

Combinatorial Auctions with Item Bidding: Equilibria and Dynamics

Thomas Kesselheim

Max Planck Institute for Informatics

Based on joint work with Paul Dütting

WINE 2016

max planck institut informatik

Each item is sold in a separate second-price auction.

- Bidders usually cannot express their preferences.
- Might have to pay for multiple items although they only want one.

- Set of *n* bidders *N*, set of *m* items *M*
- Each bidder *i* has valuation function $v_i : 2^M \to \mathbb{R}_{\geq 0}$
- Each bidder *i* reports a bid $b_{i,j} \ge 0$ for every item *j*
- Each item *j* is sold to bidder *i* that maximizes b_{i,j} Has to pay 2nd highest bid: max_{i'≠i} b_{i',j}
- Each bidder *i* tries to maximize his/her utility

$$u_i(b) = v_i(S_i) - \sum_{j \in S_i} \max_{i' \neq i} b_{i',j},$$

where S_i is the set of items bidder *i* wins under *b*

Two bidders, two items $v_1(\{1\}) = 2, v_1(\{2\}) = 1, v_1(\{1,2\}) = 2$ $v_2(\{1\}) = 1, v_2(\{2\}) = 2, v_2(\{1,2\}) = 2$ $b_{1,1} = 0, b_{1,2} = 1$ $b_{2,1} = 1, b_{2,2} = 0$

Bidder 1 wins item 2; bidder 2 wins item 1.

No bidder wants to unilaterally deviate \Rightarrow pure Nash equilibrium

Definition

A bid profile *b* is a pure Nash equilibrium if for all bidders *i* and all b'_i

$$u_i(b) \geq u_i(b'_i, b_{-i})$$

Other equilibrium concepts:

- mixed Nash
- correlated
- Bayes-Nash

- How good are (pure Nash, mixed Nash, correlated, Bayes-Nash, ...) equilibria?
- Do they always exist?
- If so, can they be computed in polynomial time?
- If so, can they be reached by simple dynamics?

- 2 Complexity of Equilibria
- 3 Best-Response Dynamics

4 Open Problems

- 2 Complexity of Equilibria
- 3 Best-Response Dynamics

4 Open Problems

• Given *b* call $SW(b) = \sum_{i \in N} v_i(S_i)$ social welfare of *b*

• Compare to $OPT(v) = \max_{(S_1^*, \dots, S_n^*) \text{ is partition }} \sum_{i \in N} v_i(S_i^*)$

Price of Anarchy

$$PoA = \max_{v_1, \dots, v_n} \max_{b \in PNE} rac{OPT(v)}{SW(b)}$$

Two bidders, one item: $v_1 = 0$, $v_2 = 1$ $b_1 = 1$, $b_2 = 0$ is pure Nash equilibrium, SW(b) = 0, OPT(v) = 1

Therefore restrict attention to equilibria with *weak no-overbidding*: $\sum_{j \in S} b_{i,j} \leq v_i(S)$ if bidder *i* wins set *S*

Classes of valuation functions

A function $v_i: 2^M \to \mathbb{R}_{\geq 0}$ is . . .

• *additive* if
$$v_i(S) = \sum_{j \in S} v_{i,j}$$
 for some $v_{i,j} \ge 0$

• *unit demand* if $v_i(S) = \max_{j \in S} v_{i,j}$ for some $v_{i,j} \ge 0$

• fractionally subadditive or XOS if $v_i(S) = \max_{\ell} \sum_{j \in S} v_{i,j}^{\ell}$ for some $v_{i,j}^{\ell} \ge 0$

• subadditive if $v_i(S \cup T) \leq v_i(S) + v_i(T)$

•
$$v_i(\{1\}) = 2, v_i(\{2\}) = 1, v_i(\{1,2\}) = 2$$

is unit demand

• Every submodular function is XOS, e.g. $v_i(S) = \min\{c_i, \sum_{j \in S} v_{i,j}\}$

$$v_i(S) = \begin{cases} 0 & \text{if } |S| = 0 \\ 1 & \text{if } |S| = 1 \text{ or } |S| = 2 \\ 2 & \text{if } |S| = 3 \\ \text{is subadditive but not XOS} \end{cases}$$

Price of Anarchy: Bound for XOS Valuations

[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

Consider XOS valuations v. Let b be a pure Nash equilibrium. Then $SW(b) \ge \frac{1}{2}OPT(v)$.

