MATH 363	Final	Wednesday, April 28

Final exam

- This is a closed book exam. No calculators are allowed.
- Unless stated otherwise, justify all your steps.
- You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise.
- Four appendices are attached at the end of this exam. Appendix 1 contains a list of rules of inference. Appendix 2 contains two tables of propositional equivalences. Appendix 3 contains a list of definitions and theorems. Appendix 4 contains a glossary of symbols.
- All graphs are simple graphs unless stated otherwise. All graphs have no loops.

MATH 363

Appendix 1: Rules of inference

Rule	Name
$\frac{P \land Q}{P} \frac{P \land Q}{Q}$ $P P$	$\wedge \mathcal{E}$
	$\frac{\wedge \mathcal{E}}{\wedge \mathcal{I}}$
$\begin{array}{ccc} Q & Q \\ \hline P \land Q & \overline{Q \land P} \\ \hline P \\ \vdots \\ Q \\ \hline P \rightarrow Q \\ \hline P \\ \hline P \\ \hline P \\ \hline Q \\ \hline P \\ \hline P \\ \hline Q \\ \hline P \\ \hline P \\ \hline Q \\ \hline P \\ \hline P \\ \hline Q \\ \hline P \\ \hline P \\ \hline Q \\ \hline P \\ \hline P \\ \hline Q \\ \hline Q \\ \hline P \\ \hline P \\ \hline Q \\ \hline P \\ \hline P \\ \hline Q \\ \hline P \\ \hline P \\ \hline P \\ \hline Q \\ \hline P $	$ ightarrow \mathcal{I}$
$ \frac{P}{P \to Q} = \frac{P \to Q}{Q} $	$ ightarrow {\cal E}$
$\frac{P}{P \lor Q} \frac{P}{Q \lor P}$	$\vee \mathcal{I}$
$\begin{array}{ccc} P \lor Q & Q \lor R \\ P \to R & P \to R \\ \hline Q \to R & Q \to R \\ \hline R & R \end{array}$	$\vee \mathcal{E}$
$\frac{P \to \mathbf{F}}{\neg P}$	$\neg \mathcal{I}$
$ \begin{array}{c} P \\ \neg P \\ \overline{\mathbf{F}} \\ \hline \neg \neg P \\ P \end{array} $	$\neg \mathcal{I}$ $\neg \mathcal{E}$
$\frac{\neg \neg P}{P}$	$\neg\neg\mathcal{E}$
<u>F</u> P	$\mathbf{F}\mathcal{E}$

Appendix 2: Table of equivalences

For propositional logic.

$p \wedge \mathbf{T} \equiv p \ p ee \mathbf{F} \equiv p$
$p \lor \mathbf{T} \equiv \mathbf{T}$
$p \wedge \mathbf{F} \equiv \mathbf{F}$
$p \lor p \equiv p$
$p \wedge p \equiv p$
$\neg(\neg p) \equiv p$
$p \lor q \equiv q \lor p$
$p \wedge q \equiv q \wedge p$
$(p \land q) \land r \equiv p \land (q \land r)$
$(p \lor q) \lor r \equiv p \lor (q \lor r)$
$\neg (p \lor q) \equiv \neg p \land \neg q$
$\neg (p \land q) \equiv \neg p \lor \neg q$
$p \lor (p \land q) \equiv p$
$p \wedge (p \vee q) \equiv p$
$p \vee \neg p \equiv \mathbf{T}$
$p \wedge \neg p \equiv \mathbf{F}$
$p \to q \equiv \neg p \lor q$

For first order logic. The above as well as the following.

$\neg \exists x \ p(x) \equiv \forall x \ \neg p(x)$	
$\neg \forall x \ p(x) \equiv \exists x \ \neg p(x)$	

Appendix 3: Definitions and theorems

Definition 1. We call $P_1, \ldots, P_k \vdash Q$ an **argument**. An argument is **valid** if we can infer the conclusion Q given the hypotheses P_1, \ldots, P_k and **invalid** otherwise.

