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Chicken Pox

■ A student in the class was diagnose with Chicken Pox.
 If you didn't get it as a child, or not vaccinated, time to get 

vaccinated.
 If you suffer from a form of immune-deficiency, time to see a 

doctor.
■ Your official McGill email box contains more information.



Pong 36-Hour Challenge

■ Gabriel Lemonde-Labrecque
■ Luke Bayly
■ Marc-Olivier Dozois Lyrette
■ Mitch Shum-lok
■ Robert Rolnick
■ Winston Lin



Winner : Mario Pong

Gabriel Lemonde-Labrecque



Participation : VotE

Luke Bayly



Question

Who knows about source control systems?



Question

Who has use a source control system in a previous 
project?



Question

Who has done a project where they find that the 
source control system was useful?



Source Control

It's not enough to set it up, you need to use it!

– Emmanuel



Question

Have you ever been working on a source file and 
wished you could retrieve a previous version of a 

file?



Question

Have you ever worked on a team project and had 
difficult sharing files with your partner?



What?

■ Source Control is about the management of revision
 changes are noted with a revision number



Why?

■ For sharing purposes (team work)
■ For tracking / auditing purposes (accountability)
■ For debugging purposes (history)



How?

■ The code is located in one central location 
 Code repository
 Always contains the latest official version

■ Each developer acquires his copy of the code
 Local development

■ To share changes, he must commit them to the 
repository.
 Each change is assigned a revision number



Can't avoid it

■ If you work in industry, you will use a source control 
system.



Team Overlap

■ Source control allows large groups of developers to work 
on the same project
 Minimizes the risks of overlapping changes.

■ Each developer can work on his local copy
 Doesn't affecting other developers.
 Only commits once changes are stable.



Question

What happens if several developers 
want to work on a separate experimental 

version of an application?



Question

How can I record important revisions?



Trunk / Branch / Tags

A source tree is separated into three categories: the 
trunk, branches and tags (tree analogy).
 The trunk is the main copy of your code.
 Branches are separate copies of your main code.
 Tags are snapshots of the trunk or branches.



CVS

■ CVS is the Concurrent Versions System, was created in 
the mid 1980's.

■ It was recreated as a follow up to an earlier version 
system called Revision Control System (RCS).
 RCS was great for individual files, bad for large projects.



SVN

■ Subversion (a.k.a. SVN) was developed as a modern 
day replacement to CVS.

■ Subversion has many key features:
 Commits are truly atomic (can't have problem with 2 people 

committing at the same time).
 You can now move or rename files.
 Strong integration with Apache.
 Etc ...



To set up a SVN at School

■ You will need to collect the CS user names of each team 
members.

■ Send a request to help@cs.mcgill.ca for SVN directory 
for your Comp-361 project along with the collected user 
names.



Creating a repository

■ To create a repository, you simply need to use the 
svnadmin command.
svnadmin create  /xtra/2008/cs361/team1
 This creates an svn directory in /xtra/2008/cs361/team1

■ The next step would be to set up a trunk/branch/tag 
structure.
 But you don't need it.



URL of repository

■ To use a repository, you need it's location (URL)

■ The URL depends on which access method you use.
file:///directory
svn+ssh://username@server/directory
http://server/xtra/directory

svn+ssh://bob@svn.cs.mcgill.ca/xtra/2008/cs361/team1



SVN Client

■ All OS: command line svn
■ Windows : SVN Tortoise
■ Eclipse : Subclipse
■ NetBeans : built-in

SVN Tortoise



svn command

■ The svn command is an all purposes tool. It contains all 
the necessary functionality to 
 checkout code from a repository
 adding files to a repository
 update a local repository
 merge two revisions
 compare two revisions
 commit code to a repository
 Etc.



svn help
■ You type in the svn help command to see 
usage: svn <subcommand> [options] [args]
Subversion command-line client, version 1.2.3.
Type 'svn help <subcommand>' for help on a specific subcommand.

Most subcommands take file and/or directory arguments, recursing
on the directories.  If no arguments are supplied to such a
command, it recurses on the current directory (inclusive) by 

default.

Available subcommands:
   add
   blame (praise, annotate, ann)
   cat
   checkout (co)
   cleanup
   commit (ci)
   copy (cp)
...



Checking Out

svn checkout URL [PATH]
■ To modify code in a repository, you need to check out a 

local copy of the code. 
svn checkout 
svn+ssh://adenau@svn.cs.mcgill.ca/xtra/mammoth
/trunk mammoth-trunk



Adding

svn add FILES
■ To add a file to a repository, you need to first place it in 

your checkout directory (in the correct location).
■ Then call the svn add command.
■ The file will be added next time you commit your 

changes.



Committing

svn commit [PATH]
■ Once you've tested your changes, you can commit them 

to the repository.
■ When committing, you will be asked to supply a short 

message.
■ This short message should explain what you are 

committing:
 Changes you did
 Reasons for the change
 Bugs you fixed (including bug id if available)



Updating

svn update [PATH]
■ Other people are continuously contributing to the svn 

repository. 
■ To update your code with their latest changes, just use 

the svn update command.
■ If somebody changed lines in a file that you also 

changed, a conflict occurs.
 The file is going to be tagged as in a conflicted state.
 Before you can commit your changes, you need to resolve the 

conflict.



Resolving

svn resolved FILE
■ Once both piece of code have been merge, the svn 

resolve command must be used to indicate the new state 
of the file.



Conflict Avoidances

■ To minimize the risk of conflicts, some companies have 
established “manual” locking scheme.



Conflict Avoidances

■ To minimize the risk of conflicts, some companies have 
established “manual” locking scheme.

■ One of the most memorable is the stuffed toy locking 
system.
 Only the person with the stuffed toy on his desk can commit his 

code to repository.
 A programmer can “acquire” the toy by getting it from its 

designated storage.
 Once he is finished committing his code, he must return the toy 

to its designated storage.
■ Although this solution solves some problems of 

simultaneous commits, it
 shares a lot of problems with file locking.
 does not prevent conflicts from occurring, just reduces the 

chances.



Status

svn status [PATH]
■ For a given path, svn status will give the svn state of 

each file.
 'A' Added
 'C' Conflicted
 'D' Deleted
 'G' Merged
 'I' Ignored
 'M' Modified
 'R' Replaced
 '?' item is not under version control
 '!' item is missing

■ More information about the output can be found by using 
svn help status.



Read a tutorial



SourceSafe

■ SourceSafe is the previous version control package 
solution from Microsoft, distributed with Visual Studio.
 purely file locking mechanism.
 tight integration with Visual Studio
 works well for small teams
 does not scale well for large teams



Visual Studio Team Foundation 
Server

■ New solution from Microsoft for larger teams
 source control
 data collection
 reporting
 project tracking



Perforce

■ Perforce is the industry solution for revision control.
■ It has an impressive client list

 Activision, ATI, Cisco, EA, Ericsons, IBM, SCEA, etc
■ Perforce supports several operating system and can 

integrate itself with several application.
 Visual Studio / Eclipse / Xcode
 Photoshop
 3DS Max, Maya
 MS Office



This Weekend

■ Continue trying out technologies.
■ Start thinking about data structures.
■ Meetings start Monday.

 McConnell 322
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