does not prevent conflicts from occurring, just reduces the 

chances.



Status

svn status [PATH]
■ For a given path, svn status will give the svn state of 

each file.
 'A' Added
 'C' Conflicted
 'D' Deleted
 'G' Merged
 'I' Ignored
 'M' Modified
 'R' Replaced
 '?' item is not under version control
 '!' item is missing

■ More information about the output can be found by using 
svn help status.



Read a tutorial



SourceSafe

■ SourceSafe is the previous version control package 
solution from Microsoft, distributed with Visual Studio.
 purely file locking mechanism.
 tight integration with Visual Studio
 works well for small teams
 does not scale well for large teams



Visual Studio Team Foundation 
Server

■ New solution from Microsoft for larger teams
 source control
 data collection
 reporting
 project tracking



Perforce

■ Perforce is the industry solution for revision control.
■ It has an impressive client list

 Activision, ATI, Cisco, EA, Ericsons, IBM, SCEA, etc
■ Perforce supports several operating system and can 

integrate itself with several application.
 Visual Studio / Eclipse / Xcode
 Photoshop
 3DS Max, Maya
 MS Office



This Weekend

■ Continue trying out technologies.
■ Start thinking about data structures.
■ Meetings start Monday.

 McConnell 322


	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

