
A Middleware for Consistent Data Replication: Is it
feasible in WANs?

Yi Lin
�
, Bettina Kemme

�
, Marta Patiño-Martı́nez

�
, and Ricardo Jiménez-Peris

�

�
McGill University, School of Computer Science, 3480 University Street, H3A 2A7, Montreal,

Quebec, Canada
(ylin30,kemme)@cs.mcgill.ca�

Facultad de Informatica. Universidad Politecnica de Madrid , Spain
(mpatino,rjimenez)@fi.upm.es

Paper ID: 278

Abstract. Recent proposals have shown that middleware based database replica-
tion is able to provide 1-copy-serializability in LAN environments with excellent
performance. This can be achieved by using powerful and fast multicast primi-
tives that deliver messages to all sites in the same order in an all-or-nothing fash-
ion. The question is whether a similar approach is feasible in WAN environments
considering the increased message latency. Some of the approaches used in LANs
might also work in WANs but others will be prohibitive. We have performed ex-
tensive tests of different protocols in a WAN testbed, in order to identify the most
crucial bottlenecks, and the most promising optimizations. The performance re-
sults show that performance remains acceptable even for medium sized systems
consisting of up to eight sites. As such, we believe that data replication guaran-
teeing 1-copy-serializability is a serious alternative to weaker approaches even in
WAN environments.

Keywords: 1-copy-serializability, WAN, Group Communication, Data Replication,
Atomicity

1 Introduction and Motivation

The tremendous advances in web technology, open-source application server and database
technology, and cheap hardware have made e-transactions feasible in many domains.
We buy books, sports and movie tickets, and other goods online, and we do our banking
online. With the wide-spread implementation of such transaction processing systems
comes the need for simple and cheap solutions for fault-tolerance, scalability, and fast
response times. While large corporations go with expensive, proprietary solutions, small
businesses look at open-source solutions with little hardware requirements, and rely on
the internet for communication. Hence, replication, as the most common solution to
fault-tolerance and scalability, has received a lot of attention in the last years.

This paper focuses on database replication. A big challenge for the replication proto-
col is to guarantee 1-copy-serializability and atomicity of the replicated transactions [7].



For a long time, 1-copy-serializable protocols have been considered prohibitively ex-
pensive in any kind of environment [13], and there existed only a few, proprietary solu-
tions like Oracle’s synchronous replication [23]. However, in recent years, a new class
of 1-copy-serializable replication protocols has emerged [3, 6, 17, 11, 15, 9, 16, 18, 25,
10, 5, 4, 28]. Many of them use a middleware based approach to database replication.
There are many reasons for that. Database systems are huge software systems, access
to the source code is limited, and any optimized implementation within the database
kernel will lead to a tight integration, disallowing replication across different database
systems.

Many recent proposals ([17, 16, 10, 5, 9, 28, 4, 20]) have shown that middleware based
replication provides scalability, fault-tolerance and fast execution in LANs. The idea is
that when a transaction is submitted to the system its serialization order is determined
and the middleware then makes sure that concurrent transactions are serialized accord-
ing to this predefined order if they conflict. This solution is considerably faster than
traditional distributed locking. Atomicity is achieved by returning a response to the
client only when it is known that all replicas have received the necessary information
to commit a transaction. Again, this is much faster than the traditional 2-phase-commit
where the client has to wait until all sites have actually executed and committed the
transaction.

While these approaches work well in LANs, little research has been done whether
they can also be applied to WANs. [2] analyzes one particular protocol. [28] use multi-
cast protocols that have been developed for WANs, however, an analysis of the replica-
tion protocols themselves has not been presented. Database replication in a WAN is at
least as important as in a LAN although for different reasons. In an ideal world, it pro-
vides fast local access (no expensive access to a remote database server). Additionally,
such a system is able to survive disaster cases where not only one machine crashes but
all machines of a physical location.

While communication overhead plays little role in LANs it has a tremendous effect
in WAN environments. As a result, basically all commercial WAN solutions are based
on lazy replication. Transactions are executed only at one site, and changes are propa-
gated to other sites only some time after the transaction commits. As such, transactions
execute fast but the last transactions committed before a crash are lost losing atomic-
ity. Only some restrictive lazy strategies guarantee consistency at the price of including
communication in the client response time, and many allow inconsistencies between
replicas [12, 23, 8]. It is difficult to detect these inconsistencies, and their reconciliation
usually requires committed transactions to be rolled back. Hence, lazy approaches are
not appropriate for transaction processing systems with high update rates.

As a result, it makes sense to revisit the existing successful replication solutions
developed for LANs, and see whether they provide, although not excellent, but at least
acceptable performance in WANs. Important goal is that throughput can be maintained
or increased with increasing number of sites, while response times remain relatively
low. While response times of less than 100 ms are probably not possible, a system with
response times of a couple of seconds might still be acceptable for some applications.
In fact, the client response time for existing web-based information systems is currently
usually in the order of seconds.



In this paper, we analyze in Sections 2 and 3 existing middleware based solutions for
database replication for LAN environments. For each solution alternative, we analyze
its behavior and feasibility in a WAN. We have implemented a subset of the alterna-
tives (Section 4), and provide an extensive performance analysis (Section 5). The key
points are to reduce communication overhead as much as possible within the response
time of an operation, to overlap execution with message delay, to separate queries from
update transactions, to relax atomicity guarantees, and to keep the time transactions are
stored at the middleware short. In such case, our performance results show that 1-copy-
serializabilty and atomicity for critical transactions can be obtained with acceptable
performance. In many of our experiments, response times remain below 1 second, and
throughput increases over a centralized system. We are not aware of any other research
that compares different replication strategies in such detail.

