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Abstract. In recent years, many new concepts, methodologies, and tools
have emerged, which have made Model Driven Engineering (MDE) more
usable, precise and automated. A MDE process is very often dependent
on the domain. Thus, means for composing and customizing MDE activ-
ities are increasingly necessary. In this paper, we propose the FTG+PM
framework that acts as a guide for carrying out model transformations,
and as a basis for unifying key MDE practices, namely multi-paradigm
modelling, meta-modelling, and model-transformation. The FTG+PM
consists of the Formalism Transformation Graph (FTG) and its com-
plement, the Process Model (PM), and charts all kinds of activities in
the MDE lifecycle such as requirements development, domain-specific
design, verification, simulation, analysis, calibration, deployment, code
generation, execution, etc. The FTG describes in an explicit and pre-
cise way, formalisms, and their relationships as transformations between
formalisms. The PM defines an actual MDE process using these for-
malisms and transformations. We illustrate the proposed FTG+PM ap-
proach through the design of an automated power window, a case study
from the automotive domain.

1 Introduction

In recent times, model driven engineering (MDE) has been adopted in industrial
projects in widely varying domains. The promises of MDE regarding traditional
software development methods are many. The most important ones are: better
management of the complexity of software development by making use of power-
ful abstractions; better management of the requirements for the system coming
from the stakeholders, by both exposing the logic of the system in languages
that are understandable by non programmers as well as fast re-generation of
code by using automated model transformations; less bugs in the final software
product given that automation helps eliminate errors and usage of formal verifi-
cation tools raises confidence of correctness; and finally automated documenta-
tion generation from domain specific models. If achieved, all these benefits would
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translate in potentially faster, cheaper and more reliable software development
techniques than the ones traditionally used.

Several important concepts and associated fields of study have emerged or
have been adopted and further developed by the efforts of the MDE commu-
nity. Model transformations, domain specific modelling, requirements engineer-
ing, verification and validation, multi-paradigm modelling, model composition,
simulation, calibration, deployment, code generation, etc. are often proposed in
the form of tools, methodologies or frameworks to help alleviate issues in the
application of MDE. However, to the best of our knowledge, the challenges and
benefits arising from the conjugation and synergies of all these concepts during
the application of MDE are yet to be explored. This is partially due to the fact
that most of the tools, methodologies or frameworks proposed by the community
often focus in-depth on technically challenging issues, while the broader picture
of the systematic integration of those technical and methodological solutions re-
mains, for the time being, to be explored. An additional difficulty often faced
by MDE researchers is the limited access to the software development tools,
methodologies and models used in real industrial settings. This is often due to
the fact that companies that do apply MDE techniques during software develop-
ment do not want to expose their development processes or data either by fear
of loss of competitive edge, or simply by lack of time and resources to share their
know-how.

The goal of our work is to provide a complete and detailed process archi-
tecture for model-driven software development by unifying key MDE practices.
We propose FTG+PM framework intended to guide developers throughout the
MDE lifecycle. The FTG+PM is comprised of the Formalism Transformation
Graph (FTG) and its complement, the Process Model (PM). The idea behind
the FTG is similar to the Formalism Transformation Lattice for coupling differ-
ent formalisms as proposed by Vangheluwe et al in [45]. We go a step beyond
multi-formalism modelling, and use the notion of multi-paradigm modelling [31]
as the basis of our work. Model transformation is a key element in our FTG+PM.
Our FTG+PM addresses the need for domain-specific modelling, and an instance
of the FTG includes domain-specific formalisms and transformations between
them that allow capturing a map of the process used to develop software within
a given domain. The PM introduced as part of the FTG+PM can be used to
precisely model the control flow between the transformation activities taking
place throughout the software development lifecycle starting from requirements
analysis and design to verification, simulation, and deployment.

