
Modeling Human Play in Games:
From B ehavioral E c onomic s to Deep Learning

Kevin Leyton-Brown
Based on work with James R. Wright and Jason Hartford

If we didn’t have game theory, we’d need to invent it

• A general mathematical approach for reasoning about
arbitrary strategic situations

• Given predictions about counterfactual play, we can
design mechanisms that optimize properties of interest

• The catch: design quality depends on accuracy of the predictions

• Let’s consider a prediction that is among the strongest made by
game theory: unique, dominance-solvable Nash equilibrium

Example: Beauty Contest Game

Pick to pick a number from 0 to 100

The integer closest to two-thirds of the
average of all numbers picked wins

“Are You Smarter Than 61,140 Other New York Times
Readers?”

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.h

100%

Nash prediction

“Are You Smarter Than 61,140 Other New York Times Readers?”

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.h

• Many of game theory’s recommendations are counterintuitive

• Clearly the world is not populated
only by perfectly rational agents

• To make good predictions about
the play of unsophisticated humans
(and hence, e.g., to design mechanisms they will use),
we need a model of human behavior

Limitations of perfect rationality

Two player simultaneous-move games

$ 2 $ 1 $ 1

Two player simultaneous-move games

$ 2 $ 1 $ 1

Two player simultaneous-move games

R
oc

k
P

ap
er

S
ci

ss
or

s

Action count

0, 0

1, -1

-2, 2

-1, 1

0, 0

1, -1

2, -2

-1, 1

0, 0

Rock Paper Scissors

R
oc

k
P

ap
er

S
ci

ss
or

s

R
ow

 p
la

ye
r’s

 a
ct

io
ns

Column player’s actions

Two player simultaneous-move games

R
oc

k
P

ap
er

S
ci

ss
or

s

Action count

0, 0

1, -1

-2, 2

-1, 1

0, 0

1, -1

2, -2

-1, 1

0, 0

Rock Paper Scissors

R
oc

k
P

ap
er

S
ci

ss
or

s

R
ow

 p
la

ye
r’s

 a
ct

io
ns

Column player’s actions

Learning problem

R
oc

k
P

ap
er

S
ci

ss
or

s

Action count

T
M

Action count

,{ ,…

},

Given a dataset of games, each with observed action counts:

…learn a model that predicts players’ distribution over actions

T
M

Action count

B
X

Action count

T
M

0,0

1,-1

-2,2

-1,1

0,0

1,-1

2,-2

-1,1

0,0

Rock Paper Scissors

R
oc

k
P

ap
er

S
ci

ss
or

s

5,5

5,3

3,5

9,9

9,4

0,9

L C R

T
M

5,5

5,3

3,5

9,9

L C

T
M

6,6

5,3

3,5

9,9

9,4

0,9

L C R

T
M

5,3 9,0 0,12B

5,3 5,3 2,7X

Learning problem
We will evaluate a learned model by

assessing how well it predicts the distribution of play
across human players from the same population

on arbitrary games not previously seen when fitting the model

Predicted action count

B
X

T
M

6,6

5,3

3,5

9,9

9,4

0,9

L C R

T
M

5,3 9,0 0,12B

5,3 5,3 2,7X

0,-1 10,-8 0,0Y

7,12 9,-8 0,0Z

Y
Z

Scoring models

• We randomly partition our data into two different data sets:

• We choose parameter value(s) that maximize the likelihood of the
training data:

• We score the performance of a model by likelihood of the test data:

• To reduce variance, we repeat this process multiple times
with different random partitions, averaging the results

Data

Is this a standard supervised learning problem?

• Challenges:
– not simple classification: must return a probability distribution

– not straightforward density estimation: distribution size varies with input

– ...models are mappings from games to probability distributions

• One off-the-shelf idea: discrete choice
– set of choices = row player’s actions

– features = payoffs

– logistic regression:

– mixed logit model: ,
(10 latent classes)

Mixed-logit performance

Is this any good?

Mixed-logit performance

Null Model

Logistic regression applied to raw payoffs is worse than always
predicting the uniform distribution. Mixed logit is not much better…

Lessons from behavioral economics
Behavioral Game Theory has proposed hand-tuned models
based on psychological insights:

– Quantal Response Equilibrium [McKelvey & Palfrey 1995]
– Level-𝑘𝑘 [Costa-Gomes et al. 2001]
– Cognitive Hierarchy [Camerer et al. 2004]
– Noisy introspection [Goeree & Holt 2004]
– Quantal Lk, Quantal CH [Stahl & Wilson 1994; Camerer et al.]