2 Middleware for Database Replication

There are basically two sets of recent approaches to provide 1-copy-serializability. The
first approach has a controller or scheduler (centralized middleware). All database re-
quests (e.g., SQL requests) are submitted to this controller ([5, 4, 9]. The controller
then forwards queries to one replica, updates have to be executed at all replicas. The
controller performs some concurrency control. In C-JDBC, e.g., the scheduler performs
strict 2-phase-locking (or lower levels of isolation if requested) on a table basis. For that,
the incoming SQL statements are parsed in order to determine the database tables to be
accessed. The scheduler guarantees that all update operations are submitted to all repli-
cas exactly in the same order. In order to facilitate concurrency control, [5, 4] require a
transaction to indicate which tables it is going to access when it starts. [6] maintains a
centralized serialization graph for concurrency control. In all cases, clients submit the
operations of a transaction step by step requiring communication between controller
and database replica for each operation. Having a centralized controller is unattractive
in a WAN since a single scheduler forces remote messages between clients/data replica
and the scheduler. Furthermore, exchanging one or more messages per operation of a
transaction is prohibitive in a WAN.

In order to reduce the number of remote messages, it seems more attractive, that the
middleware is distributed and an instance is installed in front of each database replica
(on the same node or within a LAN). Clients contact the closest middleware instance
to submit transactions. Hence, client/middleware and middleware/database communi-
cation is local.

Most of the proposals following this approach ([3, 2, 11, 15, 16, 25, 10, 28, 5, 4]) take
advantage of powerful multicast primitives for the communication between the middle-
ware instances [27]. The middleware instances build a process group. Each group mem-
ber can multicast a message to the group, and each message is received by all members
(including the sender). The semantics of the typical multicast primitives can be catego-
rized by two parameters [14]. The ordering semantics that are interesting in the context
of database replication are unordered, FIFO (messages of one sender are received in
the order they were sent), and total (for each two members receiving � and �

�
, both

receive them in the same order). The reliability semantics are unreliable (no guarantee



that a message will be received at all members), reliable (whenever a member receives
a message and does not fail for sufficiently long time, then all other group members
will receive the message unless they fail), and uniform reliable (whenever a member �
receives a message, all other members will receive the message unless they fail –even
if � fails immediately after the reception). Note that uniform reliable delivery provides
all-or-nothing even in failure cases, while reliable delivery allows failed members to
have received messages that are not received by the rest of the group. In some systems
(e.g., Spread [29]), a combination of reliable and total order is called agreed delivery,
and a combination of uniform reliable and total order is called safe delivery. We adopt
this notation for its simplicity. The more powerful the ordering and/or reliability se-
mantics, the more complex is their implementation and the higher the message delay.
The replication tools now use the total order semantic to determine the serialization or-
der of conflicting transactions, and the uniform reliable delivery guarantee to guarantee
atomicity.

Most middleware based replication tools using above multicast primitives assume
that the middleware receives one client request per transaction. This seems to be an ac-
ceptable restriction considering current information system architecture based on web-
and/or application servers. For instance, the J2EE architecture disallows transactions to
span web request due to the communication overhead. In an online bookstore, e.g., this
means that browsing the books and then buying the books are different transactions.
Since we want to use the approaches in a WAN setting, such a restriction is even more
important. In the following, we assume that the program implementing the transaction
either resides within the middleware, or can be called from the middleware.

We will now present a simple replication protocol that will serve as the baseline
protocol for the optimizations in the next section. It distinguishes between read-only
transactions consisting only of read operations, and update transactions containing at
least one update statement. This can be determined by parsing the SQL statements of
the program implementing the transaction. The replication middleware performs the
following actions:

I. Upon receiving a request for the execution of an update transaction from the
client : multicast the request to all sites with safe delivery.

II. Upon receiving an update request in safe delivery or a read-only request from
the client : enqueue the request in a FIFO queue.

III. Once a transaction is the first in the queue: submit the transaction for execu-
tion.

IV. Once a transaction finishes execution: remove it from the queue, and return
the response to the client.

This simple protocol does not allow any concurrency but executes all transactions seri-
ally according to the total order delivery of transaction messages, and guarantees atom-
icity by relying on uniform reliable delivery. The protocol requires one message within
the response time of update transactions. Read-only transactions are executed locally.
[2], for instance, follows this approach. In order to allow transactions to execute concur-
rently, many approaches assume that the objects to be accessed are known in advance
(similar to the controller based approaches presented in [5, 4]). Again, we can achieve
this by parsing the SQL statements and extracting the tables to be accessed. The middle-



ware can then implement a lock manager. Upon receiving an update request with safe
delivery or read-only requests from the client, the transaction manager atomically re-
quests locks for all tables the transaction is going to access. When all locks are granted,
the transaction can start executing (optimizations are possible). In this case, if transac-
tion T1 is received before transaction T2 but they access different objects, both will get
their locks granted, and hence, can execute concurrently. Only if T2 conflicts with T1
on at least one lock, it is delayed by T1 since it requests its locks after T1. [15, 16, 18,
25, 10] follow this or similar approaches.

3 Replication Strategies and their Usefulness for WANs

There exist many optimizations over the simple protocol presented above. They have
been either analyzed extensively for LAN environments but not for WANs, or they have
not been studied at all. In this section, we analyze several of these optimizations and
their potential effect in a WAN environment.

3.1 Queries

A middleware system should not blindly apply its replication protocol to all types of
transactions. In particular, read-only transactions, i.e., queries, need special treatment.
First of all, and as mentioned above, queries can always be executed at only one site.
In a LAN environment, this might not necessarily be the site the query is submitted to
but any site with low load. In a WAN, execution at the local site always seems to be the
best choice in order to avoid message overhead – especially since query answers can be
large.

If the middleware acquires locks for queries, they might be delayed by writers that
might take longer in WANs. A solution is to run queries with lower level of isolation
as often done in centralized systems. In this case, we can simply submit queries to
the database in read committed or uncommitted read isolation level without requesting
locks at the middleware. With this, they will not delay the execution of writers, and
will not be artificially delayed by the middleware. We also do not need to know all
tables they are going to access. Even better, in systems that provide readers a committed
snapshot of the data, e.g., Oracle and PostgreSQL, read operations never acquire locks.
In such case, serializability for queries can be guaranteed without any extra effort by
the middleware.