We have worked with automotive systems as our target domain, but we be-
lieve that the FTG+PM can be applied in general in a broad range of domains. In
particular, we demonstrate the capabilities of the FTG+PM through the design
of an automated power window. The case study is of inherent complexity, non-
trivial in nature, and representative of industrial case studies. The formalisms
used in the FTG are appropriate to the levels of abstraction used at different
stages of the modelling process. Discrete-time, continuous-time, discrete-event,
and hybrid formalisms are included. The MDE process is entirely based on mod-



els and transformations, starting from domain specific requirements and design
models aimed at describing control systems and their environment and finishing
with Automotive Open System Architecture (AUTOSAR) [4] code.

This paper is organised as follows: Section 2 provides background informa-
tion on meta-modelling, model transformation, and multi-paradigm modelling.
Section 3 describes the FT&P and illustrates it using the power window case
study. Section 4 gives a formal definition of the formalism transformation graph
(FTG) and the process model (PM). Section 5 discusses our contibutions and
possible improvements of FTG+PM. Section 6 presents related work in this area
and compares our contribution to it and Section 7 draws some conclusions.

2 Background

Model Driven Engineering (MDE) encompasses both a set of tools and a method-
ological approach to the development of software. MDE advocates building and
using abstractions of processes (and associated artefacts) the software engineer is
trying to automate, thus making them easier to understand, verify, and simulate
than computer programs.

Within the context of this paper, we have chosen to follow the terminology
as presented in [17]). A model is completely described by its abstract syntax (its
structure), concrete syntax (its visualisation) and semantics (its unique and pre-
cise meaning). A language is a possibly infinite set of (abstract syntax) models.
This set can be concisely described by means of e.g., a grammar or a metamodel.
No semantics or concrete syntax is given to these models.

Domain Specific Modelling (DSM) captures the fact that certain languages
or classes of languages, called Domain Specific Languages (DSLs), are appropri-
ate to describe models in certain domains. A white paper on the subject from
MetacaseTM [27] presents anecdotal evidence that DSLs can boost productivity
by a factor of 10, based on experiences with developing operating systems for
cell phones for NokiaTM and LucentTM . DSM has led to the development of
formalisms and tools such as EMF and GMF [30], AToM3 [11] or Microsoft’s
DSL ToolsTM [9].

Model transformations are the heart and soul of model-driven software de-
velopment, as stated by Sendall and Kozaczynski [40]. Model transformation
involves mapping of source models in one or more formalisms to target models
in one or more formalisms using a set of transformation rules. Having an au-
tomated process for creating and modifying models leads to reduced effort and
errors on the software engineer’s part.

Implementations for transformation languages such as ATL [2] or QVT [13],
and for graph transformations (as used in AToM3) have been developed in the
last few years and provide stable platforms for describing and executing model
transformations.

Multi-Paradigm Modelling (MPM), as introduced by Mosterman and Vangheluwe
in [31], is a perspective on systems development that advocates not only that
models should be built at the right levels of abstraction regarding their purpose,



using the most appropriate formalisms, but also that automatic model transfor-
mations should be used to pass information from one representation to another
during development. In this case, it is thus desirable to consider modelling as an
activity that spans different paradigms.

The main advantage that is claimed of such an approach is that the soft-
ware engineer can benefit from the already existing multitude of languages and
associated tools for describing and automating software development activities
– while pushing the task of transforming data in between formalisms to (semi-
)automated transformations. Another possible advantage of MPM is the fact
that toolsets for implementing a particular software development methodology
become flexible. This is thanks to the fact that formalisms and transformations
may be potentially plugged in and out of a development toolset given their ex-
plicit representation.

3 FTG+PM: The Power Window Case Study

The goal of this section is to introduce the FTG+PM framework. The language
used to define FTG+PM consists of two sub languages: the Formalism Trans-
formation Graph (FTG) language, which allows declaring a set of languages
available to model within a given domain as well as available transformations
between those languages; and a Process Model (PM) language, which is used to
describe the control and data flow between MDE activities. We illustrate our
work using the power window case study from the automotive domain.

A power window is basically an electrically powered window. Such devices
exist in the majority of the automobiles produced today. The basic controls of
a power window include lifting and descending the window, but an increasing
set of functionalities is being added to improve the comfort and security of the
vehicle’s passengers. To manage this complexity while reducing costs, automo-
tive manufacturers use software to handle the operation and overall control of
such devices. However, because of the fact that a power window is a physical
device that may come into direct contact with humans, it becomes imperative
that sound construction and verification methodologies are used to build such
software.

