
MATH 363 Sample Midterm Sample

Sample midterm

1. (3 points) Write a first order logic formula which is equivalent to the following but all ¬ symbols appear
immediately in front of a predicate.

¬∀a((∃b p(a, b)→ ∃c p(a, c)) ∧ ¬∀d q(a, d))

Here p and q are predicates.

2. (5 points) Prove the following statement without using Theorem 1

Let G be a multigraph. If G has an Eulerian circuit and G has no zero degree vertex then G is a
connected and all vertices of G have even degree.

3. (12 points) Prove the following statement without using Dirac’s theorem (Theorem 3).

If a graph G has at least 3 vertices and the degree of every vertex of G is at least |V (G)|
2 then G has a

Hamiltonian cycle.

4. (7 points) Prove that every hypercube Qn with n ≥ 2 has a Hamiltonian cycle.

5. (3 points) (Rosen, p.646, q47c))

Determine if this graph contains a Hamiltonian cycle. If does, write down the vertices visited by your
circuit in the order they are visited (no justification needed in this case). If it does not, give a reason
why.

e

d c

ba

6. (10 points)

Prove that Kruskal’s algorithm produces a minimum (weight) spanning tree without using Theorem 5.
You may assume that the output of Kruskal’s algorithm is a tree (and any optimal output is a tree).
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Appendix 1: Rules of inference

Rule Name
P ∧Q P ∧Q

P Q ∧E
P P

Q Q ∧I

P ∧Q Q ∧ P

—P
...
Q →I

P → Q

P

P → Q →E
Q

P P

P ∨Q Q ∨ P ∨I
P ∨Q Q ∨R

P → R P → R

Q→ R Q→ R ∨E
R R

P → F
¬P ¬I
P

¬P ¬E
F
¬¬P

P ¬¬E
F
P FE
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Appendix 2: Table of equivalences

For propositional logic.

p ∧T ≡ p

p ∨ F ≡ p

p ∨T ≡ T
p ∧ F ≡ F
p ∨ p ≡ p

p ∧ p ≡ p

¬(¬p) ≡ p

p ∨ q ≡ q ∨ p

p ∧ q ≡ q ∧ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
¬(p ∨ q) ≡ ¬p ∧ ¬q
¬(p ∧ q) ≡ ¬p ∨ ¬q

p ∨ (p ∧ q) ≡ p

p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T
p ∧ ¬p ≡ F

p→ q ≡ ¬p ∨ q

For first order logic. The above as well as the following.

¬∃x p(x) ≡ ∀x ¬p(x)
¬∀x p(x) ≡ ∃x ¬p(x)
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Appendix 3: Definitions and theorems

Definition 1. We call P1, . . . , Pk ⊢ Q an argument. An argument is valid if we can infer the conclusion
Q given the hypotheses P1, . . . , Pk and invalid otherwise.

Definition 2. A graph G is an ordered pair (V, E) where V is a set of vertices and E is a (multi) set of
edges: 2-element subsets of V .

Definition 3. A walk consists of an alternating sequence of vertices and edges consecutive elements of
which are incident, that begins and ends with a vertex. A trail is a walk without repeated edges. A path
is a walk without repeated vertices.

If a walk (resp. trail, path) begins at x and ends at y then it is an x − y walk (resp. x − y trail, resp.
x− y path).

A walk (trail) is closed if it begins and ends at the same vertex. A closed trail whose origin and internal
vertices are distinct is a cycle.

Definition 4. A circuit is a trail that begins and ends at the same vertex.

Some equivalent definitions of paths and cycles.

Definition 5. A path in a graph G is a sequence of vertices p1, . . . , pk such that for all 1 ≤ i ≤ k − 1,
(pi, pi+1) is an edge in G.

A cycle in a graph G is a path p1, . . . , pk such that (pk, p1) is an edge of G.

Definition 6. A subgraph H of a graph G is a graph such that V (G) ⊆ V (G) and E(H) ⊆ {(u, v)|(u, v) ∈
E(G), u ∈ V (H), v ∈ V (H)}.