Definition 2. A graph G is an ordered pair (V, E) where V is a set of vertices and E is a (multi) set of edges: 2-element subsets of V.

Lemma 3. (Handshaking lemma) Let G = (V, E) be a graph. Then

$$\sum_{v \in V} \deg(v) = 2|E|$$

Theorem 4. Let G be a graph. The number of odd degree vertices in G is even.

Definition 5. A walk consists of an alternating sequence of vertices and edges consecutive elements of which are incident, that begins and ends with a vertex. A **trail** is a walk without repeated edges. A **path** is a walk without repeated vertices.

If a walk (resp. trail, path) begins at x and ends at y then it is an x - y walk (resp. x - y trail, resp. x - y path).

A walk (trail) is **closed** if it begins and ends at the same vertex. A closed trail whose origin and internal vertices are distinct is a **cycle**.

Definition 6. A **circuit** is a trail that begins and ends at the same vertex.

Some equivalent definitions of paths and cycles.

Definition 7. A path in a graph G is a sequence of vertices p_1, \ldots, p_k such that for all $1 \le i \le k-1$, (p_i, p_{i+1}) is an edge in G.

A cycle in a graph G is a path p_1, \ldots, p_k such that (p_k, p_1) is an edge of G.

Definition 8. A subgraph H of a graph G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq \{(u, v) | (u, v) \in E(G), u \in V(H), v \in V(H)\}$.

An induced subgraph H of G is a subgraph of G where $E(H) = \{(u, v) | (u, v) \in E(G), u \in V(H), v \in V(H)\}$ (i.e., we have all edges between vertices of H).

Definition 9. P_n is the graph on *n* vertices v_1, \ldots, v_n and edges (v_i, v_{i+1}) for each *i* from 1 to n-1.

 C_n is the graph on *n* vertices v_1, \ldots, v_n and edges (v_1, v_n) and (v_i, v_{i+1}) for each *i* from 1 to n-1.

 K_n , the complete graph, is the graph on n vertices v_1, \ldots, v_n and all edges (i.e., (v_i, v_j) for all $1 \le i < j \le n$).

 Q_n , the hypercube graph, is the graph on 2^n vertices with each vertex labelled by a different binary string of length n and two vertices are adjacent if and only if their labels in exactly one bit.

Definition 10. A **path** in a graph G is a subgraph of G that is a copy of P_k for some k. A **cycle** in a graph G is a subgraph of G that is a copy of C_k for some k.

Definition 11. The length of a path P is the number of vertices in it and is denote |P| or |V(P)|. The length of a cycle is the number of vertices in it.

Definition 12. An **Eulerian circuit** in a graph G is a circuit which contains every edge of G. An **Eulerian trail** in a graph G is a trail which contains every edge of G.

Definition 13. A graph G is **connected** if there is a path between every pair of vertices. G is **disconnected** otherwise.

A graph G is k-connected if there does not exist a set of at most k - 1 vertices of G whose removal yield a disconnected graph.

A connected component of a graph G is a maximal connected subgraph (meaning we cannot add more edges and vertices while preserving connectivity).

Theorem 14. Let G be a multigraph. G is a connected and all vertices of G have even degree if and only if G has an Eulerian circuit and G has no zero degree vertex.

Definition 15. An **Hamiltonian cycle** in a graph G is a cycle which contains every vertex of G. An **Hamiltonian path** in a graph G is a path which contains every vertex of G.

Theorem 16. There exists an ordering (or sequence) containing all n-bit binary strings exactly once where every consecutive string differ in exactly one bit and the first and last string differ in exactly one bit.

Lemma 17. If a graph G has a Hamiltonian cycle then G is 2-connected.

Theorem 18. (Dirac's theorem) If a graph G has at least 3 vertices and the degree of every vertex of G is at least $\frac{|V(G)|}{2}$ then G has a Hamiltonian cycle.

