Modeling Human Play in Games:

From Behavioral Economics to Deep Learning

Kevin Leyton-Brown

Based on work with James R. Wright and Jason Hartford

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

If we didn't have game theory, we'd need to invent it

- A general mathematical approach for reasoning about arbitrary strategic situations
- Given predictions about counterfactual play, we can design mechanisms that optimize properties of interest

- The catch: design quality depends on accuracy of the predictions
- Let's consider a prediction that is among the strongest made by game theory: unique, dominance-solvable Nash equilibrium

Pick to pick a number from 0 to 100

The integer closest to two-thirds of the average of all numbers picked wins

"Are You Smarter Than 61,140 Other New York Times Readers?"

THE UPSHOT Are You Smarter Than Other New York Times Readers? PERCENT OF READERS PICKING EACH NUMBER: 100% **Nash prediction** 0% READERS' GUESSES →

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.

"Are You Smarter Than 61,140 Other New York Times Readers?"

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.

Limitations of perfect rationality

• Many of game theory's recommendations are **counterintuitive**

• Clearly the world is not populated only by **perfectly rational agents**

 To make good predictions about the play of unsophisticated humans (and hence, e.g., to design mechanisms they will use), we need a model of human behavior

Learning problem

Given a dataset of games, each with observed action counts:

...learn a model that predicts players' distribution over actions

Learning problem

We will evaluate a learned model by assessing how well it predicts the distribution of play across human players from the same population on arbitrary games not previously seen when fitting the model

Scoring models

• We randomly partition our data into two different data sets:

$$\mathcal{D} = \mathcal{D}_{\mathrm{train}} \cup \mathcal{D}_{\mathrm{test}}$$

• We choose parameter value(s) that maximize the likelihood of the training data:

$$\theta^* = \operatorname{argmax}_{\theta} \Pr(\mathcal{D}_{\operatorname{train}} | \mathcal{M}, \theta)$$

• We score the performance of a model by likelihood of the test data:

$$\Pr(\mathcal{D}_{\text{test}}|\mathcal{M}, \theta^*))$$

• To reduce variance, we **repeat this process multiple times** with different random partitions, averaging the results

Name	Source	Games	n
SW94	[Stahl and Wilson, 1994]	10	400
SW95	[Stahl and Wilson, 1995]	12	576
CGCB98	[Costa-Gomes et al., 1998]	18	1296
GH01	[Goeree and Holt, 2001]	10	500
CVH03	[Cooper and Van Huyck, 2003]	8	2992
RPC09	[Rogers et al., 2009]	17	1210
HSW01	[Haruvy et al., 2001]	15	869
HS07	[Haruvy and Stahl, 2007]	20	2940
SH08	[Stahl and Haruvy, 2008]	18	1288
Сомво9	400 samples from each	128	3600

Is this a standard supervised learning problem?

- Challenges:
 - not simple classification: must return a probability distribution
 - not straightforward density estimation: distribution size varies with input
 - ...models are mappings from games to probability distributions
- One off-the-shelf idea: discrete choice
 - set of choices = row player's actions
 - features = payoffs
 - logistic regression: $P(a_i) = \frac{e^{\alpha + \sum_j \beta x_{i,j}}}{\sum_i e^{\alpha + \sum_j \beta x_{i,j}}}$
 - $\underset{\text{(10 latent classes)}}{\text{mixed logit model:}} P(a_i) = \sum_{c=1}^{10} s^{(c)} \frac{e^{\alpha^{(c)} + \sum_j \beta^{(c)} x_{i,j}}}{\sum_i e^{\alpha^{(c)} + \sum_j \beta^{(c)} x_{i,j}}},$

$$\sum_{c=1}^{10} s^{(c)} = 1$$

Mixed-logit performance

Is this any good?

Mixed-logit performance

Logistic regression applied to raw payoffs is **worse** than always predicting the **uniform** distribution. **Mixed logit** is not much better...

