Testing the real standard dev of a sample:

$$
W=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}, W \sim \chi^{2} d f=n-1
$$

Assume random/independent sample, normally distributed pop.
Testing if two population variances are the same:

$$
F=\frac{S_{1}^{2}}{S_{2}^{2}}, d f=n_{1}-1, n_{2}-1
$$

Assume two samples are randomly and independently selected from their two populations, which are both normally distributed
One-Way Anova

$$
\begin{gathered}
S S T=\sum_{k=1}^{K} n_{k}\left(Y_{k}-\hat{Y}\right)^{2} \\
M S T=\frac{S S T}{K-1} \\
S S E=\sum_{k=1}^{K} \sum_{i=1}^{n_{k}}\left(Y_{i j}-Y_{k}\right)^{2} \\
s_{p}^{2}=M S E=\frac{S S E}{n-K} \\
T S S=\Sigma_{k=1}^{K} \Sigma_{i=1}^{n_{k}}\left(Y_{i j}-Y\right)^{2}=(n-1) s^{2}
\end{gathered}
$$

Assume random/independent selection, and each group is normally distributed
Confidence interval for difference between 2 groups if K $=2$

$$
\begin{gathered}
y_{1}-y_{2} \pm t_{\alpha / 2, n_{1}+n_{2}-2} \sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}, d f=n_{1}+n_{2}+2 \\
y_{1}-y_{2} \pm t_{\alpha / 2, n-K} \sqrt{\frac{M S E}{n_{i}}+\frac{M S E}{n_{j}}} d f=n-K
\end{gathered}
$$

Bonferroni correction

$$
\alpha=\frac{\alpha_{F}}{K(K-1) / 2}
$$

Two-Way Anova with block design

$$
\begin{aligned}
& T S S=\sum_{i=1}^{K} \sum_{j=1}^{B}\left(Y_{i j}-Y\right)^{2} \\
& S S T=B \sum_{i=1}^{K}\left(Y_{i-}-Y\right)^{2} \\
& S S B=K \sum_{j=1}^{B}\left(Y_{-j}-Y\right)^{2}
\end{aligned}
$$

$S S E=T S S-S S B-S S T=\sum_{i_{1}}^{K} \sum_{j=1}^{B}\left(Y_{i j}-Y_{i-}-Y_{-j}+Y\right)^{2}$
Assume errors are normally distributed, blocks are as homogenous as possible. Treatments are randomly assigned to the units in each block, treatment and block effects are all constants.
Two-Way Anova with Factors
Overall test

$$
\begin{gathered}
S S E=\sum_{i=1}^{K} \sum_{j=1}^{J} \sum_{r=1}^{R}\left(Y_{i j r}-Y_{i j-}\right)^{2} \\
S S T=R \sum_{i=1}^{K} \sum_{j=1}^{J}\left(Y_{i j-}-Y\right)^{2} \\
M S T=\frac{S S T}{J K-1} M S E=\frac{S S E}{n-K J}
\end{gathered}
$$

Decomposed tests

$$
\begin{gathered}
S S(A)=R J \sum_{i=1}^{K}\left(\bar{y}_{i--}-\bar{y}_{---}\right)^{2} \\
S S(B)=R K \sum_{j=1}^{J}\left(\bar{y}_{-j-}-\bar{y}_{---}\right)^{2} \\
M S(B)=\frac{S S(B)}{J-1} M S(A)=\frac{S S(A)}{K-1} \\
S S(A B)=R \sum_{j=1}^{J} \sum_{i=1}^{K}\left(\bar{y}_{i j-}-\bar{y}_{i--}-\bar{y}_{-j-}+\bar{y}_{---}\right)^{2} \\
M S(A B)=\frac{S S(A B)}{K J-J-K+1}
\end{gathered}
$$

$$
F_{A B}=\frac{M S(A B)}{M S E}, d f=K J-J-K+1, n-J K
$$

if not rejected, then:

$$
F_{A}=\frac{M S(A)}{M S E}, d f=K-1, n-J K
$$

Assume: samples are random/independent, each group normally distributed. same \# of experimental units randomly assigned to each $R \times J$ possible factor combinations. Errors are normally distributed with the same var as population.
Linear Regression

$$
\begin{gathered}
\sigma_{\hat{\beta}_{1}}=\frac{\sigma}{\sqrt{S_{X X}}} \\
s^{2}=\frac{\sigma_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}=\frac{S S E}{n-2} \\
S S E=S S_{Y Y}-\hat{\beta}_{1} S S_{X Y} \\
T=\frac{\hat{\beta}_{1}-0}{\sigma / \sqrt{S S_{X X}}} \\
\hat{\beta}_{1} \pm t_{n-2, \alpha / 2} \frac{s}{\sqrt{S S_{X X}}} \\
r=\frac{S S_{X Y}}{\sqrt{S S_{X X} S S_{Y Y}}} \\
S S_{X Y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right) \\
S S_{X X}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
S S_{Y Y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
r=\hat{\beta}_{1} \frac{s_{x}}{s_{y}} \\
S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
r^{2}=1-\frac{S S E}{S S_{Y Y}} \\
r \pm t_{\alpha / 2, n-2} \sqrt{\left(1-r^{2}\right) /(n-2)}
\end{gathered}
$$