In Figure 1 we depict a condensed version of the FTG+PM we have built for
developing Power Window software. The FTG is shown on the left side, the PM
is shown on the right side. The power window FTG+PM was built based on ex-
periments we have performed while developing software development processes
for the automotive industry. Notice that in the FTG (left side of the FTG+PM
of Figure 1) a set of domain specific formalisms are defined as labelled rectangles.
Transformations between those formalisms are depicted as labelled small circles.
On the PM (right side of the FTG+PM of Figure 1) a diagram with a set of or-
dered tasks necessary to produce the power window control code is laid out. The
language used for the PM is the UML Activity Diagram 2.0 language [35]. The
labelled round edged rectangles (actions) in the Activity Diagram correspond to
executions of the transformations declared on the power window FTG. Labelled
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Fig. 1. Power Window: FTG (left) and PM (right)



square edged rectangles (data objects) in the PM correspond to models that
are consumed or produced by actions. A model is an instance of the formalisms
declared on the power window FTG with the same label. Notice that on the
PM side the thin arrows indicate data flow, while thick arrows indicate control
flow. Similar to the models, the arrows must also have corresponding arrow in
the FTG, meaning that their input and output nodes must correspond. Similar
to Activity Diagrams we also use control flow constructs for a PM like joins and
forks, represented as horizontal bars, and decisions, represented by diamonds.
The formalised meaning of the FTG+PM will be presented in depth in Section 4.

The power window FTG+PM of Figure 1 contains several phases, that are
sometimes executed in parallel. These contain (1) Requirements Engineering,
(2) Design, (3) Verification, (4) Simulation, (5) Calibration, (6) Deployment and
finally (7) Code Generation, which are described below. Due to this paper’s space
constraints we provide detailed descriptions of only verification and deployment.
However, most of the languages defined within the FTG+PM for the power
window, with the exception of requirements, has been described in [24].

3.1 Requirements Engineering

Before any design activities can start, the requirements need to be formalised
so they can be used by the engineers. Starting from the textual description con-
taining the features and constraints of the power window, a context diagram is
modelled using the SysML use case diagram. The use cases are further refined
and complimented with the use case descriptions. Finally, the requirements are
captured more formally with a SysML requirements diagram. Note that these
transformations are usually done manually by the requirements engineers though
some automatic transformations can be used to populate the use case diagram
and requirements diagram. The manual transformations are shown greyed out
in the FTG.

3.2 Design

When given the task to build the control system for a power window, engineers
will take two variables into consideration: (1) the physical power window itself,
which is composed of the glass window, the mechanical lift, the electrical engine
and some sensors for detecting for example window position or window collision
events; (2) the environment with which the system (controller plus power win-
dow) interacts, which will include both human actors as well as other subsystems
of the vehicle – e.g. the central locking system or the ignition system. This idea
is the same as followed by Mosterman and Vangheluwe in [31]. According to con-
trol theory [12], the control software system acts as the controller, the physical
power window with all its mechanical and electrical components as the process
(also called the plant), and the human actors and other vehicle subsystems as
the environment.
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Using the requirements, engineers start the design activities using domain
specific languages (DSL) for the Environment, Plant, and Controller. The Net-
work is used to combine the three design languages and identify the interfaces
between them.

3.3 Verification

To assure that there are no safety issues with the modelled control logic, a
formal verification can be done. The domain specific models used for defining
the plant, environment and the control logic are transformed to Petri nets [36]
where reachability properties are checked. Of course it is also necessary to evolve
requirements to a language that can be used to check the Petri nets.

In Figure 2, we present the full safety analysis part of the power window PM,
along with the corresponding subset of the FTG. Notice that the safety analysis
block is displayed in its collapsed form in the complete FTG+PM in Figure 1.