Lessons from behavioral economics

Behavioral Game Theory has proposed hand-tuned models based on psychological insights:

- Quantal Response Equilibrium [McKelvey & Palfrey 1995]
- Level-k [Costa-Gomes et al. 2001]
- Cognitive Hierarchy [Camerer et al. 2004]
- Noisy introspection [Goeree & Holt 2004]
- Quantal Lk, Quantal CH [Stahl & Wilson 1994; Camerer et al.]

Two key ideas underlie the best performing models

[Wright, Leyton-Brown 2010; forthcoming]:

- Quantal utility maximization instead of utility maximization
- Iterative strategic reasoning instead of equilibrium

Quantal utility maximization

- Best response: Maximum utility action is always played
- Quantal ("softmax") response: High-utility actions played often, low-utility actions played rarely

Iterative Strategic Reasoning

- Level-0: Some nonstrategic distribution of play (often uniform distribution)
- Level-1: Respond to level-0 players
- Level-2: Respond to level-0, or levels 0, 1

• Level-k: Respond to level k - 1, or levels $\{0, ..., k - 1\}$

"Are You Smarter Than 61,140 Other New York Times Readers?"

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.

Behavioral model performance

Level-0 agents

• Bayesian analysis of parameters shows something strange:

- The best performing models are quite certain that a large number of players **randomize uniformly**
 - Evidence of a misspecified model?

Let's model Level-0 behavior explicitly

Five binary features:

- Maxmin payoff ("Pessimistic"): Is this action best in the (deterministic) worst case?
- Maxmax payoff ("Optimistic"): Does this action contribute to my own highest-payoff outcome?
- Total ("Efficiency"): Does this action contribute to the social-welfare-maximizing outcome?
- Fairness: Does this action contribute to the least unfair outcome?
- Minimax regret: Does this action minimize maximum regret?

Weighted linear model

- A feature *f* is **informative for game** *G* if *f* can distinguish at least one pair of actions in *G*
- For each action, compute a sum of weights for features that are both informative and that "fire", plus a noise weight

prediction for
$$a_i \propto w_0 + \sum_{f \in F} \mathbb{I}[f \text{ is informative}] \cdot \mathbb{I}[f(a_i) = 1] \cdot w_f$$

Every action starts out with weight w₀

A 3×3 example; consider player 1

Maximize the minimum payoff

A 3×3 example; consider player 1

Maximize the best-case payoff

Maximize the sum of both players' payoffs

Fairest outcome

A
 B
 C

 N
 100, 10, 67
 30, 40

$$w_0 + w_{maxmax}$$

 >
 40, 50, 49
 90, 70
 $w_0 + w_{minmin} + w_{total} + w_{fairness}$

 ×
 41, 42, 22
 40, 23
 $w_0 + w_{minmin}$

Minimax Regret isn't informative

(it's 60 for all actions; e.g., when Player 1 plays X, if Player 2 plays C, his regret is 60)

A
 B
 C

 N
 100, 10, 67
 30, 40

$$w_0 + w_{maxmax}$$

 >
 40, 50, 49
 90, 70
 $w_0 + w_{minmin} + w_{total} + w_{fairness}$

 ×
 41, 42, 40, 21
 22
 23

 w_0 + w_{minmin}
 $w_0 + w_{minmin}$

...and normalize to get the distribution over actions

Effect of modeling nonstrategic play

Beyond Feature Engineering

- A better model of **nonstrategic play** made a big difference
- But, it's hard to know if we've got the model right:
 - have we included the right features?
 - do our models have the right **functional form**?

- Deep learning has demonstrated the possibility of stunning predictive performance via learning features
- Could we **automatically search** for behavioral models?

