MATH 363	Sample Midterm

Sample

Sample midterm

1. (3 points) Write a first order logic formula which is equivalent to the following but all \neg symbols appear immediately in front of a predicate.

$$\neg \forall a((\exists b \ p(a,b) \to \exists c \ p(a,c)) \land \neg \forall d \ q(a,d))$$

Here p and q are predicates.

2. (5 points) Prove the following statement without using Theorem 1

Let G be a multigraph. If G has an Eulerian circuit and G has no zero degree vertex then G is a connected and all vertices of G have even degree.

3. (12 points) Prove the following statement without using Dirac's theorem (Theorem 3).

If a graph G has at least 3 vertices and the degree of every vertex of G is at least $\frac{|V(G)|}{2}$ then G has a Hamiltonian cycle.

- 4. (7 points) Prove that every hypercube Q_n with $n \ge 2$ has a Hamiltonian cycle.
- 5. (3 points) (Rosen, p.646, q47c))

Determine if this graph contains a <u>Hamiltonian cycle</u>. If does, write down the **vertices** visited by your circuit in the order they are visited (no justification needed in this case). If it does not, give a reason why.

6. (10 points)

Prove that Kruskal's algorithm produces a minimum (weight) spanning tree without using Theorem 5. You may assume that the output of Kruskal's algorithm is a tree (and any optimal output is a tree).

MATH 363

Sample

Appendix 1: Rules of inference

Rule	Name
$\frac{P \wedge Q}{P} \frac{P \wedge Q}{Q}$	$\wedge \mathcal{E}$
$\begin{array}{cc} P & P \\ Q & Q \\ \hline P \wedge Q & \overline{Q \wedge P} \end{array}$	$\wedge \mathcal{I}$
P- : 0	τ
$\frac{Q}{P \to Q}$	
$\frac{P \to Q}{Q}$	$ ightarrow {\cal E}$
$\frac{P}{P \lor Q} \frac{P}{Q \lor P}$	$\vee \mathcal{I}$
$\begin{array}{ccc} P \lor Q & Q \lor R \\ P \to R & P \to R \\ \hline Q \to R & Q \to R \\ \hline R & R \end{array}$	$\vee \mathcal{E}$
$\frac{P \to \mathbf{F}}{\neg P}$	$\neg \mathcal{I}$
$\frac{P}{\neg P}{\mathbf{F}}$	$\neg \mathcal{E}$
$\frac{\neg \neg P}{P}$	$\neg\neg\mathcal{E}$
$\frac{\mathbf{F}}{P}$	$\mathbf{F}\mathcal{E}$

Appendix 2: Table of equivalences

For propositional logic.

$p \wedge \mathbf{T} \equiv p$
$p \lor \mathbf{F} \equiv p$
$p ee \mathbf{T} \equiv \mathbf{T}$
$p \wedge \mathbf{F} \equiv \mathbf{F}$
$p \lor p \equiv p$
$p \wedge p \equiv p$
$\neg(\neg p) \equiv p$
$p \lor q \equiv q \lor p$
$p \wedge q \equiv q \wedge p$
$(p \land q) \land r \equiv p \land (q \land r)$
$(p \lor q) \lor r \equiv p \lor (q \lor r)$
$\neg (p \lor q) \equiv \neg p \land \neg q$
$\neg (p \land q) \equiv \neg p \lor \neg q$
$p \lor (p \land q) \equiv p$
$p \land (p \lor q) \equiv p$
$p \lor \neg p \equiv \mathbf{T}$
$p \wedge \neg p \equiv \mathbf{F}$
$p \to q \equiv \neg p \lor q$

For first order logic. The above as well as the following.

$\neg \exists x \ p(x) \equiv \forall x \ \neg p(x)$;)
$\neg \forall x \ p(x) \equiv \exists x \ \neg p(x)$;)

Appendix 3: Definitions and theorems

Definition 1. We call $P_1, \ldots, P_k \vdash Q$ an **argument**. An argument is **valid** if we can infer the conclusion Q given the hypotheses P_1, \ldots, P_k and **invalid** otherwise.

Definition 2. A graph G is an ordered pair (V, E) where V is a set of vertices and E is a (multi) set of edges: 2-element subsets of V.

Definition 3. A walk consists of an alternating sequence of vertices and edges consecutive elements of which are incident, that begins and ends with a vertex. A **trail** is a walk without repeated edges. A **path** is a walk without repeated vertices.

If a walk (resp. trail, path) begins at x and ends at y then it is an x - y walk (resp. x - y trail, resp. x - y path).

A walk (trail) is **closed** if it begins and ends at the same vertex. A closed trail whose origin and internal vertices are distinct is a **cycle**.