Two key ideas underlie the best performing models
[Wright, Leyton-Brown 2010; forthcoming]:

– Quantal utility maximization instead of utility maximization
– Iterative strategic reasoning instead of equilibrium

Quantal utility maximization

P
ro

ba
bi

lit
y

of
 A

ct
io

n

P
ro

ba
bi

lit
y

of
 A

ct
io

n

• Best response: Maximum utility action is always played

• Quantal (“softmax”) response: High-utility actions played often,
low-utility actions played rarely

Expected PayoffExpected Payoff

$1.01 $1 $0.25$1.01 $1 $0.25

Quantal ResponseBest Response

Iterative Strategic Reasoning

…

• Level-0: Some nonstrategic distribution of play (often uniform distribution)

• Level-1: Respond to level-0 players

• Level-2: Respond to level-0, or levels 0, 1

• Level-𝒌𝒌: Respond to level 𝑘𝑘 − 1, or levels {0, … , 𝑘𝑘 − 1}

…

“Are You Smarter Than 61,140 Other New York Times Readers?”

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.h

Level 0?
Avg of uniform
randomization

Level 1?
2/3 of that

Level 2?
2/3 of that

Definitely Level 0
(think about it)

Level 1?
2/3 of that

Behavioral model performance

Level-0 agents

• Bayesian analysis of parameters shows something strange:

• The best performing models are quite certain that
a large number of players randomize uniformly

– Evidence of a misspecified model?

E
st

im
at

ed
 F

re
qu

en
cy

Let’s model Level-0 behavior explicitly

Five binary features:

• Maxmin payoff (“Pessimistic”): Is this action best in the
(deterministic) worst case?

• Maxmax payoff (“Optimistic”): Does this action contribute to my
own highest-payoff outcome?

• Total (“Efficiency”): Does this action contribute to the
social-welfare-maximizing outcome?

• Fairness: Does this action contribute to the least unfair outcome?

• Minimax regret: Does this action minimize maximum regret?

Weighted linear model

• A feature 𝑓𝑓 is informative for game 𝑮𝑮 if 𝑓𝑓 can distinguish at least
one pair of actions in 𝐺𝐺

• For each action, compute a sum of weights for features that are
both informative and that “fire”, plus a noise weight

prediction for 𝑎𝑎𝑖𝑖 ∝ 𝑤𝑤0 + �
𝑓𝑓∈𝐹𝐹

𝕀𝕀 𝑓𝑓 is informative ⋅ 𝕀𝕀 𝑓𝑓 𝑎𝑎𝑖𝑖 = 1 ⋅ 𝑤𝑤𝑓𝑓

A 3 × 3 example; consider player 1

100,
20

40,
35

41,
21

10,
67

50,
49

42,
22

30,
40

90,
70

40,
23

A B C

Z
Y

X

Every action starts out with weight 𝒘𝒘𝟎𝟎

A 3 × 3 example; consider player 1

100,
20

40,
35

41,
21

10,
67

50,
49

42,
22

30,
40

90,
70

40,
23

A B C

Z
Y

X

Maximize the minimum payoff

A 3 × 3 example; consider player 1

100,
20

40,
35

41,
21

10,
67

50,
49

42,
22

30,
40

90,
70

40,
23

A B C

Z
Y

X

Maximize the best-case payoff

A 3 × 3 example; consider player 1

100,
20

40,
35

41,
21

10,
67

50,
49

42,
22

30,
40

90,
70

40,
23

A B C

Z
Y

X

Maximize the sum of both players’ payoffs

A 3 × 3 example; consider player 1

100,
20

40,
35

41,
21

10,
67

50,
49

42,
22

30,
40

90,
70

40,
23

A B C

Z
Y

X

Fairest outcome

A 3 × 3 example; consider player 1

100,
20

40,
35

41,
21

10,
67

50,
49

42,
22

30,
40

90,
70

40,
23

A B C

Z
Y

X

Minimax Regret isn’t informative
(it’s 60 for all actions; e.g., when Player 1 plays X, if Player 2 plays C, his regret is 60)

…and normalize to get the distribution over actions

Effect of modeling nonstrategic play

Beyond Feature Engineering

• A better model of nonstrategic play made a big difference

• But, it’s hard to know if we’ve got the model right:
– have we included the right features?
– do our models have the right functional form?