Proof for unit-demand valuations:

Let j_i be the item that bidder *i* gets in OPT(v).

Bidder *i* could deviate to $b'_{i,j}$ such that $b'_{i,j} = v_{i,j}$ if $j = j_i$ and 0 otherwise.

$$u_i(b) \geq u_i(b'_i, b_{-i}) \geq v_{i,j_i} - \max_{i'} b_{i',j_i}.$$

max planck institut informatik

$$\Rightarrow \sum_{i \in N} u_i(b) + \sum_{j \in M} \max_{i'} b_{i',j} \ge \sum_{i \in N} v_{i,j_i} = OPT(v)$$

 $\sum_{i \in N} u_i(b) \le SW(b)$ by definition, $\sum_{j \in M} \max_{i'} b_{i',j} \le SW(b)$ by no-overbidding

Price of Anarchy: Bound for XOS Valuations

[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

Consider XOS valuations v. Let b be a pure Nash equilibrium. Then $SW(b) \ge \frac{1}{2}OPT(v)$.

Proof for unit-demand valuations:

Let j_i be the item that bidder *i* gets in OPT(v).

Bidder *i* could deviate to $b'_{i,j}$ such that $b'_{i,j} = v_{i,j}$ if $j = j_i$ and 0 otherwise.

$$\begin{array}{l} u_i(b) \geq u_i(b'_i, b_{-i}) \geq v_{i,j_i} - \mathfrak{n} & \text{``Smoothness'' proof:} \\ \Rightarrow \sum_{i \in N} u_i(b) + \sum_{j \in M} \max_{i'} & \text{Deviation does not depend on } b \\ \Rightarrow & \text{extends to mixed Nash, correlated,} \\ \sum_{i \in N} u_i(b) \leq SW(b) & \text{by defined on } b \\ \sum_{j \in M} \max_{i'} b_{i',j} \leq SW(b) & \text{by no-overbidding} \end{array}$$

Two bidders, two items $v_1(\{1\}) = 2, v_1(\{2\}) = 1, v_1(\{1,2\}) = 2$ $v_2(\{1\}) = 1, v_2(\{2\}) = 2, v_2(\{1,2\}) = 2$ $b_{1,1} = 0, b_{1,2} = 1$ $b_{2,1} = 1, b_{2,2} = 0$

SW(b) = 2, OPT(v) = 4

- Roughgarden, STOC 2009, Syrgkanis/Tardos, STOC 2013, ...: General smoothness framework for Price of Anarchy
- Bhawalkar/Roughgarden, SODA 2011: Subadditive valuations: PoA = 2 for pure Nash, PoA = O(log m) via smoothness
- Feldman/Fu/Gravin/Lucier, STOC 2013: Subadditive valuations: constant PoA for Bayes-Nash equilibria, not a smoothness proof

More results on simultaneous *first-price* auctions, generalized second price, greedy auctions, ...

- 2 Complexity of Equilibria
- 3 Best-Response Dynamics

4 Open Problems

- Submodular valuations: Computing an equilibrium with good welfare is essentially as easy as computing an allocation with good welfare.
- Subadditive valuations: Computing an equilibrium requires exponential communication.
- XOS valuations: "If there exists an efficient algorithm that finds an equilibrium, it must use techniques that are very different from our current ones."

One unit-demand bidder, others additive:

- Computing Bayes-Nash equilibrium in such auctions is PP-hard
- Finding an approximate Bayes-Nash equilibrium is NP-hard
- Recognizing a Bayes-Nash equilibrium is intractable

[Daskalakis/Syrgkanis, FOCS 2016]

- Unit-demand valuations: There are no polynomial-time no-regret learning algorithms, unless RP ⊇ NP Reason: Huge strategy spaces
- Alternative concept: No-envy learning. Only decide which items to buy but not the bids

- 2 Complexity of Equilibria
- 3 Best-Response Dynamics

4 Open Problems

 b_i is best response to b_{-i} if

$$u_i(b_i, b_{-i}) \ge u_i(b'_i, b_{-i})$$
 for all b'_i

Best-Response Dynamics with Round-Robin Activation

Activate bidders in order 1, 2, ..., n, 1, 2, ..., n, 1, 2, ...Every bidder switches to a best response

Best responses usually not unique:

Two bidders, one item.