3.2 Write sets

Adding new replicas will increase the overall throughput if the workload has a lot of
queries. However, if update rates are high, scalability cannot be achieved because update
transactions are executed at all sites. In order to achieve scalability even with update
intensive workloads, the idea is to also execute update transactions only at one site. At
the end of execution, this site then propagates the changes in form of a write set to the
other sites. The write set contains, e.g., the primary key values of the updated tuples
along with the new physical values of those attributes that have been modified. [18]



T2 
Resp

A B B

comm time

T1
T2

T1 
Resp

T1 execute

T2 execute

apply WS1

apply WS2

(b)primary copy

A(master)

T2 
Resp

T1
T2

T1 execute

apply WS2

apply WS1

T2 execute

T1 
Resp 

(c)local copy

A B
T1

T2

T2 execute

T2 
Resp

T1 
Resp 

T1 execute

(a)symmetric

T2 execute

T1 execute

Fig. 1. With or without write set

tested the performance of applying write sets, and showed that it is faster than executing
SQL statements, hence using less resources. In [16], this optimization was implemented
at the middleware level, achieving scalability for a wide range of applications.

In fact, sending write sets might be the only feasible solution in some situations.
If transactions have non-deterministic operations (e.g., set an attribute to the current
local time), then, if the replicas execute the transaction independently, they will have
different values for this attribute. In case of such non-determinism, we have to execute
the transaction only at one site which then forwards the physical changes.

However, if write sets are sent within transaction boundaries response times might
become too high. This depends on where update transactions are executed. In principle,
any site can execute any update transaction. Upon receiving an update request with safe
delivery, each site requests the locks for the transaction according to the total order. But
only one site executes the transaction. The execution starts once all locks are granted
locally. At the end of the execution, the write set is sent to all other sites. No ordering
or uniform delivery is needed (since if the site crashes, another site can simply reexe-
cute). The executing site can commit immediately, and release the locks. The other sites
apply the write set once the locks are granted locally. Conflicting transactions might be
executed at different sites, but all sites will either execute or apply the write sets of
conflicting transactions according to the total order since locks are requested in this
order.

Let’s illustrate two possibilities with examples and compare them to the approach
discussed in Section 2. Figure 1(a) depicts the symmetric approach described in Sec-
tion 2 where each site executes the entire transaction (for updates). In the figure, update
transactions T1 and T2 are submitted concurrently to sites A and B, multicast, and then
executed according to the total order delivery at all sites (only in case they conflict).

Figure 1(b) and (c) depict two write set based variations. In the primary copy ap-
proach (Figure 1(b)), proposed in [22], each object (e.g., table), has a primary copy,
and a transaction updating this table must execute on the site holding the primary copy.
This is also called primary or master. If a transaction wants to access objects that have
different masters, a simple assignment strategy can assign this transaction to the master
of one of these objects. In the figure, assume that A is master for objects accessed by T1
and T2. If T1 and T2 conflict, A executes T1 before T2, otherwise concurrently. At the



end of the execution of a transaction, A multicasts the write set to the other sites. For T1
it also returns a confirmation to the client since it is a local transaction. B, upon receiv-
ing T1 and T2 with safe delivery, requests the locks in this order but does not execute
the transactions. Instead it waits for the write sets from A and then applies them (T1
before T2 if they conflict). It can return a confirmation to the client for T2 once it has
received T2’s write set (it does not need to wait until T2’s write set is locally applied).
Since for T1 the primary copy is the local site, the response time only includes the mes-
sage overhead of the transaction message, and hence, is the same as in the symmetric
approach. For T2, the response time also includes the delay of the write set since the
local site is not the primary.

In a LAN setting, this approach has the advantage that, since each site is primary for
a subset of objects, most of the execution a site performs is only on a subset of the data.
Hence, it is more likely that these objects reside in main memory when requested which
speeds up the execution. This is, of course, most effective, if also queries are executed
on the primary copy. In a WAN, however, the scalability and locality gain might be lost
by the increased message overhead.

In the local copy approach depicted in Figure 1(c), each update transaction is exe-
cuted at the site it is submitted to. In the figure, T1 will be executed at A, and T2 at B.
Since T1 is received before T2, A will first execute T1, multicasts the write set, commit
and return the confirmation to the user. If T1 and T2 conflict, B waits to receive and
apply T1’s write set, then executes T2, multicasts its write set and returns the confir-
mation to the user. The message overhead is generally as follows. If two conflicting
transactions are submitted concurrently at different sites as depicted in the figure, the
first one to be received (T1) has no additional message delay, the second (T2), however,
has to wait for the write set of the first to arrive before it can execute locally. This is
similar to the primary copy approach. However, if there are no concurrent conflicting
transactions (e.g., T1 and T2 do not conflict), the only message overhead is the trans-
action message itself as in the symmetric approach. We have developed the local copy
approach in the context of this paper because we hope it has better response times than
the primary copy approach in WAN environments.

Yet another alternative executes a transaction locally, and then the write set is sent
with safe delivery. In this case, an optimistic concurrency control mechanism at the
middleware must check for conflicts with concurrent, previously submitted transactions.
[18, 28] follow this approach. The analysis of this approach in an WAN will be focus of
future work.

3.3 Reliable v.s. Uniform Reliable

In order to guarantee atomicity of transactions although no 2-phase-commit is run, most
solutions rely on uniform reliable message delivery. Whenever a group member receives
a message, all other members will receive the message unless they fail. As such, when
a site receives a transaction, executes and commits it, and then fails before sending
the write set, we are sure that at least the transaction will be received at other sites.
They can then take over and still reexecute the transaction so that the transaction is
finally committed at all sites in the same order as at the failed site. The problem is
that uniform reliable delivery is expensive in terms of message delay since it requires



basically acknowledgements from all sites before a message can be delivered to the
application. It is important to understand in which cases a non uniform reliable delivery
violates transaction atomicity. Only in the case a site receives a user request, multicasts
the request, receives it, executes and commits it, returns the response to the client and
then fails while all other sites either do not receive the request or also fail, the surviving
sites will not execute a transaction for which a client received a response. In a LAN,
such case will occur seldomly. But since uniform delivery is fast, it is still not costly to
prevent it. In a WAN, however, the unreliable Internet might provoke more such errors,
especially since alive sites might be easily suspected to have failed. Hence, the choice
between reliable and uniform reliable delivery depends completely on the application.