• Deep learning has demonstrated the possibility of
stunning predictive performance via learning features

• Could we automatically search for behavioral models?

0, 0

1, -1

-2, 2

-1, 1

0, 0

-1, 1

2, -2

-1, 1

0, 0

Rock Paper Scissors

R
oc

k
P

ap
er

S
ci

ss
or

s

Direct application of a feed-forward net

R

P

S

P

S

Target distribution

-2, 2 -1, 1 0, 0

S
ci

ss
or

s

0, 0 -1, 1 2, -2R
oc

k

1, -1 0, 0 -1, 1

P
ap

er

Direct application of a feed-forward net

R

P

S

S

P

Target distributionRock Paper Scissors

Rock Paper Scissors

0, 0 -1, 1 2, -2R
oc

k

-2, 2 -1, 1 0, 0

S
ci

ss
or

s

1, -1 0, 0 -1, 1

P
ap

er

Direct application of a feed-forward net

R

P

S

S

P

Target distribution

Rock Paper Scissors

0, 0 -1, 1 2, -2R
oc

k

-2, 2 -1, 1 0, 0

S
ci

ss
or

s

1, -1 0, 0 -1, 1

P
ap

er

Direct application of a feed-forward net

R

P

S

S

P

Target distribution

-5, -5 -5, -5 -5, -5

N
uc

le
ar

Rock Paper Scissors

-2, 2 -1, 1 0, 0

S
ci

ss
or

s

0, 0 -1, 1 2, -2R
oc

k

Direct application of a feed-forward net

1, -1 0, 0 -1, 1

P
ap

er

R

P

S

S

P

Target distribution

Invariance-preserving hidden units

• Let each node be a matrix
computing a weighted
sum of the matrices in the
preceding layer

• Apply an element-wise
activation function, ∅
– again, we use ∅(𝑥𝑥) = relu(𝑥𝑥)

Input payoff
matrices

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Predicting a distribution over actions

We want a distribution
over player 1’s actions with
size = P1’s action space
• Sum uniformly over the

column player’s actions &
apply a softmax function to
the resulting vectors:

• Take weighted sum to
construct our output

L,1

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Comparing outcomes

Each element of a given matrix depends only on the
corresponding elements from input matrices

Can’t learn functions that relate elements between cells

Input matrices

Hidden
layer 1

Hidden
layer 2

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Comparing outcomes

Hidden
layer 1

Hidden
layer 2

Input matrices

Each element of a given matrix depends only on the
corresponding elements from input matrices

Can’t learn functions that relate elements between cells

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Comparing outcomes

0, 0

1, -1

-2, 2

-5, -5

-1, 1

0, 0

-1, 1

-5, -5

2, -2

-1, 1

0, 0

-5, -5

Rock Paper Scissors
R

oc
k

P
ap

er
S

ci
ss

or
s

N
uc

le
ar

Probability of action

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Comparing outcomes

-10, -10

990, -1010

-2010, 1990

-5, -5

-1010, 990

-10, -10

-1010, 990

-5, -5

1990, -2010

-1010, 990

-10, -10

-5, -5

Rock Paper Scissors
R

oc
k

P
ap

er
S

ci
ss

or
s

N
uc

le
ar

Probability of action

(R
P

S
 ×

1
0

0
0

)
-

1
0

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Action pooling units

Row-wise
maxima

Column-wise
maxima

Pooling units output aggregates of the payoffs associated with
particular actions by computing row and column-wise maxima for
each hidden unit and providing them as inputs to subsequent layers

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Action response layers

AR layers…
• Compute a weighted

sum over P2 actions
• Weights are the model’s

predicted distribution
over P2’s actions

• Applied recursively to
model multiple iterative
reasoning steps

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Action response layers

AR layers…
• Compute a weighted

sum over P2 actions
• Weights are the model’s

predicted distribution
over P2’s actions

• Applied recursively to
model multiple iterative
reasoning steps

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Action response layers

AR layers…
• Compute a weighted

sum over P2 actions
• Weights are the model’s

predicted distribution
over P2’s actions

• Applied recursively to
model multiple iterative
reasoning steps

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Full Architecture

Use hidden units and pooling
layers to learn “potentials”
(an internal representation of the input)

in the feature layers.
Sum across opposition
actions and apply softmax
function to get distribution
over actions. Use action
response layers to iteratively
refine distributions.