H H H H H H H H H H H H H H H

- 1. Invariance to game permutations
- Output is be a probability distribution
 of size = player 1's action space
- Models allow rich comparisons between actions and outcomes
- 4. Models iterative strategic reasoning

Invariance-preserving hidden units

$$\mathbf{H}_{2,1} = \phi({\scriptscriptstyle{\Sigma}_k} \, oldsymbol{w}_{2,oldsymbol{k}} \, \, \mathbf{H}_{1,k})$$

GT Wish List

1. Permutation

2. Size

Comparison
 Iterative Reasoning

- Let each node be a matrix computing a weighted sum of the matrices in the preceding layer
- Apply an element-wise activation function, Ø

-again, we use $\emptyset(x) = relu(x)$

Predicting a distribution over actions

We want a distribution over player 1's actions with size = P1's action space

GT Wish List

Iterative Reasoning

1. Permutation 2. Size 3. Comparison

• Sum **uniformly** over the **column player's** actions & apply a **softmax** function to the resulting vectors:

$$\operatorname{softmax}(a_i) = \frac{\exp(a_i)}{\sum_j \exp(a_j)}$$

• Take weighted sum to construct our output

Each element of a given matrix depends only on the corresponding elements from input matrices Can't learn functions that relate elements between cells

Each element of a given matrix depends only on the corresponding elements from input matrices Can't learn functions that relate elements between cells

GT Wish List 1. Permutation 2. Size **3. Comparison** 4. Iterative Reasoning

Rock	Paper	Scissors
0, 0	-1, 1	2, -2
1, -1	0, 0	-1, 1
-2, 2	-1, 1	0, 0
-5, -5	-5, -5	-5, -5

Probability of action

GT Wish List 1. Permutation 2. Size 3. Comparison 4. Iterative Reasoning

Probability of action

Rock	Paper	Scissors
-10, -10	-1010, 990	1990, -2010
990, -1010	-10, -10	-1010, 990
-2010, 1990	-1010, 990	-10, -10
-5, -5	-5, -5	-5, -5

Action pooling units

GT Wish List

3. Comparison

1. Permutation

2. Size

Pooling units output **aggregates** of the payoffs associated with particular actions by computing **row** and **column-wise maxima** for each hidden unit and providing them as inputs to subsequent layers

Action response layers

AR layers...

• Compute a **weighted** sum over P2 actions

GT Wish List

4. Iterative Reasoning

1. Permutation

3. Comparison

2. Size

- Weights are the model's predicted distribution over P2's actions
- Applied **recursively** to model multiple iterative reasoning steps

Action response layers

AR layers...

• Compute a **weighted** sum over P2 actions

GT Wish List

4. Iterative Reasoning

1. Permutation

Size
 Comparison

- Weights are the model's predicted distribution over P2's actions
- Applied **recursively** to model multiple iterative reasoning steps

Action response layers

AR layers...

• Compute a **weighted** sum over P2 actions

GT Wish List

4. Iterative Reasoning

1. Permutation

3. Comparison

2. Size

- Weights are the model's predicted distribution over P2's actions
- Applied recursively to model multiple iterative reasoning steps

Full Architecture

GT Wish List

1. Permutation

Representational generality

Our "deep cognitive hierarchy" subsumes previous approaches

- Clearly, it generalizes quantal cognitive hierarchy
 - Action response layers can represent level-k, cognitive hierarchy
 - Agents can both **best respond** and **quantally respond**
- It also generalizes our weighted linear level-0 extension:
 - Feature layers can represent minmin unfairness, maxmax payoff, maxmin payoff, minimax regret, efficiency

So... does deep learning live up to the hype?

Performance

Performance

Overall performance

Performance – pooling layers

Performance – action response layers

Performance – action response layers

Performance – action response layers

Conclusions and future directions

Architecture achieves state-of-the-art performance predicting human behavior in normal form games

- Generalizes to new games with unseen number of actions
- Model generalizes iterative response-style behavioral models
- -...but the best-performing model didn't use action response layers

Future work:

- Build more flexible architecture to model salience;
 dominance-style features
- Explore the connection to discrete choice
 - in that setting, our model generalizes the latent class model