3.4 Optimisitic Delivery

Optimistic execution has received considerable attention recently. The principle idea
is to deliver a message twice, once optimistically, and once when the desired degree
of reliability and ordering has been established. First introduced in [19], only ordering
was assumed. Here, a message is first delivered when it is physically received, and then
again when the total order is established. The transaction can start executing upon the
first delivery. If the order of optimistic delivery is not the same as the final total order,
the transaction might have to be aborted, but only if the wrongly ordered transactions
conflict. The advantage of optimistic delivery is that the time to determine the total order
overlaps with transaction execution, and hence, potentially reduces the overall response
time. In contrast, without this optimism, message delivery and transaction execution are
sequential.

Variations of optimistic delivery exist. For instance, [1] suggests to delay optimistic
delivery until one can be relatively sure that the optimistic order is not too far from the
final total order. [21] consider uniform reliable delivery. In summary, one can combine
optimistic delivery with final delivery taking different combinations of ordering and
reliability into account. In regard to ordering, optimistic delivery can be (a) before the
total order is established or (b) only afterwards. The final delivery is always after the
total order is established. In regard to reliability, optimistic delivery is basically always
at most reliable. The final delivery can be either (i) only reliable, or (ii) uniform reliable.
Useful combinations are (a) with (i) or (ii), and (b) with (ii). If we combine (b) with (ii),
then there is the guarantee of no aborts since already the optimistic delivery is in total
order.

[16] has implemented a middleware replication tool taking advantage of optimistic
delivery with combination (a)/(i). Upon optimistic delivery it requests the locks and
starts execution once the locks are granted. However, the transaction is only committed
after agreed delivery. If message order is not the same as in the optimistic order, trans-
actions are undone if conflicting transactions should have been executed first. However,
since the system is LAN based, the advantage of optimistic delivery is relatively small
due to the fast network.

If we want to analyze the potential performance gain in a WAN, we have to consider
two impacts of the WAN environment. The time between optimistic and final delivery
is potentially much higher than in a LAN, hence, there is more potential to overlap



client

Comm−Mgr

Conn−Mgr

Trans−Mgr:

Database

Comm−Mgr

Trans−Mgr:
Concurrency

Control

Conn−Mgr

Database

client

Multicast

Concurrency
Control

Fig. 2. Middleware Architecture

message delay and transaction execution. However, the probability that optimistic order
and final order are different is also higher, possibly leading to higher abort rates.

4 System Description

Based on discussion of the previous section, there are 30(=2*3*(2+3)) protocols which
are combinations of four aspects. (1) The middleware performs concurrency control
for queries or not. (2) Transaction execution is symmetric, follows a primary copy ap-
proach, or is local at every site. (3) Message delivery is reliable, uniform-reliable, or (4)
follows three alternatives for optimistic delivery.

We have implemented several of these combinations. Our implementation follows
the architecture of Figure 2. We used PostgreSQL 7.2 as database backend. We ex-
tended PostgreSQL to provide two functions to the application. One to get the changes
performed by a transaction in form of a write set, and a second that takes this write set
as input and applies these changes without reexecuting the entire SQL statement. Other
database systems already export such functionality, e.g., Microsoft SQLServer. This
functionality is required for write set based replication. Furthermore, we used the open-
source group communication system Spread [29], and enhanced it with an optimistic
message delivery component.

The middleware is divided into three modules. The communication manager re-
ceives requests from clients (through any communication channel like sockets, RMI,
HTTP), communicates with other middleware instances through multicast, and for-
wards transaction requests to the transaction manager. It also accepts write sets from the
transaction manager and multicasts them to all sites. The transaction manager receives
requests from the communication manager. It performs locking, and decides whether
to handle queries in a special way or not. It also decides where each transaction is
executed. When a transaction is executed locally, it forwards it to the connection man-
ager, otherwise it waits until the write set once it is received from the communication
manager. The connection manager manages a pool of open connections to the database
system for efficiency reasons. Upon receiving transaction request, it is executed. In our



prototype, transactions consist of a simple program executing a sequence of SQL state-
ments. At the end of execution the connection manager retrieves the write set from the
database if necessary, and forwards it to the transaction manager. The connection man-
ager waits for confirmation from the transaction manager before committing a transac-
tion. Upon receiving a write set, it applies the write set. The middleware is completely
Java based. Due to the modularity of the framework it was very easy to implement the
different protocols.

Spread and Optimistic Message Delivery The implementation of the multicast prim-
itives has a great impact on the performance of the system. Hence, it is important to
understand Spread and our extensions. The open-source version of Spread implements
nearly all different multicast alternatives presented in Section 2 using a token based ap-
proach. A token circulates among all group members. If the application of a site wants
to send a message it has to wait until the underlying Spread daemon has the token
since only the token holder may send messages (independently of the message type).
The token contains a counter, each new message to be sent in total order increases the
counter and then gets the new value as timestamp. At each site, the Spread daemon
delivers total order messages in timestamp order. That is, if Spread physically receives
a message � but is missing a message with smaller timestamp, � is delayed until the
preceding message arrives. However, for messages with no order requirement, Spread
delivers the message immediately upon physical reception to the application. For mes-
sages with uniform reliable delivery, the token piggybacks acknowledgments, and only
if a Spread daemon has received acknowledgments from all other group members is
the message delivered. Note that [2], who also evaluate database replication in a WAN,
also use Spread, however, they do not use the open-source version but a proprietary
implementation with more efficient agreed and safe implementations.

We integrated the following optimistic delivery into Spread. A message sent with
the new optimistic total order protocol, is first delivered to the application when it is
physically received, and then again when the total order and uniform reliable delivery
is established. That is, we follow combination (a)/(ii) of above.