An induced subgraph H of G is a subgraph of G where E(H) = {(u, v)|(u, v) ∈ E(G), u ∈ V (H), v ∈
V (H)} (i.e., we have all edges between vertices of H).

Definition 7. Pn is the graph on n vertices v1, . . . , vn and edges (vi, vi+1) for each i from 1 to n− 1.
Cn is the graph on n vertices v1, . . . , vn and edges (v1, vn) and (vi, vi+1) for each i from 1 to n− 1.
Kn, the complete graph, is the graph on n vertices v1, . . . , vn and all edges (i.e., (vi, vj) for all 1 ≤ i <

j ≤ n).
Qn, the hypercube graph, is the graph on 2n vertices with each vertex labelled by a different binary

string of length n and two vertices are adjacent if and only if their labels in exactly one bit.

Definition 8. A path in a graph G is a subgraph of G that is a copy of Pk for some k

A cycle in a graph G is a subgraph of G that is a copy of Ck for some k

Definition 9. The length of a path P is the number of vertices in it and is denote |P | or |V (P )|. The
length of a cycle is the number of vertices in it.

Definition 10. An Eulerian circuit in a graph G is a circuit which contains every edge of G.
An Eulerian trail in a graph G is a trail which contains every edge of G.

Definition 11. A graph G is connected if there is a path between every pair of vertices. G is disconnected
otherwise.

A graph G is k-connected if there does not exist a set of at most k − 1 vertices of G whose removal
yield a disconnected graph.

A connected component of a graph G is a maximal connected subgraph (meaning we cannot add more
edges and vertices while preserving connectivity).

Theorem 1. Let G be a multigraph. G is a connected and all vertices of G have even degree if and only if
G has an Eulerian circuit and G has no zero degree vertex.

Definition 12. An Hamiltonian cycle in a graph G is a cycle which contains every vertex of G.
An Hamiltonian path in a graph G is a path which contains every vertex of G.
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Theorem 2. There exists an ordering (or sequence) containing all n-bit binary strings exactly once where
every consecutive string differ in exactly one bit and the first and last string differ in exactly one bit.

Namely, Gray codes provide such an ordering.

Lemma 1. If a graph G has a Hamiltonian cycle then G is 2-connected.

Theorem 3 (Dirac’s theorem). If a graph G has at least 3 vertices and the degree of every vertex of G is at

least |V (G)|
2 then G has a Hamiltonian cycle.

Definition 13. A tree is a connected graph with no cycles.
A forest is a graph with no cycles (which is not necessarily connected).

Definition 14. A rooted tree is digraph obtained from a tree T and a special vertex r ∈ V (T ) called the
root by directing every edge “towards” the root (e.g., from the vertex farthest from the root to the vertex
closest to the root).

Lemma 2. If T is a tree with at least 2 vertices then T has a vertex of degree 1.

Theorem 4. Every tree on n vertices has exactly n− 1 edges.

Problem 1. Minimum spanning tree
Input: A connected graph G = (V, E) and weights we ≥ 0 for each edge e ∈ E Output: A subset F of

E such that (V, F ) is connected and given these restrictions,
∑

e∈E we is maximized.

Algorithm 1. Kruskal’s algorithm
Initialize F to the empty set.
Sort the edges in ascending order of weights
For each edge e in this ordering.

If (V, F ∪ {e}) does not contain a cycle then add e to F

Return F

Theorem 5. Kruskal’s algorithm returns a minimum spanning tree.

Problem 2. Shortest path
Input: A connected graph G = (V, E), weights we > 0 for each edge e ∈ E and two vertices s, t ∈ V .

Output: A minimum weight path from s to t in G.

