1 Rules of Inference

1

Rules of inference are used to deduce true formulas from other true formulas.

Notation. Upper case letters P, Q, R, S will be used to denote propositional formulas (rather than single variables).

The rules of inference are stated using the following notation

$\frac{\rm Hypothesis}{\rm Conclusion}$

which mean given the Hypothesis, we can infer (or deduce) the Conclusion. If there is more than one hypothesis, it is written

 $\begin{array}{c} \text{Hypothesis}_1 \\ \text{Hypothesis}_2 \\ \vdots \\ \text{Hypothesis}_k \end{array}$

Conclusion

Rule	Name	Book name	
$P \wedge Q$			
P	$\wedge \mathcal{E}$	Simplification	
P			
Q	$\wedge \mathcal{I}$	Conjunction	
$\overline{P \wedge Q}$			
₽-		The rules given in the book	
÷		avoids this rule by using	
Q	$\rightarrow \mathcal{I}$	the equivalence of	
$\overline{P \to Q}$		$p \to q \text{ and } \neg p \lor q$	
P			
$P \to Q$	$\rightarrow \mathcal{E}$	Modus Ponens	
\overline{Q}			
P			
$\overline{P \lor Q}$	$\vee \mathcal{I}$	Addition	
$P \lor Q$			
$P \to R$			
$Q \to R$	$\vee \mathcal{E}$	Disjunctive syllogism	
R		(not exactly the same)	
$\underline{P \to \mathbf{F}}$		Modus Tollens	
$\neg P$	$\neg \mathcal{I}$	(not exactly the same)	
P			
$\underline{\neg P}$	$ eg \mathcal{E}$		
F			
$\underline{\neg \neg P}$			
P	$\neg \neg \mathcal{E}$		
$\underline{\mathbf{F}}$			

These are the inference rules of a natural deduction system. We will be using these rules but there are other set of rules that we could have used.

 $^{^1 \}rm Made$ using Paul Taylor's boxuser ${\rm IAT}_{\rm E} \rm X$ macros

Notation. The " \mathcal{I} " in the table means "introduction" and the " \mathcal{E} " in the table means "elimination". So, for example, the name of the first rule is "and elimination".

The first rule can be read as "From $P \wedge Q$, we can infer P".

The rule $\rightarrow \mathcal{I}$ states that if taking P as an assumption, after a number of steps we arrive at Q then we can infer $P \rightarrow Q$ while losing our assumption P (and any formula derived from it).

Notation. We could have also written a rule

$\frac{\text{Hypothesis}}{\text{Conclusion}}$

in a "linear form" as

 $Hypothesis \vdash Conclusion$

and the case with multiple hypotheses as

 $Hypothesis_1, Hypothesis_2, \ldots, Hypothesis_k \vdash Conclusion$

This can be read as "Given Hypotheses₁,...,Hypotheses_k, we can infer the Conclusion".

Example 1. We will now prove $p \land q \rightarrow p$ (using no premise, thus showing that it is a tautology)

1	$p \wedge q$	assumption
2	p	$1, \wedge \mathcal{E}$
3	$p \wedge q \to p$	$1-2, \rightarrow \mathcal{I}$

Note that we have proven $p \land q \to p$ without any hypothesis. Thus we can write $\vdash p \land q \to p$.

Definition 1. Any formula which can be inferred using no premise is called a *theorem*.

Example 2. We will now prove what is called "Modus Tollens" in the book. The statement is $\neg q, p \rightarrow q \vdash \neg p$.

1	$p \to q$	premise
2	$\neg q$	premise
3	p	assumption
4	q	$1, 3, \rightarrow \mathcal{E}$
5	\mathbf{F}	$2, 4, \neg \mathcal{E}$
6	$p\to \mathbf{F}$	$3-5, \rightarrow \mathcal{I}$
7	$\neg p$	$6, \neg \mathcal{I}$

Note. Each line of a proof should either be a premise, an assumption or a formula which is true given all formulas in previous lines are true.

There should not be any assumptions left at the end of a proof (only premises).

Example 3. Here is an example of a mathematical proof which has been formatted differently than usual so that it ressembles a proof in logic.

Theorem 1. If $\sqrt{2} > \frac{3}{2}$ then $2 > \frac{9}{4}$.

Proof.

1
$$\sqrt{2} > \frac{3}{2}$$
 assumption
2 $\sqrt{2}^2 > \sqrt{2}\frac{3}{2}$ 1, multiply both sides by $\sqrt{2}$
3 $\sqrt{2}\frac{3}{2} > \left(\frac{3}{2}\right)^2$ 1, multiply both sides by $\frac{3}{2}$
4 $\sqrt{2}^2 > \left(\frac{3}{2}\right)^2$ 2, 3, transitivity of >
5 $2 > \frac{9}{4}$ evaluation of the left-hand side and right-hand side

Of course, the premise $\sqrt{2} > \frac{3}{2}$ is false. But this does not make the implication and thus our theorem false.

Here is what the proof may look like if it were normally formatted.

Proof. Suppose
$$\sqrt{2} > \frac{3}{2}$$
. Then $\sqrt{2}^2 > \sqrt{2}\frac{3}{2} > \left(\frac{3}{2}\right)^2$. Therefore, $2 > \frac{9}{4}$.

Definition 2. We call Hypothesis \vdash Conclusion an *argument*. An argument is *valid* if we can infer the Conclusion given Hypotheses₁,...,Hypotheses_k and *invalid* otherwise.

Example 4. In this example, we prove $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$ (and thus, show that it is a valid argument).

1	p ightarrow q	assumption
2	$q \rightarrow r$	assumption
3	p	assumption
4	q	$1, 3, \rightarrow \mathcal{E}$
5	r	$2, 4, \rightarrow \mathcal{E}$
6	$p \rightarrow r$	$3-5, \rightarrow \mathcal{I}$
7	$(q \to r) \to (p \to r)$	$2-6, \rightarrow \mathcal{I}$
8	$(p \to q) \to ((q \to r) \to (p \to r))$	$1-7, \rightarrow \mathcal{I}$

Exercise 1. Show that $(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$.

At first, there is no reason to believe that if we can prove P from no premise using rules of inference that P should be a tautology. And perhaps even less believable is the fact that *all* tautologies can be proven using these rules. These concepts are referred to as *soundness* and *completeness* respectively. We formalise these ideas with the \models symbol.

Definition 3. Hypothesis₁,...,Hypothesis_k \models Conclusion if for any value of the variables which makes Hypothesis₁,...,Hypothesis_k true, the Conclusion is true.

 $P \models Q$ is read as "P models Q".

Example 5. The following table shows that $\neg q, p \rightarrow q \models \neg p$.

1	p	q	$\neg q$	$p \rightarrow q$	$\neg p$
	T	T	F	Т	F
	T	F	T	F	F
	F	T	F	T	T
	F	F	T	T	T

The hypothesis are all true only when p and q are both false and in that case, $\neg p$ is indeed true. Thus, $\neg q, p \rightarrow q \models \neg p$.

We can now write what we would like to be true. Theorem 2 (Soundness).

$$P_1, \ldots, P_k \vdash Q \Rightarrow P_1, \ldots, P_k \models Q$$

Theorem 3 (Completeness).

$$P_1, \ldots, P_k \models Q \Rightarrow P_1, \ldots, P_k \vdash Q$$