At this point we would like to note that the token is a nice flow control feature for
LANs, however, it has considerable impact on performance in WANs. The message
delay for all reliable (non-uniform) message types is very similar and determined by
how long the sender waits for the token. In a WAN, this can take considerable time (n/2
sequential token forwards if n is the number of group members). On the other hand,
our optimistic delivery is in most cases already in the correct final total order since
only at most one site is sending. Disordering can only happen if messages are lost or
routed differently. We conducted experiments with three sites in Canada, Spain, and
Switzerland at 90 messages per second (100 bytes per message), and there were only
12 out of order messages among over 20,000 messages sent. As a result, although we
implemented combination (a)/(ii), it has nearly the semantics (and overhead) of a (b)/(ii)
implementation.



5 Experimental Results

5.1 Experiment Setup

The experiments were conducted in Planetlab [26], an open, globally distributed com-
puting infrastructure. We simply choose several educational sites in North America (at-
tempting to choose sites that are not heavily loaded). All machines have similar strength
(mostly Intel Pentium 4 or Xeon, 2.4GHz with 1GB memory) running Red Hat Linux
3.2.2-5.

Our database setup has been simple but flexible in order to be able to test with vari-
able types of workloads. For most experiments the database consists of 10 tables, each
with 10000 tuples. In our middleware, we use a table based locking scheme. Hence, the
number of tuples in a table does not really have an impact on concurrency. There are
two types of transactions, an update transaction performing 10 update operations, and a
read-only transaction. The workload always consisted of 50% update transactions and
50% read-only transactions. In order to validate that this quite simplistic setup is still
valuable in evaluating and comparing the different protocols, we also performed a suite
of tests using the OSDL Database Test benchmark OSDL-DBT-1 [24] for PostgreSQL
which implements the TPC-W benchmark specification of the Transactional Processing
Council(TPC) [30]. The benchmark is also over 10 tables. Three typical workloads are
browsing(95% read), shopping(80% read) and ordering(50% read). Hence, the experi-
ments shown in this paper are a simplified version of the ordering workload of TPC-W
(our update statements do not have such a complex table access pattern). Response
times and maximum achievable throughput in the OSDL benchmark ordering workload
are very similar to our system above in a centralized PostgreSQL database.

Test runs were conducted as follows. A client emulator on each node submits trans-
actions to the middleware in such a rate as to achieve the desired system-wide workload.
Submission is asynchronous, i.e., the emulator does not wait for the response. Instead,
a receiver thread within the client will receive the responses and calculate the response
time. This simulates a set of traditional synchronous clients submitting transactions in
parallel. At startup each middleware instance creates a pool of connections to the local
database. If more local transactions or write sets have to be executed concurrently than
connections are available, they remain queued at the middleware even if they do not
conflict.

For each test run, each client submits 800 transactions to the system. The first and
last 10% of the results were discarded. Furthermore, we ran every experiment several
times. For all our experiments the real results are with a 90% confidence within +/- 5%
of the shown results. Using Planetlab, we did not have exclusive access to the machines,
and many machines are heavily used. As a result, CPU utilization on the chosen ma-
chines changed from minute to minute, destroying not only the individual test run but
basically the entire test suite since the test run had to be repeated on different machines.
For this reason, most results are shown with only 4 sites.

In nearly all our experiments, we show the response or execution times with in-
creasing workload submitted to the system. We do not show results when the system
is overloaded, i.e., in all cases the throughput of the system is equal to the submitted
load. In most cases, we show results as long as the response time is smaller than 800



0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70

Load (tps)

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

ws(a)
ws(b)LW
ws(b)RW
ws(c )

(a) Response time (b) Execution time at 20 and 40 tps

Fig. 3. Performance of different Write Set Options

milliseconds. We have set this as an upper limit of what might be acceptable for the
response time of the database backend. In many cases, the load could be increased fur-
ther without saturation of the system, however response times would increase above 1
second.

5.2 Centralized Database and Replication in a LAN

We first tested our benchmark on a single site. Each client connects directly to the
database server. We only measure the performance after the connection has been es-
tablished, and keep a client connected throughout the experiment. We conducted ex-
periments with clients residing on the same node as the database, on a node within the
LAN, and remote (WAN). For local clients response time never exceeded 25 ms up to
the saturation point of close to 40 transactions per second (tps). For remote clients, re-
sponse time was over 1500 milliseconds, and the system could only achieve a through-
put of 5 tps. This is probably due to inappropriate handling of remote connections, and
high message overhead. When we tested our middleware in a LAN setting (4 sites) a
throughput of far over 100 tps was achieved, with response times starting at 25 ms and
increasing only slowly with increasing load. The machines, however, were more pow-
erful than the Planetlab machines used for WAN testing (P4, 3GHZ, 1GB memory).

5.3 Write Set Options

Our first tests in a WAN look at the write set alternatives since they have the largest
impact on the performance of the system. In this experiment, we used 4 nodes, used
agreed delivery for update transactions, and submitted queries directly to the DBS with-
out acquiring locks at the middleware. Figure 3(a) depicts the response time of update
transactions with increasing load for the three write set options discussed in Section 3.2.
ws(a) depicts the symmetric approach, ws(b) the primary copy approach, and ws(c) the
local copy approach. The primary copy approach has two different values. One is for
update transactions that are submitted to the primary copy, called local writes (LW).



The other is for transactions that are submitted to a node that is not primary for this
transaction, called remote writes (RW).

Response times vary between 100 ms to 800 ms up to a load of around 50 tps.
Higher loads up to 60 tps can be achieved for the symmetric approach, or if response
times over 1 second are acceptable (1.5 -3 seconds). Note that the achieved throughput
is higher than in a centralized system that only achieves 40 tps. However, it does not
scale as well as the LAN approach with far over 100 tps. The symmetric approach
has the best performance throughout the experiment. Local writes in the primary copy
approach have lower response time than the transactions in the local copy approach.
Finally, remote writes in the primary copy approach experience the worst response time.
This is immediately linked to the number of messages sent. Figure 3(b) shows a more
detailed analysis.