Definition 19. A **tree** is a connected graph with no cycles.

A forest is a graph with no cycles (which is not necessarily connected).

Definition 20. A rooted tree is digraph obtained from a tree T and a special vertex $r \in V(T)$ called the root by directing every edge "towards" the root (e.g., from the vertex farthest from the root to the vertex closest to the root).

Lemma 21. If T is a tree with at least 2 vertices then T has at least 2 vertices of degree 1.

Theorem 22. Every tree on n vertices has exactly n - 1 edges.

Problem 23. Minimum spanning tree

Input: A connected graph G = (V, E) and weights $w_e \ge 0$ for each edge $e \in E$

Output: A subset F of E such that (V, F) is connected and given these restrictions, $\sum_{e \in F} w_e$ is minimized.

Algorithm 24. Kruskal's algorithm

Initialize F to the empty set. Sort the edges in ascending order of weights For each edge e in this ordering. If $(V, F \cup \{e\})$ does not contain a cycle then add e to FReturn F

Theorem 25. Kruskal's algorithm returns a minimum spanning tree.

Problem 26. Shortest path

Input: A connected graph G = (V, E), weights $w_e > 0$ for each edge $e \in E$ and two vertices $s, t \in V$. **Output:** A minimum weight path from s to t in G.

Algorithm 27. (Simplified) Dijkstra's algorithm

Initialize an array d indexed by V to ∞ $d[s] \leftarrow 0$ $S \leftarrow \{s\}$ Initialize an array prev indexed by V to null. While $t \notin S$ Find $e = (u, v) \in E$ with $u \in S, v \in V \setminus S$ minimizing $d[u] + w_{(u,v)}$. $d[v] \leftarrow d[u] + w_{(u,v)}$ prev $[v] \leftarrow u$ $S \leftarrow S \cup \{v\}$ Return d and prev

To obtain the path from the output, repeatedly follow the prev pointers, starting from t.

Lemma 28. Dijkstra's algorithm assigns d values in a non-decreasing order.

Lemma 29. A subpath of a minimum weight path is a minimum weight path (between different endpoints).

Theorem 30. The d values returned by Dijkstra's algorithm corresponds to minimum weight distance from s.

Definition 31. A matching in a graph G = (V, E) is a subset of the edges $M \subseteq E$ where all vertices of (V, M) have degree at most 1.

Definition 32. A **perfect matching** in a graph G is a matching M where all vertices of G are incident to some edge of M.

Theorem 33. (Hall's theorem) Let G be a bipartite graph with parts A and B. G contains a perfect matching if and only if |A| = |B| and for all $S \subseteq A$, $|S| \leq |N(S)|$.

Algorithm 34. Input: A bipartite graph G = (V, E) with parts A and B, a matching M in G, the set of unmatched vertices U of A and the set of unmatched vertex W of B.

Output: Either

- 1. An M-augmenting path in G, or
- 2. A subset S of A with |S| > |N(S)|.

```
Initialize an array prev of pointers

S \leftarrow U

T \leftarrow \emptyset

For s \in S, set prev[s] \leftarrownull

While true

If \exists e = (u, v) \in E with u \in S and v \notin T then

prev[v] \leftarrow u

If v \in W then

return the path from v following prev pointers.

T \leftarrow T \cup \{v\}

w \leftarrow the vertex matched to v in M

S \leftarrow S \cup \{w\}

prev[w] \leftarrow v

Else

return S
```

Algorithm 35. Input: A bipartite graph G = (V, E) with parts A and B, a matching M in G, the set of unmatched vertices U of A and the set of unmatched vertex W of B.

Output: Either

- 1. An M-augmenting path in G, or
- 2. "An M-augmenting path does not exist in G."

Build a digraph H with vertex set A and directed edges $\{(u, v) | \exists v \in B, (u, v) \notin M, (v, w) \in M\}$. Run a graph search algorithm (e.g., DFS or BFS) in H starting from U and see if we can reach a vertex in N(W).