Figure 2 shows a part of the FTG+PM. It uses five models that are the
result of previous activities (shown on the left of the PM). We see that the
combinePN activity takes as inputs three encapsulated Petri nets1 derived from
the environment, plant and control domain specific models in Figure 1, as well
as a network model that specifies how those three models communicate. As data
output, the CombinePN activity produces a Place/Transition Petri net (non-
modular), which is the result of the fusion of the three input modular Petri nets
according to the input Network model.

Following the CombinePN activity, the ToSafetyReq and BuildRG activities
should be executed in parallel. The ToSafetyReq activity is greyed out since it
needs human intervention. It takes as inputs a model of the safety requirements
for the power window, as well as the combined Petri net model including the
behaviour of the whole system, and outputs a set of CTL (Computation Tree

1 encapsulated Petri nets are a modular Petri net formalism, where transitions can be
connected to an encapsulating module’s ports. Module’s ports can then be connected
by a Network formalism.



Logic) formulas encoding the requirements. On the other hand the BuildRG ac-
tion is automatic and allows building the reachability graph for the combined
Petri net model. The join bar enforces that both the CTL formulas and the
reachability graph are produced before the CheckReachableState action is exe-
cuted. This last action verifies if the reachability graph adheres to the formulas
built from the requirements and produces a boolean as output.

By using FTG+PM the causal relations between the different activities emerges
explicitly.

3.4 Simulation

On the other hand, the continuous behaviour of the up-and-downward move-
ment of the window is simulated using a hybrid formalism. The hybrid simula-
tion contains the environment and plant models transformed into Causal Block
Diagrams2 (CBD) and the controller in the Statecharts formalism. The process
of verifying the continuous behaviour is very similar to the Safety Analysis,
presented in section 3.3 though as a requirements language CBDs are also used.

3.5 Deployment

After the software has been created and verified, the software has to be de-
ployed onto a hardware architecture. This hardware architecture contains a set
of electronic control units (ECU) that are connected using a network. Each ECU
can execute a set of related and unrelated software components. To allow this,
AUTOSAR defines a standardised middleware containing a real-time operating
system, a communication stack and drivers to access the peripherals like analog-
digital converters, timers and others. Software components can be distributed
freely among the available hardware units. Other tasks need to be done like map-
ping the software functions to tasks, mapping signals to messages and choosing
from a multitude of deployment options in the middleware. These choices give
the engineer a lot of flexibility that can result in non-feasible solutions where
the spatial and temporal requirements are violated. On the other hand it allows
to search the deployment space for optimal solutions in terms of cost, energy
consumption and other extra-functional properties.

In our power window case study, we take a platform-based design method[39]
for exploring the deployment space with the goal of creating a feasible deploy-
ment solution in terms of real-time behaviour. Platform-based design introduces
clear abstraction layers where certain properties can be checked. Real-time be-
haviour can be checked in three stages that step-wise prune the deployment
space: (1) after mapping the software to the hardware using a simple bin pack-
ing check, (2) after mapping the software functions to tasks and messages to the
bus using schedulability analysis and (3) after setting all the parameters in the
middleware using a low-level deployment simulation.

2 Causal Block Diagrams are a general-purpose formalism used for modelling causal,
continuous-time systems, mainly used in tools like Simulink



Figure 3(a) shows the actions involved in checking a single solution at the level
of schedulability analysis. ToSchedulabilityAnalysis takes a single AUTOSAR
solution and a performance model as input to derive set of algebraic equations
which are subsequently executed. This execution, modelled as CalculateSchedula-
bility, produces a trace containing the worst-case execution times of the software
functions. Afterwards the trace is compared to the requirements, expressed using
the TIMMO-language [8] in CheckSchedulabilityTrace, which produces a boolean
denoting whether the requirements are met. When the result is not satisfying the
requirements, a backtracking step is taken so that new deployment solutions can
be explored. The process continues until a feasible solution is found. Transform-
ing to another language, executing this new model to obtain execution traces
and comparing these traces to check a certain property is a common activity
that can be seen as a pattern for all three deployment levels in the FTG+PM
of Figure 1.
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3.6 Calibration

In the previous paragraphs we assumed that a performance model was readily
available to use during the deployment space exploration. To build the perfor-
mance model, we can also use fully automated generative MDE techniques. This
process is depicted in Figure 3(b), where the plant model, environment model
and instrumented source code are combined and executed in a Hardware-in-the-
loop environment3 giving back execution time measurements. These measure-
ments can be transformed in a real performance model that is used during the
deployment space exploration.

