
The Entire Quantile Path of a Risk-Agnostic SVM Classifier

Jin Yu
Canberra Research Laboratory, NICTA

College of Engineering & Computer Science
Australian National University

Canberra, Australia
jin.yu@anu.edu.au

S.V.N. Vishwanathan Jian Zhang
Department of Statistics

Purdue University
250 N University Street

West Lafayette, IN 47907-2066, USA
{vishy, jianzhan}@stat.purdue.edu

Abstract

A quantile binary classifier uses the rule:
Classify x as +1 if P (Y = 1|X = x) ≥ τ , and
as −1 otherwise, for a fixed quantile param-
eter τ ∈ [0, 1]. It has been shown that Sup-
port Vector Machines (SVMs) in the limit are
quantile classifiers with τ = 1

2 . In this paper,
we show that by using asymmetric cost of
misclassification SVMs can be appropriately
extended to recover, in the limit, the quantile
binary classifier for any τ . We then present
a principled algorithm to solve the extended
SVM classifier for all values of τ simultane-
ously. This has two implications: First, one
can recover the entire conditional distribu-
tion P (Y = 1|X = x) = τ for τ ∈ [0, 1].
Second, we can build a risk-agnostic SVM
classifier where the cost of misclassification
need not be known apriori. Preliminary nu-
merical experiments show the effectiveness of
the proposed algorithm.

1 Introduction

Support Vector Machines (SVMs) have emerged as a
popular tool for binary classification. Given a set of
n training instances xi and their corresponding labels
yi ∈ {±1} the task of training a linear SVM classifier1

can be cast as a regularized risk minimization problem:

minJ(w) :=
λ

2
‖w‖2 +

1
n

n∑
i=1

l(w>xi, yi), (1)

where l is the so-called hinge loss defined by

l(w>x, y) := max(0, 1− y w>x). (2)
1For ease of exposition we will stick to linear SVMs,

although all our results extend to the non-linear case where
one maps the data into an RKHS H via the map x→ φ(x)
and uses the kernel k(x, x′) = 〈φ(x), φ(x′)〉H.

It is obvious that the hinge loss l(·) is non-negative
and convex in w. The loss function measures the
discrepancy between y and the prediction given by
sign(w>x), while the L2 regularizer with regulariza-
tion constant λ > 0 controls the complexity of the
solution w. It has been shown (Lin, 2002) that the
minimizer of the hinge loss is exactly sign(η(x)−1/2),
where η(x) = P (Y = 1|X = x) is the probability of
Y = 1 conditioned on X = x. Thus the SVM solution
should approach the Bayes rule as the sample size gets
large with appropriately chosen function class.

One problem of the standard SVM is that even
though we can use the resulting SVM classifier ŵ =
arg minw J(w) to classify a new observation x, the
prediction w>x does not have probabilistic interpre-
tation. More importantly, the SVM classification re-
sults cannot be directly applied to situations where
the misclassification cost is asymmetric, i.e. when the
cost of a false positive error is different from that of a
false negative error. To address such a problem, sev-
eral methods have been proposed to convert the SVM
output into well-calibrated probabilistic scores, such as
(Platt, 2000). However, such methods either rely on
parametric assumption or lack theoretical justification
about the transformed scores.

We instead aim to estimate the quantity sign(η(x)−τ),
which we call the quantile classification rule with τ ∈
[0, 1] as the quantile parameter. It can be shown that
sign(η(x)−τ) is the minimizer of the asymmetric hinge
loss, which assigns different costs to false positive and
false negative errors. The SVM formulation with the
asymmetric hinge loss can be defined as

min
λ

2
‖w‖2 +

n∑
i=1

cτ
yi

max(0, 1− yi w>xi). (3)

Here, cτ
yi

controls the two types of misclassifica-
tion cost, and for reasons that will become apparent

shortly, we set

cτ
yi

:=

{
[2(1− τ)]/n if yi = +1,

(2τ)/n if yi = −1.
(4)

for τ ∈ [0, 1]. Note that when τ = 1
2 , i.e., the misclas-

sification costs are symmetric, we recover (1).

There are many natural applications where the cost
of misclassification is not known in advance until the
classifier is deployed. As an illustrative example con-
sider the problem of spam detection (also see Figure
1). Given training emails the learning task is to distin-
guish between spam and non-spam emails. The toler-
ance of a user to spam is influenced by various factors.
For instance, a busy professor might have a very low
tolerance for spam. In other words, he/she might not
mind losing a few genuine emails as long as all spam
emails are kept out of his/her inbox. On the other
hand, a not-so-busy graduate student might not mind
a few spam emails as long as genuine emails are not
lost in the junk mail folder. In such cases, the brute
force approach of training a classifier for every user
preference is both tedious and time consuming. Fur-
thermore, one needs to train a new classifier for every
user preference.

In this paper we present a principled algorithm to solve
(3) for all values of τ simultaneously by utilizing the
fact that the solution path is piecewise linear as a func-
tion of the quantile parameter τ ∈ [0, 1]. In other
words, once our classifier is trained, we can recover
the solution for any τ efficiently. Consequently, our
classifier is risk agnostic. Furthermore, we show that
(3) is an instance of the quantile classification problem,
with τ being the quantile parameter.