If $b_1 = 1$ and $v_2 = 2$, then every $b_2 > 1$ is a best response to b_1

[Christodoulou/Kovács/Schapira, JACM 2016]

All valuation functions are XOS, that is, $v_i(S) = \max_{\ell} \sum_{j \in S} v_{i,j}^{\ell}$ for some $v_{i,j}^{\ell} \ge 0$

When bidder *i* gets activated:

- Determine S that maximizes $v_i(S) \sum_{i \in S} \max_{k \neq i} b_{k,j}$
- Let ℓ be such that $v_i(S) = \sum_{j \in S} v_{i,j}^{\ell}$.

•
$$b_{i,j} = v_{i,j}^{\ell}$$
 if $j \in S$ and 0 otherwise

Note: Updates fulfill strong no-overbidding: For every $S \subseteq M$ and every *i* and $t: \sum_{i \in S} b_{i,j}^t \le v_i(S)$.

[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

The Potential Procedure reaches a fixed point (pure Nash equilibrium) after finitely many steps.

Core Lemma

Define declared welfare: $DW(b) = \sum_{i \in M} \max_{i \in N} b_{i,i}$.

Lemma

If i makes an improvement step from b^t to b^{t+1} , then $DW(b^{t+1}) - DW(b^t) \ge u_i(b^{t+1}) - u_i(b^t).$

Proof. Suppose *i* previously won set S, now wins S'.

By choice of updates:
$$\sum_{j\in \mathcal{S}} b_{i,j}^t \leq v_i(\mathcal{S}) \qquad \sum_{j\in \mathcal{S}'} b_{i,j}^{t+1} = v_i(\mathcal{S}')$$

$$DW(b^{t+1}) - DW(b^{t}) = \sum_{j \in S'} (b_{i,j}^{t+1} - \max_{i' \neq i} b_{i',j}^{t+1}) - \sum_{j \in S} (b_{i,j}^{t} - \max_{i' \neq i} b_{i',j}^{t+1}) \\ \ge v_i(S') - \sum_{j \in S'} \max_{i' \neq i} b_{i',j}^{t+1} - (v_i(S) - \sum_{j \in S} \max_{i' \neq i} b_{i',j}^{t+1}) \\ = u_i(b^{t+1}) - u_i(b^{t})$$

[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

The Potential Procedure reaches a fixed point (pure Nash equilibrium) after finitely many steps.

Proof.

Define declared welfare: $DW(b) = \sum_{j \in M} \max_{i \in N} b_{i,j}$.

If *i* makes an improvement step from b^t to b^{t+1} , then $DW(b^{t+1}) - DW(b^t) \ge u_i(b^{t+1}) - u_i(b^t).$

Every increase in utility is lower-bounded by some $\epsilon > 0$.

[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

The Potential Procedure reaches a fixed point (pure Nash equilibrium) after finitely many steps.

Theorem

It may take an exponential number of steps (in m) to reach a fixed point.

Potential Procedure: Welfare Guarantee [Dütting/K., SODA 2017]

Theorem

Let bidders be activated in order 1, 2, ..., n, 1, 2, ..., n, 1, 2, ... Let b^t denote bid vector after *t*-th update. Then $SW(b^t) \ge \frac{1}{3}OPT(v)$ for all $t \ge n$.

Lemma

$\sum_{i=1}^{n} u_i(b^i) \leq DW(b^n).$

Proof. Suppose bidder *i*'s update buys him the set of items S'

$$u_i(b^i) = \sum_{j \in S'} \left(b^i_{i,j} - \max_{k \neq i} b^j_{k,j} \right)$$

Define: $z_j^i = \max_{k \le i} b_{k,j}^i$ for all j.

We have:
$$\sum_{j\in \mathcal{S}'}(b^i_{i,j}-\max_{k
eq i}b^i_{k,j})\leq \sum_{j\in \mathcal{M}}(z^i_j-z^{i-1}_j)$$

Reason:

■ For
$$j \notin S'$$
: $z_j^i \ge z_j^{i-1}$ by definition.
■ For $j \in S'$, $b_{i,j}^i = z_j^i$ and
 $\max_{k \neq i} b_{k,j}^i \ge \max_{k < i} b_{k,j}^i = \max_{k < i} b_{k,j}^{i-1} = z_j^{i-1}$.

.