In small samples:

$$
\begin{gathered}
Z=\ln \frac{1+r}{1-r} \\
Z \pm z_{\alpha / 2} / \sqrt{(n-3)}=\left(c_{L}, c_{U}\right)
\end{gathered}
$$

$$
\begin{gathered}
{\left[\frac{\exp \left(2 * c_{L}-1\right)}{\exp \left(2 * c_{L}+1\right)}, \frac{\exp \left(2 * c_{U}-1\right)}{\exp \left(2 * c_{U}+1\right)}\right]} \\
E\left(\hat{y}\left(x_{0}\right)\right)=\beta_{0}+\beta_{1} x_{0} \\
s_{\hat{y}\left(x_{0}\right)}=s \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S S_{X X}}} \\
S_{\tilde{y}\left(x_{0}\right)}=s \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S S_{X X}}}
\end{gathered}
$$

Assume x as constant(error around the measurement of x is negligible), errors are independent random variables with the same variance as the population(Y), mean of zero. Y is a random variable with the same variance as errors. Assume that $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are normally distributed. Multiple Regression Assume: $E\left(\epsilon_{i}\right)=0$ for all i, $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$, normally and independently distributed errors.

$$
\begin{gathered}
s^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-(K+1)} \\
t=\frac{\hat{\beta}_{j}-\beta_{j}^{*}}{s \sqrt{c_{j j}}}
\end{gathered}
$$

$c_{j j}$ is the variance of $\hat{\beta}_{j}$.
Assume x as constant(error around the measurement of x is negligible), errors are independent random variables with the same variance as the population(Y), mean of zero. Y is a random variable with the same variance as errors.
Measuring the fit of the model

$$
\begin{gathered}
S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
S S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
R^{2}=1-\frac{S S E}{S S_{y y}} \\
\left.F=\frac{\left(S S_{Y Y}-S S E\right) / k}{S S E /[n-(K+1)]}=\frac{n-1}{\left(1-R^{2}\right) /(n-(K+1))}\right]\left(\frac{S S E}{S S_{y y}}\right)
\end{gathered}
$$

Comparing Nested Models
$F=\frac{\left(S S E_{M_{0}}-S S E_{M_{1}}\right) /(k-g)}{S S E_{M 1} /(n-(k+1))}, d f=k-g, n-k-1$

$$
e_{i}^{s t d}=\frac{e_{i}}{s}
$$

Categorical Data

$$
\begin{gathered}
\chi^{2}=\sum_{j=1}^{k} \frac{\left(n_{j}-n p_{j}^{(0)}\right)^{2}}{n p_{j}^{(0)}} \\
\chi^{2}=\sum_{j=1}^{k} \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
\end{gathered}
$$

The degrees of freedom is the difference between $\mathrm{k}-1$ and the number of unspecified probabilities in H_{0}.

Test for independence $E\left(n_{j k}\right)=n \hat{p}_{j-} \hat{p}_{-k} d f=r c-1-$ $(r+c-2)=(r-1)(c-1)$
Non-parametric statistics

$$
D_{i}=X_{i}-\eta_{0}
$$

use binomial test on $D_{i}, p=0.5$

$$
z=\frac{X-n p}{\sqrt{n p q}}
$$

For matched pairs, $D_{i}=X_{i}-Y_{i}$, then do test on D_{i} Wilcoxon Paired Rank Sum
T^{+}is rank sum of positive D_{i}

$$
\begin{gathered}
E\left(T^{+}\right)=\frac{n(n+1)}{4} \\
\operatorname{Var}\left(T^{+}\right)=\frac{n(n+1)(2 n+1)}{24}
\end{gathered}
$$

Use Z statistic

Wilcoxon Independent Rank Sum

$$
U=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-W
$$

Where W is the rank sum of first sample

$$
Z=\frac{U-\left(n_{1} n_{2} / 2\right)}{\sqrt{n_{1} n_{2}\left(n_{1}+n_{2}+1\right) / 12}}
$$

Assume independent and identically distributed data.

Source	df	SS	MS	F	p -value
Treatments	$K-1$	$S S T$	$M S T=\frac{S S T}{K-1}$	$\frac{M S T}{M S E}$	$\operatorname{Pr}(\mathrm{~F}>\mathrm{F})$
Error	$n-K$	$S S E$	$M S E=\frac{S S T}{K-1}$		
Total	$n-1$	$T S S$			

Source	df	SS	MS	F
Treatments	$K-1$	$S S T$	$M S T=\frac{S S T}{K-1}$	$\frac{M S T}{M S E}$
Blocks	$B-1$	$S S B$	$M S B=\frac{S S B}{B-1}$	$\frac{M S B}{M S E}$
Error	$n-K-B+1$	$S S E$	$M S E=\frac{S S E}{n-K-B+1}$	
Total	$n-1$	$T S S$		

Source	df	SS	MS	F
A	$K-1$	$S S(A)$	$M S(A)=\frac{S S(A)}{K-1}$	$\frac{M S(A)}{M S E}$
B	$J-1$	$S S(B)$	$M S(B)=\frac{S S(B)}{J-1}$	$\frac{M S(B)}{M S E}$
$A \times B$	$K J-K-J+1$	$S S(A B)$	$M S(A B)=\frac{S S(A B)}{K J-K-J+1}$	$\frac{M S(A B)}{M S E}$
Error	$n-K J$	$S S E$	$M S E=\frac{S S E}{n-K J}$	
Total	$n-1$	$T S S$		