3.7 Code Generation

When a solution turns out to be feasible after the three stages, the code can
be synthesised for each hardware platform in the configuration (only shown in
Figure 1). This includes the generation of the C-code of the application, genera-
tion of the middleware and generation of the AUTOSAR run-time environment

3 Hardware-in-the-loop is a common simulation technique used in engineering for the
development and testing of embedded systems



(RTE) that is required to glue the application code and middleware code to-
gether.

4 FTG+PM: Formal Definition

In the following definitions we will provide the precise abstract syntax of the
FTG+PM formalism. We will mention the relation between FTG+PM abstract
and concrete syntax (as can be observed e.g., in Figure 1) whenever the abstract
syntax definitions do not make that relation immediately obvious.

Definition 1. Language and Model
We call the set of all languages Form and the set of all models Models. A

model always conforms4 to a given language, formally written model conformsTo f ,
where f ∈ Form. The set of models that conform to a language f ∈ Form is
the set Modelsf =

{
model ∈Models | model conformsTo form

}
.

Definition 2. Transformation and Transformation Execution
Given a set of languages F ⊆ Form, we formally write ts1,...,smt1,...,tn to denote

a transformation t where {s1, . . . , sm} ∈ P(F ) is the set of source languages
of t and {t1, . . . , tn} ∈ P(F ) is the set of target languages of t. The set of all
transformations for a set of languages F ⊆ Form is written TrF .

Given a set of languages F ⊆ Form, a transformation execution of ts1,...,smt1,...,tn ∈
TrF is a computation that: receives a set of inputs models im1, . . . , imm such
that mik conformsTo sk (1 ≤ k ≤ m); produces a set of outputs models
om1, . . . , omm such that omk conformsTo tk (1 ≤ k ≤ n). Given the above,
we write ex executionOf t to denote ex is an execution of t. The set of all
executions of t is written Exect.

Definition 3. Formalism Transformation Graph (FTG)
A formalism transformation graph is a tuple 〈F , τ〉 ∈ Ftg, where F ⊆ Form

and τ ⊆ TrF .

In the FTG definition 3 the “graph” notion comes from the fact that lan-
guages can be seen as nodes of a graph where transformations connect the nodes
via relations of input and output. In what follows we use the notation Vs to
denote the set of variables over set s.

Definition 4. Process Model (PM)
Let ftg = 〈F , τ〉 ∈ Ftg. A process model of ftg is a tuple 〈Act,Obj,CtrlNode,

CtrlF low,DataF low,Guard,CtrlNodeType〉 ∈ Pmftg, where:

– Act ⊆
⋃

ex=Exect Vex such that t ∈ τ
– Obj ⊆

⋃
mod=Modelsf Vmod such that f ∈ F

– CtrlNode ⊆ NodeID, where NodeID is a set of control node identifiers;
– CtrlF low ⊆ (Act×Act) ∪ (Act× CtrlNode) ∪ (CtrlNode×Act)

4 this is the typical conformance relation as found in the literature [23]



– DataF low ⊆ (Act×Obj) ∪ (Obj ×Act) ∪ (Act×Node)
– Guard : CtrlF low ↪→ conditionsOver(F )5

– CtrlNodeType : CtrlNode→
{
forkJoin, decision, begin, end

}
with the following additional constraints:

– for all a ∈ Act inbound dataflow arrows carry the transformation’s input
models; outbound dataflow arrows carry the transformation’s output models;

– for all pm ∈ Pmftg, CtrlNodeType is surjective regarding the restriction of
the function’s co-domain to

{
begin, end

}
, meaning that for a given process

model only one start and only one end control node exist;
– if (a,n), (a′,n′) ∈ CtrlF low then a = a′, meaning only one control flow arc

is allowed from each activity;
– if (a, d), (a′, d′) ∈ DataF low then a = a′, meaning only one data flow arc is

allowed from each activity;
– if (d,n) ∈ DataF low then CtrlNodeType(n) = decision;
– Guard

(
(n,n′)

)
, where (n,n′) ∈ CtrlF low, is defined if and only if

CtrlNodeType(n) = decision.