Lemma

$\sum_{i=1}^{n} u_i(b^i) \leq DW(b^n).$

Proof. Suppose bidder *i*'s update buys him the set of items S'

$$u_i(b^i) = \sum_{j \in S'} \left(b^i_{i,j} - \max_{k \neq i} b^j_{k,j} \right)$$

Define: $z_j^i = \max_{k \le i} b_{k,j}^i$ for all j.

We have:
$$\sum_{j\in \mathcal{S}'}(b^i_{i,j}-\max_{k
eq i}b^i_{k,j})\leq \sum_{j\in \mathcal{M}}(z^i_j-z^{i-1}_j)$$

Overall:

$$egin{aligned} &\sum_{i\in N}u_i(b^i)\leq \sum_{i\in N}\sum_{j\in M}(z^i_j-z^{i-1}_j)=\sum_{j\in M}(z^n_j-z^0_j)\ &=\sum_{j\in M}\max_kb^n_{k,j}=\mathcal{DW}(b^n) \end{aligned}$$

.

Lemma

Let S_1^*, \ldots, S_n^* be any feasible allocation. We have $\sum_i u_i(b^i) \ge \sum_{i \in N} v_i(S_i^*) - DW(b^n) - DW(b^0).$

Proof. Bidder *i* could have bought the set of items S_i^* .

$$u_i(b^i) \geq v_i(\mathcal{S}^*_i) - \sum_{j \in \mathcal{S}^*_i} \max_{k \neq i} b^i_{k,j}$$

Define $p_j^t = \max_i b_{i,j}^t$ for all items *j*. We have: $\max_{k \neq i} b_{k,j}^i \le p_j^n + p_j^0$. Thus

$$u_i(b^i) + \sum_{j \in S_i^*} (p_j^n + p_j^0) \geq v_i(S_i^*) \;\;.$$

And therefore

$$\sum_{i=1}^{n} u_i(b^i) + \sum_{i=1}^{n} \sum_{j \in S_i^*} (p_j^n + p_j^0) \ge \sum_{i=1}^{n} v_i(S_i^*)$$
 . \Box

Potential Procedure: Welfare Guarantee [Dütting/K., SODA 2017]

Theorem

Let bidders be activated in order 1, 2, ..., n, 1, 2, ..., n, 1, 2, ... Let b^t denote bid vector after *t*-th update. Then $SW(b^t) \ge \frac{1}{3}OPT(v)$ for all $t \ge n$.

Potential Procedure: Welfare Guarantee [Dütting/K., SODA 2017]

Theorem

Let bidders be activated in order 1, 2, ..., n, 1, 2, ..., n, 1, 2, ... Let b^t denote bid vector after *t*-th update. Then $SW(b^t) \ge \frac{1}{3}OPT(v)$ for all $t \ge n$.

Proof.

$$\sum_{i} u_{i}(b^{i}) \leq DW(b^{n})$$

$$\sum_{i} u_{i}(b^{i}) \geq OPT(v) - DW(b^{n}) - DW(b^{0})$$

$$DW(b^{0}) \leq DW(b^{n}) \leq DW(b^{t})$$

 $\Rightarrow DW(b^t) \geq \frac{1}{3}OPT(v)$

Let S_1, \ldots, S_n be allocation in b^t , then $DW(b^t) = \sum_i \sum_{j \in S_i} b_{i,j}^n$. By strong no-overbidding: $\sum_{j \in S_i} b_{i,j}^t \leq v_i(S_i)$. So $DW(b^t) = \sum_i \sum_{j \in S_i} b_{i,j}^t \leq \sum_i v_i(S_i) = SW(b)$.

$$v_i(S) = \begin{cases} 0 & \text{if } |S| = 0\\ 1 & \text{if } |S| = 1 \text{ or } |S| = 2\\ 2 & \text{if } |S| = 3 \end{cases}$$

How to best respond to (0, 0, 0)?

- $(\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ bids $\frac{4}{3} > 1$ on $\{1, 2\}$ (i.e. overbidding)
- $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ is strongly no-overbidding but bids only $\frac{3}{2}$ on $\{1, 2, 3\}$

Generally: No pure Nash equilibria that fulfill strong no overbidding [Bhawalkar/Roughgarden, SODA 2011]

Aggressive and Safe Bids

Declared utility: $u_i^D(b) = \sum_{j \in S} b_{i,j} - \max_{k \neq i} b_{k,j}$, if *i* wins *S* under *b*

- We call bid b_i by bidder *i* against bids $b_{-i} \alpha$ -aggressive if $u_i^D(b) \ge \alpha \cdot \max_{b'_i} u_i(b'_i, b_{-i}).$
- A best response dynamic is β -safe if it ensures that $u_i^D(b) \leq \beta \cdot u_i(b)$ for all players *i* and reachable bid profiles *b*.