Definition 4. A **circuit** is a trail that begins and ends at the same vertex.

Some equivalent definitions of paths and cycles.

Definition 5. A path in a graph G is a sequence of vertices p_1, \ldots, p_k such that for all $1 \le i \le k-1$, (p_i, p_{i+1}) is an edge in G.

A cycle in a graph G is a path p_1, \ldots, p_k such that (p_k, p_1) is an edge of G.

Definition 6. A subgraph H of a graph G is a graph such that $V(G) \subseteq V(G)$ and $E(H) \subseteq \{(u, v) | (u, v) \in E(G), u \in V(H), v \in V(H)\}$.

An induced subgraph H of G is a subgraph of G where $E(H) = \{(u, v) | (u, v) \in E(G), u \in V(H), v \in V(H)\}$ (i.e., we have all edges between vertices of H).

Definition 7. P_n is the graph on n vertices v_1, \ldots, v_n and edges (v_i, v_{i+1}) for each i from 1 to n-1.

 C_n is the graph on *n* vertices v_1, \ldots, v_n and edges (v_1, v_n) and (v_i, v_{i+1}) for each *i* from 1 to n-1.

 K_n , the complete graph, is the graph on n vertices v_1, \ldots, v_n and all edges (i.e., (v_i, v_j) for all $1 \le i < j \le n$).

 Q_n , the hypercube graph, is the graph on 2^n vertices with each vertex labelled by a different binary string of length n and two vertices are adjacent if and only if their labels in exactly one bit.

Definition 8. A **path** in a graph G is a subgraph of G that is a copy of P_k for some kA **cycle** in a graph G is a subgraph of G that is a copy of C_k for some k

Definition 9. The length of a path P is the number of vertices in it and is denote |P| or |V(P)|. The length of a cycle is the number of vertices in it.

Definition 10. An **Eulerian circuit** in a graph G is a circuit which contains every edge of G. An **Eulerian trail** in a graph G is a trail which contains every edge of G.

Definition 11. A graph *G* is **connected** if there is a path between every pair of vertices. *G* is **disconnected** otherwise.

A graph G is k-connected if there does not exist a set of at most k - 1 vertices of G whose removal yield a disconnected graph.

A connected component of a graph G is a maximal connected subgraph (meaning we cannot add more edges and vertices while preserving connectivity).

Theorem 1. Let G be a multigraph. G is a connected and all vertices of G have even degree if and only if G has an Eulerian circuit and G has no zero degree vertex.

Definition 12. An Hamiltonian cycle in a graph G is a cycle which contains every vertex of G.

An **Hamiltonian path** in a graph G is a path which contains every vertex of G.

Theorem 2. There exists an ordering (or sequence) containing all n-bit binary strings exactly once where every consecutive string differ in exactly one bit and the first and last string differ in exactly one bit. Namely, **Gray codes** provide such an ordering.

Lemma 1. If a graph G has a Hamiltonian cycle then G is 2-connected.

Theorem 3 (Dirac's theorem). If a graph G has at least 3 vertices and the degree of every vertex of G is at least $\frac{|V(G)|}{2}$ then G has a Hamiltonian cycle.

Definition 13. A tree is a connected graph with no cycles.

A forest is a graph with no cycles (which is not necessarily connected).

Definition 14. A rooted tree is digraph obtained from a tree T and a special vertex $r \in V(T)$ called the root by directing every edge "towards" the root (e.g., from the vertex farthest from the root to the vertex closest to the root).

Lemma 2. If T is a tree with at least 2 vertices then T has a vertex of degree 1.

Theorem 4. Every tree on n vertices has exactly n - 1 edges.

Problem 1. Minimum spanning tree

Input: A connected graph G = (V, E) and weights $w_e \ge 0$ for each edge $e \in E$ **Output:** A subset F of E such that (V, F) is connected and given these restrictions, $\sum_{e \in E} w_e$ is maximized.

Algorithm 1. Kruskal's algorithm

Initialize F to the empty set. Sort the edges in ascending order of weights For each edge e in this ordering. If $(V, F \cup \{e\})$ does not contain a cycle then add e to FReturn F

Theorem 5. Kruskal's algorithm returns a minimum spanning tree.

Problem 2. Shortest path

Input: A connected graph G = (V, E), weights $w_e > 0$ for each edge $e \in E$ and two vertices $s, t \in V$. **Output:** A minimum weight path from s to t in G.

