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If we didn’t have game theory, we’d need to invent it

• A general mathematical approach for reasoning about 
arbitrary strategic situations

• Given predictions about counterfactual play, we can 
design mechanisms that optimize properties of interest

• The catch: design quality depends on accuracy of the predictions

• Let’s consider a prediction that is among the strongest made by 
game theory: unique, dominance-solvable Nash equilibrium



Example: Beauty Contest Game

Pick to pick a number from 0 to 100

The integer closest to two-thirds of the 
average of all numbers picked wins



“Are You Smarter Than 61,140 Other New York Times 
Readers?”

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.h

100%

Nash prediction



“Are You Smarter Than 61,140 Other New York Times Readers?”

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.h



• Many of game theory’s recommendations are counterintuitive

• Clearly the world is not populated 
only by perfectly rational agents

• To make good predictions about 
the play of unsophisticated humans
(and hence, e.g., to design mechanisms they will use), 
we need a model of human behavior

Limitations of perfect rationality



Two player simultaneous-move games
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Two player simultaneous-move games
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Learning problem
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Given a dataset of games, each with observed action counts:

…learn a model that predicts players’ distribution over actions
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Learning problem
We will evaluate a learned model by 

assessing how well it predicts the distribution of play 
across human players from the same population 

on arbitrary games not previously seen when fitting the model

Predicted action count
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Scoring models

• We randomly partition our data into two different data sets:

• We choose parameter value(s) that maximize the likelihood of the 
training data: 

• We score the performance of a model by likelihood of the test data: 

• To reduce variance, we repeat this process multiple times 
with different random partitions, averaging the results 



Data



Is this a standard supervised learning problem?

• Challenges:
– not simple classification: must return a probability distribution

– not straightforward density estimation: distribution size varies with input

– ...models are mappings from games to probability distributions

• One off-the-shelf idea: discrete choice
– set of choices = row player’s actions

– features = payoffs

– logistic regression:

– mixed logit model: ,
(10 latent classes)



Mixed-logit performance

Is this any good?



Mixed-logit performance

Null Model

Logistic regression applied to raw payoffs is worse than always 
predicting the uniform distribution. Mixed logit is not much better…



Lessons from behavioral economics
Behavioral Game Theory has proposed hand-tuned models 
based on psychological insights:

– Quantal Response Equilibrium [McKelvey & Palfrey 1995]
– Level-𝑘𝑘 [Costa-Gomes et al. 2001]
– Cognitive Hierarchy [Camerer et al. 2004]
– Noisy introspection [Goeree & Holt 2004 ]
– Quantal Lk, Quantal CH [Stahl & Wilson 1994; Camerer et al.]

Two key ideas underlie the best performing models
[Wright, Leyton-Brown 2010; forthcoming]:

– Quantal utility maximization instead of utility maximization 
– Iterative strategic reasoning instead of equilibrium



Quantal utility maximization 
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• Best response: Maximum utility action is always played

• Quantal (“softmax”) response: High-utility actions played often, 
low-utility actions played rarely

Expected PayoffExpected Payoff

$1.01    $1     $0.25$1.01      $1      $0.25

Quantal ResponseBest Response



Iterative Strategic Reasoning

…

• Level-0: Some nonstrategic distribution of play (often uniform distribution)

• Level-1: Respond to level-0 players

• Level-2: Respond to level-0, or levels 0, 1

• Level-𝒌𝒌: Respond to level 𝑘𝑘 − 1, or levels {0, … , 𝑘𝑘 − 1}

…



“Are You Smarter Than 61,140 Other New York Times Readers?”

Source: http://www.nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.h

Level 0?
Avg of uniform 
randomization

Level 1?
2/3 of that

Level 2?
2/3 of that

Definitely Level 0 
(think about it)

Level 1?
2/3 of that



Behavioral model performance



Level-0 agents

• Bayesian analysis of parameters shows something strange:

• The best performing models are quite certain that 
a large number of players randomize uniformly

– Evidence of a misspecified model?
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Let’s model Level-0 behavior explicitly

Five binary features: 

• Maxmin payoff (“Pessimistic”): Is this action best in the 
(deterministic) worst case? 

• Maxmax payoff (“Optimistic”): Does this action contribute to my 
own highest-payoff outcome? 

• Total (“Efficiency”): Does this action contribute to the 
social-welfare-maximizing outcome? 

• Fairness: Does this action contribute to the least unfair outcome? 

• Minimax regret: Does this action minimize maximum regret? 