Theorem

In β -safe round-robin bidding dynamic with α -aggressive bid updates at any time step t \geq n

$$SW(b^t) \ge rac{lpha}{(1+lpha+eta)eta} \cdot OPT(v).$$

Best Response Dynamics for Subadditive Valuations

Use: $S \mapsto v_i(S) - \sum_{j \in S} \max_{k \neq i} b_{k,j}$ is subadditive

Implies: Can be approximated by XOS function

Consequence: $\alpha = \frac{1}{\log m} \text{-aggressive}, \, \beta = 1 \text{-safe dynamics}$

Theorem

For subadditive valuations, there is a round-robin best-response dynamic such that at any time step $t \ge n$ $SW(b^t) = \Omega\left(\frac{1}{\log m}\right) \cdot OPT(v).$

Theorem

For subadditive valuations, for every best-response dynamic there is an instance such that for infinitely many t $SW(b^t) = O\left(\frac{\log \log m}{\log m}\right) \cdot OPT(v).$

- 2 Complexity of Equilibria
- 3 Best-Response Dynamics

4 Open Problems

Convergence rate after *n*-th step

In case of XOS valuations:

- Reach $\frac{1}{3}OPT(v)$ after *n* steps (tight)
- Reach $\frac{1}{2}OPT(v)$ eventually (tight)
- How fast is convergence in between?

Valuation functions of the form

$$v_i(S) = egin{cases} c_i & ext{if } S \supseteq T_i \ 0 & ext{otherwise} \end{cases}$$

for $|T_i| \leq k$.

More generally: MPH-k valuations

So far: Techniques similar to price-of-anarchy analyses via smothness

Is there a general connection?

So far: Mainly use convergence to correlated equilibria, analyze those.

How fast? How difficult are single steps?

Can we guarantee any better approximation than $O(\log m)$ in case of subadditive functions?

Design mechanisms with better price of anarchy Limitations: [Roughgarden, FOCS 2014]

Design mechanisms that are easier to play Example: [Devanur/Morgenstern/Srygkanis/Weinberg, EC 2015]

Consider other settings than combinatorial auctions

Thank you! Questions?

- George Christodoulou, Annamária Kovács, Michael Schapira: Bayesian Combinatorial Auctions. J. ACM 63(2): 11 (2016)
- Kshipra Bhawalkar, Tim Roughgarden: Welfare Guarantees for Combinatorial Auctions with Item Bidding. SODA 2011: 700-709
- Tim Roughgarden: Intrinsic robustness of the price of anarchy. STOC 2009: 513-522
- Vasilis Syrgkanis, Éva Tardos: Composable and efficient mechanisms. STOC 2013: 211-220
- Michal Feldman, Hu Fu, Nick Gravin, Brendan Lucier: Simultaneous auctions are (almost) efficient. STOC 2013: 201-210

- Shahar Dobzinski, Hu Fu, Robert D. Kleinberg: On the Complexity of Computing an Equilibrium in Combinatorial Auctions. SODA 2015: 110-122
- Yang Cai, Christos H. Papadimitriou: Simultaneous bayesian auctions and computational complexity. EC 2014: 895-910
- Constantinos Daskalakis, Vasilis Syrgkanis: Learning in Auctions: Regret is Hard, Envy is Easy. CoRR abs/1511.01411 (2015)

- George Christodoulou, Annamária Kovács, Michael Schapira: Bayesian Combinatorial Auctions. J. ACM 63(2): 11 (2016)
- Paul Dütting, Thomas Kesselheim: Best-Response Dynamics in Combinatorial Auctions with Item Bidding. CoRR abs/1607.04149 (2016)

- Nikhil R. Devanur, Jamie Morgenstern, Vasilis Syrgkanis, S. Matthew Weinberg: Simple Auctions with Simple Strategies. EC 2015: 305-322
- Tim Roughgarden: Barriers to Near-Optimal Equilibria. FOCS 2014: 71-80