It first depicts for a load of 20 tps how execution time is spent for transactions with
the symmetric approach (a)20, for local writes of the primary copy approach (b)20LW,
for remote writes of the primary copy approach (b)20RW, and for transaction with the
local copy approach (c)20. Then it does the same analysis for 40 tps. In the symmet-
ric approach, every transaction has only one message within the response time. This
message makes most of the response time. The execution itself is very fast (as in all
approaches). The rest of the response time is spent at the middleware, mostly waiting
in queues, or with client communication. Comparing a load of 20 tps with 40 tps, we
see that all times increase (although in different proportion). Although the primary copy
approach also has only one message delay for local writes, the response time is slightly
higher than in the symmetric approach. This is due to the higher loaded group com-
munication system that has to handle double as many messages than in the symmetric
approach. We can see that the message delay for the transaction message is longer (more
extreme for 40 tps than for 20 tps) while execution and remaining time is similar than in
the symmetric approach. Remote writes of the primary copy approach have to wait for
the write set which is reflected within the white part of the response time. Note that in
a system with 4 sites, on average 25% of transactions are local, while 75% are remote
(unless there is locality in client requests and clients are more likely to submit requests
directly to the primary). For the local copy approach some of the transactions have no
write set delay within the response time. This is more likely at low loads when there
are less transactions in the system, and hence, less transactions conflict. As a result, at
20 tps the response time for the local approach is closer to that of local writes of the
primary copy approach, at 40 tps it is closer to that of remote writes of the primary
copy approach. If there is locality, i.e., clients of different nodes are unlikely to conflict,
then the response time will always be close to the response time of local writes of the
primary copy approach.

As a result, while an asymmetric approach has proven to boost performance in a
LAN it seems to be less useful in a WAN due to the additional overhead of sending
the write set which might be included in the response time. It also puts higher load on
the group communication system. If a write set based approach is needed due to non-
determinism, the local approach seems favorable over the primary copy approach since
on average response times are smaller.



0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70

Load (tps)

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

snapshot, Read

snapshot, Write

nosnapshot, Read

nosnapshot, Write

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70

Load (tps)

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

snapshot, Read

snapshot, Write

nosnapshot, Read

nosnapshot, Write

(a) Symmetric approach (b) Local copy approach

Fig. 4. Snapshots vs. middleware based locking: response times for queries and updates

5.4 Special Treatment of Queries

The next experiment suite shows the importance of treating queries in a special way.
Figure 4 shows the response time for update transactions and queries in a system with
4 sites for increasing load. Message delivery for updates was with agreed delivery. We
show results for the symmetric (Figure 4(a)) and local copy approach (Figure 4(b)).
Queries are either immediately submitted to the database relying on PostgreSQL’s snap-
shot concurrency control (denoted as snapshot in the figure), or included into the lock
queues of the middleware system (denoted as nosnapshot in the figure).

For the symmetric approach, the difference is only very small for small to medium
loads, while snapshots for queries are significantly better than locking with the local
copy approach (the same holds for primary copy approach). The reason for that dif-
ferent behavior is the time difference in regard to how long update transactions are
queued at the middleware. In the symmetric approach, a transaction is queued when it
is received and dequeued when it is locally committed. This includes local execution
time and time waiting for conflicting transactions to finish. This time is generally very
short until the response time for updates increases (at around 50 tps). Hence, queries
and update transactions do not hinder each other significantly for low loads. With the
local copy approach, some update transactions wait for write sets of conflicting transac-
tions to be delivered even at low throughputs. They block succeeding transactions until
these write set messages arrive. Also, queries hinder update transactions that are or-
dered behind the queries. As a result, the system deteriorates fast. Hence, using special
solutions for queries seems to be necessary whenever transactions are delayed at the
middleware layer. This is particularly the case when a transaction waits for a message
to arrive before terminating. In the following, all presented experiments use snapshots
for queries.

5.5 The cost of atomicity

In this section, we analyze the performance of update transactions using the symmetric
approach depending on whether the transaction message is sent using agreed message



0

5

10

15

20

25

10 20 30 40 50 60 70

Load (tps)

T
im

e
(m

s
)

Write Saved Time

Write Exe Time

(a) Agreed vs. Opt-safe vs. Safe (symmetric) (b) Analyzing Opt-safe (symmetric)

Fig. 5. (a) Delivery guarantees: delivery and response times and (b) Analysis of opt-safe delivery

delivery (reliable), safe message delivery (uniform reliable), or our opt-safe delivery
where the optimistic delivery is immediately after the physical reception while the final
delivery is at the same time as a safe delivery. Safe and opt-safe have the same final
message delivery guaranteeing transaction atomicity, but opt-safe can overlap transac-
tion execution with the message delay (to some degree in our implementation) at the
cost of potentially having to abort transactions. The results for primary copy and local
copy approach show the same relative performance behavior as the results presented
here with the symmetric approach. However, response times are generally higher.

Figure 5(a) shows as curves the response time of update transactions for the three
different delivery mechanisms with increasing load. The bars indicate the time of op-
timistic delivery, agreed delivery, safe delivery, and opt-safe delivery. As can be pre-
dicted, the optimistic delivery takes as long as the agreed delivery because of the token
based approach of the group communication system. Opt-safe and safe delivery are also
nearly the same (providing the same guarantee). All delivery delays increase with in-
creasing load, and the transaction response time increases accordingly. The reason is the
higher load leading to more CPU consumption plus more lock contention at the mid-
dleware. Throughout the experiment, agreed performs better than opt-safe, and opt-safe
performs slightly better than safe. Agreed is best because it can commit a transaction
once its total order is determined and the transaction is executed. Opt-safe will start to
execute upon optimistic delivery but has to wait for the final delivery. Hence, the re-
sponse time is worse than for agreed. opt-safe is faster than safe since it overlaps trans-
action execution while guaranteeing uniformity. However, the difference is very small
since transaction execution is very small compared to the safe message delay. However,
all results are well below 1 second even for safe delivery. That is, 100% atomicity can be
achieved if response times of 1 second are acceptable. A more efficient implementation
of agreed and/or safe delivery might further decrease response times.