Problem 36. Chinese postman problem

Input: A connected graph G = (V, E), weights $w_e \ge 0$ for each edge $e \in E$. **Output:** A minimum weight set of edge of G that we need to "double" to make the graph Eulerian.

Wednesday, April 28

MATH 363

Final

Algorithm 37. for solving the Chinese postman problem Compute the degrees of all vertices in GLet S be the set of odd degree vertices in GBuild H, the weighted complete graph with vertex set S and weights $w_{u,v}$ =shortest path distance from u to v in GFind a minimum weight maximum matching M in H. Let F be the union of all edges of G on paths corresponding to edges of M. Return F.

Definition 38. A set is a (unordered) collection of distinct elements.

Definition 39. A function f from a set A to a set B, denoted $f : A \to B$, is an assignment of one element of B to each element of A.

f(a) is the element of B assigned to $a \in A$.

Definition 40. A function $f : A \to B$ is said to be **injective** (or **one-to-one**) if $\forall a_1, a_2 \in A, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ (i.e., no two elements of A get assigned the same element of B).

A function $f : A \to B$ is said to be **surjective** (or **onto**) if $\forall b \in B \exists a \in A$, such that f(a) = b (i.e., all elements of B are assigned some element of A).

A function is **bijective** if it is both injective and surjective.

A bijective function is called a **bijection**.

Theorem 41. If there is a bijection between A and B then |A| = |B|..

Theorem 42. The number of subsets of a set S of size n is 2^n .

Theorem 43. The complete graph on n vertices (K_n) has $\frac{n(n-1)}{2}$ edges.

Theorem 44. Let G = (V, E) be a bipartite graph with parts A and B. Then

$$\sum_{v \in A} \deg(v) = |E| = \sum_{v \in B} \deg(v)$$

Corollary 45. Let $f : A \to B$ be a function such that every element of B is a assigned exactly k elements of A. Then k|B| = |A|.

Lemma 46. For any two sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$.

Lemma 47. For any three sets A_1, A_2 and $B, (A_1 \cap B) \cap (A_2 \cap B) = A_1 \cap A_2 \cap B$.

Lemma 48. For any k+1 sets A_1, \ldots, A_k and B, $(A_1 \cap B) \cup (A_2 \cap B) \cup \ldots \cup (A_k \cap B) = (A_1 \cup A_2 \cup \ldots \cup A_k) \cap B$.

Theorem 49. (Inclusion-exclusion principle) For any n sets S_1, S_2, \ldots, S_n ,

$$|S_1 \cup S_2 \cup \ldots \cup S_n| = \sum_{i=1}^n |S_i| - \sum_{1 \le i < j \le n} |S_i \cap S_j| + \sum_{1 \le i < j < k \le n} |S_i \cap S_j \cap S_k| - \ldots + (-1)^n |S_1 \cap S_2 \cap \ldots \cap S_n|$$

Lemma 50. The number of subsets of size k of a set of size n is $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Definition 51. A fixed point of a function $f : A \to A$ is an element $a \in A$ such that f(a) = a.

Definition 52. A derangement is a function $f : A \to A$ with no fixed points.

Theorem 53. The number of derangements from A to A where |A| = n is

$$\sum_{i=0}^{n} (-1)^{i} \frac{n!}{i!}$$

Theorem 54. The number of ways of choosing k elements out of n elements when repetition is allowed is $\binom{n+k-1}{n-1}$.

Theorem 55. If $f : A \to B$ and $g : B \to A$ are functions and $\forall a \in A, g(f(a)) = a$ and $\forall b \in B, f(g(b)) = b$ then f and g are bijections.

We write f^{-1} for g in this case.

Theorem 56. Every graph with at least 2 vertices has two vertices of the same degree.

Theorem 57. (Pigeonhole principle) If we put more than n objects into n boxes then there is a box with at least 2 objects in it.

