
Object Oriented Programming

Comp-361 : O.O. Programming
Lecture 4

Alexandre Denault
Original notes by

Jörg Kienzle and Hans Vangheluwe
Computer Science
McGill University

Winter 2008

On my desk

■ You should all have a team by now.
■ For Monday, on a sheet of paper

 Name of team members, with email
 Name of the team (be creative, or I chose for you)
 A number between 0 and 100
 Course conflict with on Monday/Wednesday between 10h30

and 12h00.

Decomposition

■ Divide a large tasks in smaller components.
■ Easier to complete smaller components individually.

■ Dividing into subproblems
 Subproblems can be solved independently.
 Solutions to subproblems can be combined to solve the whole

problem.

Cooking supper example

Naval Battle

What are the components of Naval Battle?

Naval Battle (2)

Units

Terrain

Actions

Rules

Players

What is O.O. programming?

■ A computer programming paradigm.
■ Emphasizes the following

 Abstraction
 Information/Implementation hiding (encapsulation)
 Modularity

Abstraction

simplify different things and
treat them as the same

■ Decomposition by changing the level of detail to be
considered.

■ Forget information and consequently to treat different
things as if they were the same.

 Files on a hard disk
 Units in a game

Abstraction / Type Hierarchy

■ A type family is defined by a type hierarchy.
■ At the top of the hierarchy is a supertype that defines

behavior common to all family members.
■ Other members are subtypes of this supertype.
■ A hierarchy can have many levels.

Example of Abstraction Hierarchy

MediaOptical Magnetic

CD

DVD Disc

Tape

Example of Abstraction Hierarchy

Media

Optical Magnetic

CD DVD Disc Tape

 Info. / Implementation hiding

 separating implementation from interfaces

■ When observing an encapsulation, we can have two
point of view:
 From the outside (public view)
 From the inside (private view)

■ The advantages of a good encapsulation is the
separation of the private and public views.

Player

In a video game, how can I store the direction a player is
facing?

Player

■ How do I store the direction a player is facing?
 An integer ?

➔ 4 possible values : 1=North, etc
➔ Values from 0 to 360 ?

 A float ?
➔ Values from 0 to 99.9 ?

 A character ?
➔ n,s,e and w ?

 4 booleans ?
➔ north, south, east, west ?

Player

■ How do I hide this from the user?
 IsFacingNorth() : boolean
 IsFacingSouth() : boolean
 IsFacingEst() : boolean
 IsFacingWest() : boolean
 GetDegreeFacing(): int
 GetDirectionFacing(): int

Get / Set Rule

■ Never allow other class to directly access your attribute.
■ Once an attribute is public, it can never be changed.

 Ex: img.pixeldData
■ Make your attributes available using get/set methods.

 this.connectionStatus Bad!
 this.getConnectionStatus() Good!

Point

public interface Point {
public set(int x, int y);
public int getX();
public int getY();

}

Point

■ Inside, point could be using Cartesian or Polar
coordinates.

 Cartesian coordinates are more efficient when dealing with lots
of translations.

 Polar coordinates are more efficient when dealing with lots of
rotations.

Modularity

decomposing into a set of cohesive and loosely
coupled units

■ Break down elements into units depending on themes
and concerns.

■ Minimizing interaction between these units improves
maintainability.

Modularity in Mammoth

Pathfinding Physics
Network

Replication

World/Logic

Specifications in English

■ Company XYZ is a manufacturing company that
produces cartoon figurines for big entertainment
companies.

■ This company needs an inventory and tracking system.
■ The inventory system keeps track of how many of each

figurines is stored in each warehouse.
■ Figurines are stored in cases.
■ Clients order the figurines and the cases are eventually

shipped to clients.

This time, in UML

Unified Modeling Language (UML)

■ A language, both graphical and textual, used throughout
the entire process of project design (from requirements
analysis to deployment).

■ Semi-formal specification that captures structure of
O.O.D.

■ A standard tool for communicating a design.

Diagrams

Class Diagram

Class Example

Classes vs Objects

■ Classes are static, depict the design and structure at
design-time

■ Objects are dynamic and are instantiated (from a class)
at run-time, they have state

Attributes vs Variables

■ Attributes are considered at design-time, are some
abstractly defined property

■ Variables are considered at implementation-time, are
concretely defined properties

Objects

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