The abstract syntax of PM in definition 4 includes the fundamental set of
constructs in Activity Diagrams, as well as data flow: Act are action nodes (in our
case placeholders for executions of transformations) and are represented as round
edged rectangles; Obj are object nodes (in our case placeholders for instances of
languages) and are represented by square edged rectangles. CtrlNode is a set
of control nodes typed by the CtrlNodeType function and having the respec-
tive classical activity diagram concrete syntax. The CtrlF low and DataF low
relations specify the edges between action, object and control nodes. Finally
the Guard function allows defining guards for edges which are outbound of de-
cision nodes. The constraints following the first part of definition 4 insure the
well-formedness of the PM Activity Diagrams.

Definition 5. FTG+PM
A FTG+PM is a pair 〈ftg, pm〉 ∈ FtgPm, where ftg = 〈F , τ〉 ∈ Ftg and

pm ∈ Pmftg is a process model of ftg.

The semantics of a 〈ftg, pm〉 ∈ FtgPm is a set of traces associated with
executions of the activity diagram specified in pm. The semantics of Activity
Diagrams with data flow have been addressed by Störrle in [41] and are built
by transforming UML 2.0 Activity Diagrams into Coloured Petri Nets [1], as
suggested by the UML 2.0 specification [35]. The resulting traces are labelled
transition systems where states hold the models available at each given moment
of the development process and transitions represent transformation executions.
Notice that in definition 4 action nodes and object nodes are defined as variables
of transformation executions and instances of languages, respectively. However,
when the traces are calculated the PM’s variables are replaced by concrete trans-
formation executions and models (see definition 2).

5 we use ↪→ to denote a partial functions.



5 Discussion

The contribution of the paper is a framework for formalism transformation,
consisting of the Formalism Transformation Graph and the Process Model. Its
usefulness was illustrated by a small case study from the automotive domain.
The framework allows the MDE process to be flexible. Also, insight in the domain
can be gained as the FTG+PM provides modellers with a means to describe and
even prescribe the MDE process. We suggest that FTG+PMs should be devised
for each specific domain where MDE is used. Thus, PMs model domain-specific
MDE practices. As the FTG charts all different formalisms used as well as their
relationships, it can be seen as a model of all MDE artefacts.

The languages for both FTGs and PMs, as well as their relationships, were
formalised in Section 4. In practice, we use a subset of UML Activity Diagrams
2.0 to express PMs. The metamodel of FTGs is a bipartite graph. Its metamodel
is straightforward and was not shown in this paper because of spatial constraints.
The explicit modelling of the FTG+PM and its execution semantics allow us to
extend the formalisms in an MDE fashion, reaping all its benefits.

In its current state, the FTG+PM can be improved in several ways to make
it more valuable. (1) The execution semantics of the PM could include an anno-
tation mechanism to keep some information on an artifact such as author, date
created, tool used, and formalism it conforms to (similar to [6]); (2) A difference
can be made in the FTG between general-purpose formalisms, transformations
that are likely to be reused (e.g., Petri-net to reachability graph) and domain-
specific parts that are only relevant to one particular PM (e.g., C-code calibration
for Autosar C-code). The general-purpose artifacts can be browsed as a library
of off-the-shelf formalisms and transformations when creating a new PM; (3)
Currently, all relationships in the FTG are transformations. We can classify the
transformations according to their type and/or intention, e.g., model-to-model
translation, verification, refinement, abstraction, code generation, simulation,
etc. [25]. Generalising this further, we can add pre- and post conditions as prop-
erties to the transformations in the FTG. During the execution of the PM, these
pre- and post conditions can be checked to ensure validity and correctness of
the transformations. Moreover, this strategy can be combined with analytical
techniques to prove properties of some of the general purpose transformations
that are re-used widely.