5.6 A closer look at opt-safe

Let’s have a closer look at how much time can really be saved by using optimistic deliv-
ery. The best that can be achieved is if execution time (from the time the transaction is
the first in all queues and the first operation is submitted to the database until completing
the last operation) completely overlaps with determining the total order or safe delivery.
The worst case occurs when the transaction starts executing after the final delivery; then
we have not saved anything. We can save some time if the transaction starts executing
but does not finish execution before final delivery. Figure 5(b) shows an analysis of
saved time of the experiment of the last section. The figure shows the real execution
time, and the time this execution overlapped with the safe delivery. We see that at low
load, there is a complete overlap but since execution time is small, the overall gain is
not big. With increasing load, execution times increase due to resource consumption at
the database. However, less and less of this time overlaps with the delivery. The reason
is that at higher loads, more transactions are in the system, and hence, more transac-
tions are queued on the lock table at the middleware. Although a transaction is already
opt-delivered and enqueued it will not execute because it is not the first in the queue. It
is actually quite likely that it will be already finally delivered before it actually can start
executing. If the middleware would use finer granularity locking, more time could be
saved (whilst the database is not saturated).

At this timepoint, we would like to discuss how far Spread, and our implementa-
tion has influenced the performance of opt-safe. As mentioned in Section 4, the token
based approach leads to nearly identical message delay for unreliable, reliable FIFO,
and agreed delivery. As a result, our optimistic delivery is nearly as expensive as agreed.
We can see the performance penalty in our results. On the other hand it gives us a nearly
total order at the time of optimistic delivery. As a result, we have barely any aborts due
to wrong orderings. If one considers a different total order implementation, where sites
send independently, disordering is much higher since the sending site receives a mes-
sage immediately while there is delay to other sites. This might lead to many aborts if
the middleware uses table based locking, and the system has a high throughput. Some
of these aborts might be unnecessary, since the transaction might not actually conflict,
but a coarse granularity of the middleware cannot detect this.

5.7 Scalability in WAN

In this experiment we want to see how the performance changes with an increasing
number of sites. In our first test suite we use opt-safe delivery and the primary copy
approach as an example of a system where we can expect high response times. Fig-
ure 6(a) shows the response time of queries when the number of sites increases from
two to eight. The different curves show the response time for different system loads.
We can see that for all loads the response time decreases. The reason for this is that by
increasing the number of sites but keep the system load steady, we decrease the load
of queries that each site has to perform, hence, CPU is less utilized leading to faster
responses. Figure 6(b) shows the response time for local update transactions. At a low
load (20/40 tps), we can see that the response time increases slowly but steadily and is
at just above 1000 ms for a throughput of 40 tps. The reason for the increase is not a



0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9

Number of Sites

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

20 txn/s

40 txn/s

60 txn/s

80 txn/s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4 5 6 7 8 9

Number of Sites

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

20 txn/s

40 txn/s

60 txn/s

80 txn/s

(a) Queries (b) Local update transactions

Fig. 6. Scalability: Response times for different system sizes with local copy approach

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9

Number of Sites

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

16txn/s

32txn/s

48txn/s
0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9
Number of Sites

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

16txn/s
32txn/s
48txn/s

(a) Queries (b) Local update transactions

Fig. 7. Scalability: Response times for different system sizes with symmetric approach

heavier load (the load per node is, as mentioned above, actually less) but the increase in
message delay with an increasing number of sites.

When looking at 60 transactions per second, however, the behavior is different.
Response times are generally much higher due to high CPU utilization and lie in the
seconds. When moving from 2 to 4 sites, response time decreases because the load is
distributed among more sites (remember that read-only transactions are only executed at
one site, and for updates, remote sites only apply the write set). This alleviates the load
on each site, and hence, response times are faster even for updates. That is, we gain more
by adding CPU power than we loose by increasing communication delay. However, if
we move now to 6 and 8 sites, communication delay again becomes the predominant
factor and response time increases again. Although we don’t think that the response
times for a load of 80 transactions per second are acceptable (more than 7 seconds), we
show them for two reasons. Firstly, as a proof that such a load can still be handled by
the system, although at a price of high response times. Secondly, as an indicator that
even at these high loads adding new replicas can help to improve performance. Two
replicas were not able to handle 80 tps, but more than two are. Moving from four to six
replicas even helped decreasing the response time.



The second test suite looks at the performance with agreed delivery, using a sym-
metric approach. Figures 7(a-b) show the response times of queries and update transac-
tions. For queries, the response again decreases with increasing number of sites, but
much less than in the primary copy approach. The reason is that in the symmetric
approach all update transactions are executed at all sites, while the primary copy ap-
proach only executes it once and applies write sets otherwise. Hence, the primary copy
approach can take better advantage of the increased computing power of more sites.
For update transactions, the results are similar than for the primary copy approach, but
response times are generally better due to the agreed delivery.

6 Conclusions

In this paper, we present a detailed performance analysis studying the feasibility of
1-copy-serializabily and atomicity guaranteeing database replication in WAN environ-
ments. We analyze in detail the effect of different, middleware based data replication
strategies on the performance in a WAN environment. In general, we believe that con-
sistent database replication is feasible. Throughput does not deteriorate and can even be
increased with increasing number of sites. Our results show that the system can scale
up to a medium size of 8 sites. Response time is clearly affected by the high message
delay in a WAN environment. However, by keeping the number of messages exchanged
within the response time of a transaction to a minimum, the overall response time re-
mains acceptable.