Theorem 58. (Generalized pigeonhole principle) If we put n objects into k boxes then there is a box with at least $\lceil \frac{n}{k} \rceil$ objects in it.

Definition 59. Let G = (V, E) be a graph.

A clique in G is a subset U of V such that there is an edge between every pair of vertices in U. A stable set in G is a subset U of V such that there no edge between any pair of vertices in U.

Theorem 60. A graph with 6 vertices contains either a clique of size 3 or a stable set of size 3 (or both).

Definition 61. The Ramsey number R(s,t) is the minimum number such that every graph with (at least) R(s,t) vertices contains either a clique of size s or a stable set of size t.

Lemma 62. If $s \ge 3, t \ge 3$ then $R(s,t) \le R(s-1,t) + R(s,t-1)$.

Theorem 63. If $s \ge 2, t \ge 2$ then $R(s, t) \le 2^{s+t}$.

Theorem 64. For every s > 2, there exists a graph with $2^{s/2}$ vertices with no clique of size s and no stable set of size s.

Definition 65. A colouring with k colours of a graph G = (V, E) is assignment $c : V \to \{1, 2, ..., k\}$ such that adjacent vertices are assigned different values.

If such an assignment exists, we say that G is k-colourable.

Definition 66. A graph is **planar** if it can be drawn in the plane in such a way that no two edges cross.

Theorem 67. If a planar graph has v vertices, e edges and f faces then f + v = e + 2.

Theorem 68. If a planar graph G has n vertices then G has at most 3n - 6 edges.

Corollary 69. Every planar graph has a vertex of degree less or equal to 5.

Theorem 70. Every planar graph is 5-colourable.

Definition 71. A partially ordered set (or poset) is a set S with a "less than" relation < such that if a < b and b < c then a < c.

Definition 72. A chain in a poset (A, <) is a set of elements a_1, a_2, \ldots, a_k in A such that $a_1 < a_2 < \ldots < a_k$. An **anti-chain** in a poset (A, <) is a set of elements a_1, a_2, \ldots, a_k in A such that a_i and a_j are incomparable for all $i \neq j$.

Theorem 73. Let G be a bipartite graph. The minimum size of a vertex cover in G is equal to the size of a maximum matching in G.

Theorem 74. Dilworth's theorem Let (A, <) be a poset. The maximum number of elements in an anti-chain of A is the minimum size of a partition of A into chains.

Some more lemmas and theorems from the assignments.

Lemma 75. Let G be a graph. If $C = c_1, c_2, ..., c_{k-1}, c_k$ is a cycle in G then for any j (between 1 and k), $c_j, c_{j+1}, ..., c_{k-1}, c_k, c_1, c_2, ..., c_{j-2}, c_{j-1}$ is also a cycle in G.

Theorem 76. (Ore's theorem)

Let G be a graph. If G has at least 3 vertices and for every pair of non-adjacent vertices $u, v \in V(G)$, $\deg(u) + \deg(v) \ge |V(G)|$ then G has a Hamiltonian cycle.

Lemma 77. Let G be a graph. For any k > 2, if G is k-connected then G is k-1 connected.

Definition 78. A set of path P_1, \ldots, P_k with the same starting and ending vertex is said to be **internally** vertex disjoint if no two paths have a vertex in common except for their endpoints. That is, if $P_i = u, p_{i,1}, p_{i,2}, \ldots, v$ then there does not exist i, j, k, ℓ with $i \neq k$ such that $p_{i,j} = p_{k,\ell}$.

Theorem 79. (Part of Menger's theorem)

Let G be a graph. If every pair of (distinct) vertices $u, v \in V(G)$, there are two vertex disjoint paths P_1, P_2 starting at u and ending at v then G is 2-connected.