Using the FTG+PM approach results in an ever growing centralised FTG,
and an ever growing collection of PMs which can be used for empirical evaluation
of current MDE techniques. We anticipate that by using data mining techniques
on a collection of FTG+PMs, patterns will become apparent that can enable
reuse and help designers to solve problems of ever increasing complexity. The
FTG+PM framework can also be used as an enabler for tool integration where
the transformations between the different model representations in the FTG can
be looked up and reused within the PMs.



6 Related Work

Our work is focused on creating a platform for unifying MDE practices by defin-
ing a detailed and precise model, namely the FTG+PM, to guide the model
transformation process. While FTG+PM is generic and can be applied in the de-
velopment of systems in various domains, we have worked on a case study in the
automotive domain to illustrate our FTG+PM and its applicability. There have
been research carried out in both academia and industry on the model-driven en-
gineering of automotive cyberphysical systems [16, 46, 37, 15]. [7] present a MDE
framework based on SysWeaver for the development of AUTOSAR-compliant
automotive systems.

Research related to our approach can be divided into two parts: modelling
the relations between models explicitly (similar to the FTG), and describing the
transformations explicitly as an MDD process (similar to the PM).

6.1 Inter-model modelling

The idea of modelling the existing relations between different processes was first
introduced by Vangheluwe et al. [44] in the context of simulation. A Formal-
ism Transformation Lattice, addressing the same goals the Formalism Trans-
formation Graph, is introduced in [45]. The idea is further elaborated in [10],
advocating AToM3 [11] as a suitable tool for its implementation. Indeed, we use
AToM3 and its successor AToMPM excessively in the power window case study.
The FTG of [10] has no formal character however and leaves transformations
implicit.

Bézivin et al. introduce the concept of megamodels [6] as a global view of the
considered artifacts in a system. They claim that this concept is essential in any
MDD platform. Key in their approach is that not only models, but also tools and
the services and operations they provide are also represented as models, with all
sorts of relations in between. Megamodelling is also called modelling in the large.
A megamodel is mainly presented as a means to store metadata (e.g., that an
artifact was generated by a particular transformation or created in a particular
tool, what its metamodel is, etc.). The authors state that process modelling could
be achieved with megamodelling. [14] continues on megamodelling, and four dif-
ferent kinds of relations are presented, referring to the semantics: DecomposedIn,
RepresentationOf, ElementOf, and ConformsTo.

Salay et al. introduce macromodels as a means to capture the intended pur-
pose and a set of intended relationships (such as refinement, instantiations, refac-
torings, etc.) of models [38]. They model relationships between formalisms in a
similar way as in megamodeling, but they allow modelling these relationships
explicity as metamodels. Their goal is to improve understandability, to enforce
contraints on models even before they are created, to check for consistency be-
tween models and to manage evolution of the modeling project. Similarly to
megamodeling, there is no support for workflow modeling.



6.2 The MDD process

Various model transformation languages and toolsets are used in practice today,
such as the OMG-standard QVT [26], Atlas Transformation Language [22], and
AToM3 [11]. Such tools are used independently for carrying out some particular
purpose within MDE. However, research has shown a need for unifying MDE
practices and tools [5] [31].

Process modelling has a huge following in research, resulting in many mod-
elling languages. Recent years, most of these languages are based on π-calculus
and/or Petri nets. π-calculus [29] was introduced by Robert Milner, and is based
on Calculus of Communicating Systems (CCS) [28] which was developed by Mil-
ner in Parallel with Hoare’s Communicating Sequential Processes (CSP) [19], all
of which are prominent process calculi. Petri nets [36] were created by Carl
Adam Petri as a graphical formalism to express concurrent systems. Examples
of used process modelling languages that have roots in π-calculus and/or Petri
nets are Business Process Model and Notation (BPMN) [34], the textual Busi-
ness Process Execution Language (BPEL) [32], Coloured Petri nets [21] in e.g.,
CPNTools [20], Yet Another Workflow Language (YAWL) [43], Event-Driven
Process Chains (EPC’s) [42] and UML Activity Diagrams [35]. The XML Pro-
cess Definition Language (XPDL) [47] is a well-known standard defined by the
Workflow Management Coalition (WfMC) for storing visual diagrams, such as
BPMN diagrams.