Weighted linear model

• A feature 𝑓𝑓 is informative for game 𝑮𝑮 if 𝑓𝑓 can distinguish at least 
one pair of actions in 𝐺𝐺

• For each action, compute a sum of weights for features that are 
both informative and that “fire”, plus a noise weight

prediction for 𝑎𝑎𝑖𝑖 ∝ 𝑤𝑤0 + �
𝑓𝑓∈𝐹𝐹

𝕀𝕀 𝑓𝑓 is informative ⋅ 𝕀𝕀 𝑓𝑓 𝑎𝑎𝑖𝑖 = 1 ⋅ 𝑤𝑤𝑓𝑓



A 3 × 3 example; consider player 1
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A 3 × 3 example; consider player 1
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A 3 × 3 example; consider player 1
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A 3 × 3 example; consider player 1
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A 3 × 3 example; consider player 1
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Minimax Regret isn’t informative
(it’s 60 for all actions; e.g., when Player 1 plays X, if Player 2 plays C, his regret is 60)

…and normalize to get the distribution over actions



Effect of modeling nonstrategic play



Beyond Feature Engineering

• A better model of nonstrategic play made a big difference

• But, it’s hard to know if we’ve got the model right: 
– have we included the right features? 
– do our models have the right functional form?

• Deep learning has demonstrated the possibility of 
stunning predictive performance via learning features

• Could we automatically search for behavioral models?
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Invariance-preserving hidden units

• Let each node be a matrix
computing a weighted 
sum of the matrices in the 
preceding layer

• Apply an element-wise 
activation function, ∅
– again, we use ∅(𝑥𝑥) = relu(𝑥𝑥)

Input payoff 
matrices

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List



Predicting a distribution over actions

We want a distribution 
over player 1’s actions with 
size = P1’s action space
• Sum uniformly over the 

column player’s actions & 
apply a softmax function to 
the resulting vectors:

• Take weighted sum to 
construct our output

L,1

1. Permutation
2. Size 
3. Comparison
4. Iterative Reasoning

GT Wish List



Comparing outcomes

Each element of a given matrix depends only on the 
corresponding elements from input matrices

Can’t learn functions that relate elements between cells

Input matrices

Hidden 
layer 1

Hidden 
layer 2

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List
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Comparing outcomes
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Comparing outcomes
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Action pooling units

Row-wise
maxima

Column-wise
maxima

Pooling units output aggregates of the payoffs associated with 
particular actions by computing row and column-wise maxima for 
each hidden unit and providing them as inputs to subsequent layers

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List



Action response layers

AR layers…
• Compute a weighted

sum over P2 actions
• Weights are the model’s 

predicted distribution
over P2’s actions

• Applied recursively to 
model multiple iterative 
reasoning steps

1. Permutation
2. Size
3. Comparison
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GT Wish List
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Action response layers

AR layers…
• Compute a weighted

sum over P2 actions
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Full Architecture

Use hidden units and pooling 
layers to learn “potentials”
(an internal representation of the input) 

in the feature layers.
Sum across opposition 
actions and apply softmax
function to get distribution 
over actions. Use action 
response layers to iteratively 
refine distributions.

1. Permutation
2. Size
3. Comparison
4. Iterative Reasoning

GT Wish List



Representational generality

Our “deep cognitive hierarchy” subsumes previous approaches

• Clearly, it generalizes quantal cognitive hierarchy
– Action response layers can represent level-k, cognitive hierarchy

– Agents can both best respond and quantally respond

• It also generalizes our weighted linear level-0 extension:
– Feature layers can represent minmin unfairness, maxmax payoff, 

maxmin payoff, minimax regret, efficiency



So… 
does deep learning live up to the hype?
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# Hidden units

Overall performance

# Hidden units

Test Set Training Set

QCH – linear 4

QCH – uniform

Large improvement in 
performance over the 
previous state of the art 
despite no access to 
hand-crafted features.



# Hidden units

Performance – pooling layers

# Hidden units

Test Set Training Set

QCH – linear 4

QCH – uniform

DeepQCH performs poorly 
without pooling units.

no pooling

pooling



Performance – action response layers
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More AR layers →
Improving training set 
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Performance – action response layers

Diminishing test set 
performance
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Performance – action response layers

Diminishing test set 
performance

# Action Response Layers # Action Response Layers

Test Set Training Set

QCH – linear 4

QCH – uniform

More AR layers →
Improving training set 

performance

• The network overfit when we 
added action response layers

• Hypothesis 1: Standard deep-
learning tools for regularization
aren’t sufficient in this setting

• Hypothesis 2: Data doesn’t 
exhibit iterative reasoning



Conclusions and future directions
Architecture achieves state-of-the-art performance 
predicting human behavior in normal form games

– Generalizes to new games with unseen number of actions
– Model generalizes iterative response-style behavioral models
– …but the best-performing model didn’t use action response layers

Future work:
– Build more flexible architecture to model salience;

dominance-style features
– Explore the connection to discrete choice

• in that setting, our model generalizes the latent class model
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