Algorithm 2. (Simplified) Dijkstra's algorithm

Initialize an array d indexed by V to ∞ $d[s] \leftarrow 0$ $S \leftarrow \{s\}$ Initialize an array prev indexed by V to null. While $t \notin S$ Find $e = (u, v) \in E$ with $u \in S, v \in V \setminus S$ minimizing $d[u] + w_{(u,v)}$. $d[v] \leftarrow d[u] + w_{(u,v)}$ prev $[v] \leftarrow u$ $S \leftarrow S \cup \{v\}$ Return d and prev

To obtain the path from the output, repeatedly follow the prev pointers, starting from t.

Lemma 3. Dijkstra's algorithm assigns d values in a non-decreasing order.

Lemma 4. A subpath of a minimum weight path is a minimum weight path (between different endpoints).

Theorem 6. The *d* values returned by Dijkstra's algorithm corresponds to minimum weight distance from *s*.

Some more lemmas and theorems from the assignments.

Lemma 5. Let G be a graph. If $C = c_1, c_2, ..., c_{k-1}, c_k$ is a cycle in G then for any j (between 1 and k), $c_j, c_{j+1}, ..., c_{k-1}, c_k, c_1, c_2, ..., c_{j-2}, c_{j-1}$ is also a cycle in G.

Theorem 7. (Ore's theorem)

Let G be a graph. If G has at least 3 vertices and for every pair of non-adjacent vertices $u, v \in V(G)$, $\deg(u) + \deg(v) \ge |V(G)|$ then G has a Hamiltonian cycle.

Lemma 6. Let G be a graph. For any k > 2, if G is k-connected then G is k-1 connected.

Definition 15. A set of path P_1, \ldots, P_k with the same starting and ending vertex is said to be **internally** vertex disjoint if no two paths have a vertex in common except for their endpoints. That is, if $P_i = u, p_{i,1}, p_{i,2}, \ldots, v$ then there does not exist i, j, k, ℓ with $i \neq k$ such that $p_{i,j} = p_{k,\ell}$.

Theorem 8. (Part of Menger's theorem)

Let G be a graph. If every pair of (distinct) vertices $u, v \in V(G)$, there are two vertex disjoint paths P_1, P_2 starting at u and ending at v then G is 2-connected.

Definition 16. The **Cartesian product** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, denoted $G_1 \times G_2$, is a graph with vertex set V and edge set E defined as follows. V consists of all pair (v_1, v_2) for each vertex v_1 in V_1 , and each vertex v_2 in V_2 (i.e., $V = \{(v_1, v_2) | v_1 \in V_1, v_2 \in V_2\}$). Two vertices (u_1, u_2) and (v_1, v_2) of $G_1 \times G_2$ are adjacent if either

- $u_1 = v_1$ and u_2 is adjacent to v_2 in G_2 , or
- $u_2 = v_2$ and u_1 is adjacent to v_1 in G_1 .

In other words, $E = \{((u_1, u_2), (v_1, v_2)) | u_1 = v_1, (u_2, v_2) \in E(G_2)\} \cup \{((u_1, v_1), (u_2, v_2)) | u_2 = v_2, (u_1, v_1) \in E(G_1)\}.$

MATH 363

Sample

Appendix 4: Glossary of symbols

Symbol	Name	Example or definition	Example read as
V	Logical or	$p \lor q$	p or q.
\wedge	Logical and	$p \wedge q$	p and q.
_	Logical not	$\neg p$	not p .
\rightarrow	Implication	p ightarrow q	p implies q.
			If p then q .
			q whenever p .
\leftrightarrow	Bi-implication	$p \leftrightarrow q$	p if and only if q .
≡	Equivalence	$p \equiv q$	p is equivalent to q .
\mathbf{F}	Contradiction	$\mathbf{F} ightarrow p$	False implies p .
Т	Tautology	$\mathbf{T} ightarrow\mathbf{F}$	True implies false.
\vdash	Infer	$P_1,\ldots,P_k\vdash Q$	We can infer Q from P_1, \ldots, P_k .
Þ	Models	$P_1,\ldots,P_k\models Q$	P_1,\ldots,P_k models Q .
\in	Containment	$x \in S$	x is in S .
			x is an element of S .
\cap	Intersection	$S \cap T = \{x x \in S, x \in T\}$	S intersect T .
			The elements in both S and T .
U	Union	$S \cap T = \{x x \in S \text{ or } x \in T\}$	S union T .
			The elements in either S or T .
	Set difference	$S \setminus T = \{x x \in S, x \notin T\}$	S minus T .
			The elements in S but not T .
\forall	Universal quantifier	$\forall x \in \mathbb{Z}, x^2 \geq 0$	For all integers x, x^2 is greater or equal to zero.
Э	Existential quantifier	$\exists x \in \mathbb{Z}, x+5 = 0$	There exists an integer x such that $x + 5$ is zero.