Algorithm 2. (Simplified) Dijkstra’s algorithm
Initialize an array d indexed by V to ∞
d[s]← 0
S ← {s}
Initialize an array prev indexed by V to null.
While t 6∈ S

Find e = (u, v) ∈ E with u ∈ S, v ∈ V \ S minimizing d[u] + w(u,v).
d[v]← d[u] + w(u,v)

prev[v]← u

S ← S ∪ {v}
Return d and prev

To obtain the path from the output, repeatedly follow the prev pointers, starting from t.

Lemma 3. Dijkstra’s algorithm assigns d values in a non-decreasing order.

Lemma 4. A subpath of a minimum weight path is a minimum weight path (between different endpoints).

Theorem 6. The d values returned by Dijkstra’s algorithm corresponds to minimum weight distance from
s.
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Some more lemmas and theorems from the assignments.

Lemma 5. Let G be a graph. If C = c1, c2, . . . , ck−1, ck is a cycle in G then for any j (between 1 and k),
cj , cj+1, . . . , ck−1, ck, c1, c2, . . . , cj−2, cj−1 is also a cycle in G.

Theorem 7. (Ore’s theorem)
Let G be a graph. If G has at least 3 vertices and for every pair of non-adjacent vertices u, v ∈ V (G),

deg(u) + deg(v) ≥ |V (G)| then G has a Hamiltonian cycle.

Lemma 6. Let G be a graph. For any k > 2, if G is k-connected then G is k − 1 connected.

Definition 15. A set of path P1, . . . , Pk with the same starting and ending vertex is said to be internally
vertex disjoint if no two paths have a vertex in common except for their endpoints. That is, if Pi =
u, pi,1, pi,2, . . . , v then there does not exist i, j, k, ℓ with i 6= k such that pi,j = pk,ℓ.

Theorem 8. (Part of Menger’s theorem)
Let G be a graph. If every pair of (distinct) vertices u, v ∈ V (G), there are two vertex disjoint paths

P1, P2 starting at u and ending at v then G is 2-connected.

Definition 16. The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted G1×G2,
is a graph with vertex set V and edge set E defined as follows. V consists of all pair (v1, v2) for each vertex
v1 in V1, and each vertex v2 in V2 (i.e., V = {(v1, v2)|v1 ∈ V1, v2 ∈ V2}). Two vertices (u1, u2) and (v1, v2)
of G1 ×G2 are adjacent if either

• u1 = v1 and u2 is adjacent to v2 in G2, or

• u2 = v2 and u1 is adjacent to v1 in G1.

In other words, E = {((u1, u2), (v1, v2))|u1 = v1, (u2, v2) ∈ E(G2)} ∪ {((u1, v1), (u2, v2))|u2 = v2, (u1, v1) ∈
E(G1)}.
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Appendix 4: Glossary of symbols

Symbol Name Example or definition Example read as
∨ Logical or p ∨ q p or q.
∧ Logical and p ∧ q p and q.
¬ Logical not ¬p not p.
→ Implication p→ q p implies q.

If p then q.
q whenever p.

↔ Bi-implication p↔ q p if and only if q.
≡ Equivalence p ≡ q p is equivalent to q.
F Contradiction F→ p False implies p.
T Tautology T→ F True implies false.
⊢ Infer P1, . . . , Pk ⊢ Q We can infer Q from P1, . . . , Pk.
|= Models P1, . . . , Pk |= Q P1, . . . , Pk models Q.
∈ Containment x ∈ S x is in S.

x is an element of S.
∩ Intersection S ∩ T = {x|x ∈ S, x ∈ T } S intersect T .

The elements in both S and T .
∪ Union S ∩ T = {x|x ∈ S or x ∈ T } S union T .

The elements in either S or T .
\ Set difference S \ T = {x|x ∈ S, x 6∈ T } S minus T .

The elements in S but not T .
∀ Universal quantifier ∀x ∈ Z, x2 ≥ 0 For all integers x, x2 is greater or equal to zero.
∃ Existential quantifier ∃x ∈ Z, x + 5 = 0 There exists an integer x such that x + 5 is zero.
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