OMG’s Software Process Engineering Metamodel (SPEM) [3], formerly known
as Unified Process Model (UPM), is designed for defining the process of using
different UML models in a project. SPEM is defined as a generic software process
language, with generic work items having different roles. It is merely a generic
framework for expressing processes, and does not include e.g., a visual concrete
syntax.

Oldevik et al. [33] present a metamodel-based UML profile for model transfor-
mation and code generation. The goal of the work is provide a framework that
assists transformations in the MDE lifecycle by defining activities and tasks.
The paper outlines the semantics of the transformations required to map mod-
els models at a high level of abstraction (e.g. requirements) to models at the
architecture and platform-specific levels.

Similar to our Process Models, Van Gorp et al. employ Activity Diagrams 1.0
to express chains of transformations [18]. Their main goals are understandability
and reusability. Their notation uses regular States to denote types of models, and
Object Flow States to denote transformations. The rather preliminary language
uses Synchronisation Bars as well. They are used to denote synchronous execu-
tion (in case of multiple outputs of Synchronisation Bars), as well as multiple
transformation inputs/outputs for a transformation (in case of multiple inputs
of Synchronisation Bars). The language does not include decision diamonds and
has no precise semantics, but is rather used as a documentation means.

We ultimately chose Activity Diagrams 2.0 as our formalism for modelling
processes for three reasons: the formalism is well-known, especially in the field



of modelling, the formalism is well-supported by general tools, and it allows us
to model both control flow and data flow.

7 Conclusion

In this paper, we presented a framework for carrying out formalism transforma-
tions within MDE. We proposed the Formalism Transformation Graph (FTG)
and the Process Model (PM) to guide the model-driven development process.
We introduced the FTG+PM framework, composed of the FTG and its com-
plement, the PM. The FTG comprises formalisms as nodes and transformations
as edges, and shows the different languages that need to be used at each stage
of development. Meta-modelling and model transformation are the basis of the
FTG. The FTG explicitly models the relations between requirements, design,
simulation, verification, and deployment languages. The transformations are de-
picted as Activity Diagram 2.0 actions, and the control flow and the data flow
between each transformation action are detailed in the Process Model (PM).

We have applied FTG+PM on a non-trivial case study of the design of an
automotive power window controller. We have constructed the FTG and PM for
the target domain in the FTG+PM language. Following requirements elicitation
and specification using the SysML use case diagram and requirements diagram
formalisms, we have defined domain specific languages that allow modelling of
the main components of the control system: the environment, the plant, and
the control. The DSLs are transformed to Petri nets to carry out reachability
analysis on the one hand, and to a hybrid simulation formalism (composed of a
continuous time formalism Causal Block Diagrams, and a discrete-event formal-
ism, Statecharts) to ensure that system constraints are satisfied. After successful
safety analysis and simulation, the control model in the Statecharts formalism
is mapped on to deployment models. We have used the AUTOSAR middle-
ware to deploy our software onto a hardware architecture. The deployment is a
multiphase process beginning with the generation of a calibration infrastructure
which feeds into a performance model, followed by an intial architecture deploy-
ment (in C-code), bin packing analysis and schedulability analysis to check that
performance constraints are being met, and finally simulation using the DEVS
formalism. Additionally, timing requirements (represented using the TIMMO
language) are derived from the inital requirements diagrams, and integrated and
checked during deployment. Once the simulation outputs an acceptable trace,
the deployment models are transformed to middleware code and RTE code.

The FTG and PM we have introduced can be adapted for use in various
domains. It provides a complete model-driven process that is based on meta-
modelling, multi-abstraction and multi-formalism modelling, and model trans-
formation. We plan on extending this work and adapting the FTG+PM for
feature-oriented software development of (software) product lines.
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