Summarizing the different alternatives, a symmetric approach seems to be prefer-
able over write set based approaches because the latter have more than one message ex-
change within the response time of some transactions. However, a symmetric approach
might not be feasible for non-deterministic SQL statements. In that case, the local copy
approach works better than a primary copy approach for the majority of transactions.
Handling queries in an optimized way is even more crucial in a distributed environment
than in a centralized database due to the increased response time of update transactions
that might hold locks for much longer than in a centralized system. Choosing agreed
delivery over safe delivery can help reduce response times, and it can be expected, that
transaction atomicity will not be violated too often, although possible. But even if the
application requires atomicity in all situations, safe delivery can still lead to accept-
able response times. Optimistic delivery is able to overlap execution time with message
delay. In our experiments, the gain was not very high. However, with other implemen-
tations of optimistic delivery, or if transactions generally take longer to execute (what
would be the case with a database not fitting in memory), it might have a considerable
impact.

In future work, we want to look at a couple of further issues. We want to analyze
how the concurrency control at the middleware has an influence on the performance in
a WAN, and whether a finer locking granularity will lead to better results. This could be
achieved, for instance, with a parameter based approach of detecting conflicts between
transactions or through a tighter cooperation between database system and the con-
currency control component of the middleware. Furthermore, we are looking at other
implementations of optimistic delivery that might lead to higher performance gains.



References

1. A. Sousa and J. Pereira and F. Moura and R. Oliveira. Optimistic Total Order in Wide Area
Networks. In Proc. of Int. Symp. on Reliable Distr. Systems, 2002.

2. Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu. On the Performance of
Consistent Wide-Area Database Replication. Technical Report CNDS-2003-3, CNDS, John
Hopkins University, 2003.

3. Y. Amir and C. Tutu. From Total Order to Database Replication. In Proc. of Int. Conf. on
Distr. Comp. Systems (ICDCS), July 2002.

4. C. Amza, A. L. Cox, and W. Zwaenepoel. Conflict-Aware Scheduling for Dynamic Content
Applications. In USENIX Symp. on Internet Technologies and Systems, 2003.

5. C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed Versioning: Consistent Replication
for Scaling Back-End Databases of Dynamic Content Web Sites. In Proc. of Middleware,
volume LNCS 2672, pages 282–304, 2003.

6. T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool. Replication, Consistency, and Practi-
cality: Are These Mutually Exclusive? In ACM SIGMOD Conf., 1998.

7. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison Wesley, Reading, MA, 1987.

8. Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz. Update propaga-
tion protocols for replicated databases. In ACM SIGMOD Conf., pages 97–108, Philadephia,
Pennsylvania, June 1999.

9. E. Cecchet, J. Marguerite, and W. Zwaenepoel. RAIDb: Redundant Array of Inexpensive
Databases. Technical Report Technical Report 4921, Inria, 2003.

10. E. Pacitti, T. Özsu, C. Coulon. Preventive Multi-master Replication in a Cluster of Au-
tonomous Databases. In Euro-Par Conf., 1997.

11. U. Fritzke and P. Ingels. Transactions on Partially Replicated Data based on Reliable and
Atomic Multicasts. In Proc. of the IEEE Int. Conf. on Distributed Computing Systems
(ICDCS), pages 284–291, 2001.

12. R. Goldring. A discussion of relational database replication technology. InfoDB, 8(1), 1994.
13. J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of Replication and a Solution. In

Proc. of the SIGMOD, pages 173–182, Montreal, 1996.
14. V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender,

editor, Distributed Systems, pages 97–145. Addison-Wesley, 1993.
15. J. Holliday, D. Agrawal, and A. E. Abbadi. The Performance of Database Replication with

Group Communication. In 29th Int. Symp. on Fault-tolerant Computing, Wisconsin, June
1999.

16. R. Jiménez-Peris, M. P. no Martı́nez, B. Kemme, and G. Alonso. Scalable Database Replica-
tion Middleware. In Proc. of 22nd IEEE Int. Conf. on Distributed Computing Systems, 2002,
Vienna, Austria, July 2002.

17. K. Böhm and T. Grabs and U. Röhm and H.J. Schek. Evaluating the Coordination Overhead
of Replica Maintenance in a Cluster of Databases. In Proc. of Intern. Euro-Par Conf., volume
LNCS 1900. Springer, Sept. 2000.

18. B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, A new way to implement
Database Replication. In Proc. of the Int. Conf. on Very Large Databases (VLDB), 2000.

19. B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions over Optimistic
Atomic Broadcast Protocols. In Proc. of 19th IEEE Int. Conf. on Distributed Computing
Systems (ICDCS), pages 424–431, 1999.

20. A. I. Kistijantoro, G. Morgan, S. K. Shrivastava, and M. C. Little. Component Replication in
Distributed Systems: A Case Study Using Enterprise Java Beans. In Proc. Of SRDS, pages
89–98, 2003.



21. L. Rodrigues and P. Vicente. An Indulgent Uniform Total Order Algorithm with Optimistic
Delivery. In Proc. of the Int. Symp. on Reliable Distributed Systems (SRDS), 2002.

22. M. Patiño-Martı́nez and R. Jiménez-Peris and B. Kemme and G. Alonso. Scalable Replica-
tion in Database Clusters. In Proc. of Distributed Computing Conf., DISC’00. Toledo, Spain,
volume LNCS 1914, pages 315–329, Oct. 2000.

23. Oracle. Oracle 8 (tm) Server Replication. 1997.
24. OSDL. OSDL Database Test 1 (OSDL-DBT-1). homepage: http://www.osdl.org/.
25. F. Pedone, R. Guerraoui, and A. Schiper. Exploiting Atomic Broadcast in Replicated

Databases. In D. J. Pritchard and J. Reeve, editors, Proc. of 4th International Euro-Par
Conference, volume LNCS 1470, pages 513–520. Springer, Sept. 1998.

26. Planetlab. homepage: http://www.planet-lab.org/.
27. D. Powell and other. Group communication (special issue). Communications of the ACM,

39(4):50–97, April 1996.
28. L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong Replication in

the GlobData Middleware. In Workshop on Dependable Middleware-Based Systems, pages
503–510. IEEE Computer Society Press, 2002.

29. Spread. homepage: http://www.spread.org/.
30. Transaction Processing Performance Counil. homepage: http://www.tpc.org/.