Definition 80. The **Cartesian product** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, denoted $G_1 \times G_2$, is a graph with vertex set V and edge set E defined as follows. V consists of all pair (v_1, v_2) for each vertex v_1 in V_1 , and each vertex v_2 in V_2 (i.e., $V = \{(v_1, v_2) | v_1 \in V_1, v_2 \in V_2\}$). Two vertices (u_1, u_2) and (v_1, v_2) of $G_1 \times G_2$ are adjacent if either

- $u_1 = v_1$ and u_2 is adjacent to v_2 in G_2 , or
- $u_2 = v_2$ and u_1 is adjacent to v_1 in G_1 .

In other words, $E = \{((u_1, u_2), (v_1, v_2)) | u_1 = v_1, (u_2, v_2) \in E(G_2)\} \cup \{((u_1, v_1), (u_2, v_2)) | u_2 = v_2, (u_1, v_1) \in E(G_1)\}.$

Theorem 81. If G has a Hamiltonian cycle then $G \times P_2$ has a Hamiltonian cycle where P_2 is the graph on two vertices with a single edge

Theorem 82. If G_1 and G_2 both have Hamiltonian cycles and $|V(G_1)| = |V(G_2)|$ then $G_1 \times G_2$ has a Hamiltonian cycle

Theorem 83. If T = (V, E) is a tree then for any $e \in E$, $(V, E \setminus \{e\})$ is disconnected.

Definition 84. A subtree of a tree T is a subgraph of T which is also a tree.

Definition 85. Let S_1, S_2, \ldots, S_k be sets. $T = \{(s_1, s_2, \ldots, s_k) | s_1 \in S_1, s_2 \in S_2, \ldots, s_k \in S_k\}$ is called the **Cartesian product** of S_1, S_2, \ldots, S_k and is denoted by $S_1 \times S_2 \times \ldots \times S_k$.

Theorem 86. For any k and any k sets S_1, S_2, \ldots, S_k , $|S_1 \times S_2 \times \ldots \times S_k| = |S_1||S_2| \ldots |S_k|$ (i.e., the size of the Cartesian product of these sets is the product of the sizes of these sets).

Theorem 87. The number of functions $f : A \to B$ where |A| = x and |B| = y is y^x .

MATH 363

Final

Appendix 4: Glossary of symbols

Symbol	Name	Example or definition	Example read as
V	Logical or	$p \lor q$	p or q.
\wedge	Logical and	$p \wedge q$	p and q.
_	Logical not	$\neg p$	not p .
\rightarrow	Implication	p ightarrow q	p implies q.
			If p then q .
			q whenever p .
\leftrightarrow	Bi-implication	$p \leftrightarrow q$	p if and only if q .
≡	Equivalence	$p \equiv q$	p is equivalent to q .
\mathbf{F}	Contradiction	$\mathbf{F} ightarrow p$	False implies p .
Т	Tautology	$\mathbf{T} ightarrow \mathbf{F}$	True implies false.
⊢ ⊥ €	Infer	$P_1, \ldots, P_k \vdash Q$	We can infer Q from P_1, \ldots, P_k .
Þ	Models	$P_1,\ldots,P_k\models Q$	P_1, \ldots, P_k models Q .
\in	Containment	$x \in S$	x is in S .
			x is an element of S .
\subseteq	Subset	$S \subseteq T$	S is a subset of T .
\cap	Intersection	$S \cap T = \{x x \in S, x \in T\}$	S intersect T .
			The elements in both S and T .
U	Union	$S \cup T = \{x x \in S \text{ or } x \in T\}$	S union T .
			The elements in either S or T .
\	Set difference	$S \setminus T = \{x x \in S, x \notin T\}$	S minus T .
			The elements in S but not T .
 ∀	Cardinality	S	The size of S .
\forall	Universal quantifier	$\forall x \in \mathbb{Z}, x^2 \ge 0$	For all integers x, x^2 is greater or equal to zero.
Ξ	Existential quantifier	$\exists x \in \mathbb{Z}, x+5 = 0$	There exists an integer x such that $x + 5$ is zero.