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List

Representational generality

Our “deep cognitive hierarchy” subsumes previous approaches

• Clearly, it generalizes quantal cognitive hierarchy
– Action response layers can represent level-k, cognitive hierarchy

– Agents can both best respond and quantally respond

• It also generalizes our weighted linear level-0 extension:
– Feature layers can represent minmin unfairness, maxmax payoff,

maxmin payoff, minimax regret, efficiency

So…
does deep learning live up to the hype?

Hidden units

Performance

Hidden units

QCH – uniform

Test Set Training Set

Hidden units

Performance
Test Set Training Set

Hidden units

QCH – linear 4

QCH – uniform

Hidden units

Overall performance

Hidden units

Test Set Training Set

QCH – linear 4

QCH – uniform

Large improvement in
performance over the
previous state of the art
despite no access to
hand-crafted features.

Hidden units

Performance – pooling layers

Hidden units

Test Set Training Set

QCH – linear 4

QCH – uniform

DeepQCH performs poorly
without pooling units.

no pooling

pooling

Performance – action response layers

Action Response Layers

More AR layers →
Improving training set

performance

Training Set

QCH – linear 4

QCH – uniform

Performance – action response layers

Diminishing test set
performance

Action Response Layers # Action Response Layers

Test Set Training Set

QCH – linear 4

QCH – uniform

More AR layers →
Improving training set

performance

Performance – action response layers

Diminishing test set
performance

Action Response Layers # Action Response Layers

Test Set Training Set

QCH – linear 4

QCH – uniform

More AR layers →
Improving training set

performance

• The network overfit when we
added action response layers

• Hypothesis 1: Standard deep-
learning tools for regularization
aren’t sufficient in this setting

• Hypothesis 2: Data doesn’t
exhibit iterative reasoning

Conclusions and future directions
Architecture achieves state-of-the-art performance
predicting human behavior in normal form games

– Generalizes to new games with unseen number of actions
– Model generalizes iterative response-style behavioral models
– …but the best-performing model didn’t use action response layers

Future work:
– Build more flexible architecture to model salience;

dominance-style features
– Explore the connection to discrete choice

• in that setting, our model generalizes the latent class model

	Modeling Human Play in Games: �From Behavioral Economics to Deep Learning
	If we didn’t have game theory, we’d need to invent it
	Example: Beauty Contest Game
	“Are You Smarter Than 61,140 Other New York Times Readers?”
	“Are You Smarter Than 61,140 Other New York Times Readers?”
	Limitations of perfect rationality
	Two player simultaneous-move games
	Two player simultaneous-move games
	Two player simultaneous-move games
	Two player simultaneous-move games
	Learning problem
	Learning problem
	Scoring models
	Data
	Is this a standard supervised learning problem?
	Mixed-logit performance
	Mixed-logit performance
	Lessons from behavioral economics
	Quantal utility maximization
	Iterative Strategic Reasoning
	“Are You Smarter Than 61,140 Other New York Times Readers?”
	Behavioral model performance
	Level-0 agents
	Let’s model Level-0 behavior explicitly
	Weighted linear model
	A 3×3 example; consider player 1
	A 3×3 example; consider player 1
	A 3×3 example; consider player 1
	A 3×3 example; consider player 1
	A 3×3 example; consider player 1
	A 3×3 example; consider player 1
	Effect of modeling nonstrategic play
	Beyond Feature Engineering
	Direct application of a feed-forward net
	Direct application of a feed-forward net
	Direct application of a feed-forward net
	Direct application of a feed-forward net
	Direct application of a feed-forward net
	Slide Number 39
	Invariance-preserving hidden units
	Predicting a distribution over actions
	Comparing outcomes
	Comparing outcomes
	Comparing outcomes
	Comparing outcomes
	Action pooling units
	Action response layers
	Action response layers
	Action response layers
	Full Architecture
	Representational generality
	Slide Number 52
	Performance
	Performance
	Overall performance
	Performance – pooling layers
	Performance – action response layers
	Performance – action response layers
	Performance – action response layers
	Conclusions and future directions