The rest of the paper is organized as follows: In Section
2 we establish the connection between the asymmetric
cost SVM and the quantile classification rule. In Sec-
tion 3 we formulate the dual of (3). In Section 4 we de-
scribe the proposed algorithm and its worst case time
complexity analysis. We discuss some related work
in Section 5. Numerical experiments are presented in
Section 6, and we conclude the paper with an outlook
and discussion in Section 7.

2 Statistical Underpinnings

Let (X, Y) be a pair of random variables with train-
ing instances X ∈ X and labels Y ∈ {±1}. For any
realization x of X, denote the conditional probability
P (Y = 1|X = x) as η(x). Furthermore, let C+ (resp.
C−) denote the cost of misclassifying a x labeled as
+1 (resp. −1). The cost sensitive classification risk of

a decision function g : X → {±1} is defined as

R(g) := C+P (Y = −1, g(X) = 1) (5)
+ C−P (Y = 1, g(X) = −1).

The following lemma follows from elementary Bayes
decision theory (see e.g., Section 2.2 of Duda et al.,
2001).

Lemma 2.1 For any decision function g

R(sign(η(x)− τ)) ≤ R(g),

where τ = C+
C++C−

∈ [0, 1].

Lemma 2.1 says that when the misclassification cost
is asymmetric, the classifier which leads to the mini-
mum risk should take the form sign(η(x)− τ) where τ
only depends on the ratio of the misclassification costs
C+/C−. The following lemma, whose proof can be
found in Appendix A, shows that sign(η(x)− τ) is the
minimizer of the asymmetric hinge loss.

Lemma 2.2 For any τ ∈ [0, 1], the minimizer f∗ of

EX,Y

[
((1 + Y)/2− τY) (1− Y f(X))+

]
(6)

takes the form f∗(x) = sign(η(x)− τ).

In the infinite sample case, if we let λ → 0 as n →
∞ in (3), it is easy to see that the regularized risk
converges to (6). Therefore, Lemma 2.2 implies that
the estimator obtained by minimizing the regularized
risk (3) is risk consistent.

The above observation has a number of consequences.
First, it shows that the usual SVM with the symmetric
hinge loss (2) estimates P (Y = 1|X = x) = 1

2 , a well
known result (see e.g., Lin, 2002; Sollich, 2002). It
also shows that the SVM with the asymmetric hinge
loss (4) is essentially a quantile estimator. This result
has been hinted many times (e.g. Grandvalet et al.,
2006), but to the best of our knowledge, not proven
rigorously.

3 Dual Formulation

Similar to the case of standard SVM, we can rewrite
(3) as a constrained optimization problem:

min
λ

2
‖w‖2 +

n∑
i=1

cτ
yi

ξi (7)

s.t. ξi ≥ 0, ξi ≥ 1− yiw
>xi, ∀i

allows us to derive its dual as:

min D(α) :=
1
2λ

α>Qα−α>1 (8)

s.t. 0 ≤ αi ≤ cτ
yi

, ∀i.

0 2 4 6 8

0

2

4

6

8

-1
.0
00

0.
00
0

1.
00
0

τ= 0.1

0 2 4 6 8

0

2

4

6

8

-1
.00

0

0.0
00

1.0
00

τ= 0.5

0 2 4 6 8

0

2

4

6

8

-1.0
00

0.0
001.0
00

τ= 0.9

Figure 1: The effect of τ on the decision boundary of a binary quantile classifier on synthetically generated two
dimensional data. When τ = 1

2 (middle) the cost of misclassification is symmetric and therefore the resulting
classifier is well balanced. For low values of τ (left), the classifier classifies all blue squares correctly even at the
cost of misclassifying a few red dots. A converse effect is observed for high values of τ (right).

where 1 is a vector of all ones and Qij = yiyjx
>
i xj .

Let ατ denote the optimal solution to (8) for a given
τ . Then the primal solution wτ can be recovered via
the primal-dual connection:

wτ =
1
λ

n∑
i=1

ατ
i yixi. (9)

The dual problem is a quadratic problem with box
constrains, which can be solved by various optimiza-
tion techniques (see e.g., Byrd et al., 1995; Moré and
Toraldo, 1989)

Define ∇iD(ατ) as the ith element of the gradient:

∇D(ατ) =
1
λ

Qατ − 1; (10)

and let L, M, andR index entries of the dual solution
ατ such that

L := {i : ∇iD(ατ) < 0} = {i : yiw
τ>xi < 1},

M := {i : ∇iD(ατ) = 0} = {i : yiw
τ>xi = 1}, (11)

R := {i : ∇iD(ατ) > 0} = {i : yiw
τ>xi > 1},

where the connection with the primal parameter wτ

is made via (9). It is easy to find that L, M, and R
in fact index the data xi which are in error, on the
margin, and well-classified, respectively. Furthermore,
it follows from the KKT conditions (see Appendix B)
that the optimal dual solution ατ satisfies

ατ
i =


cτ
yi

if i ∈ L,

[0, cτ
yi

] if i ∈M,

0 if i ∈ R .

(12)

Given index sets, I and J , let ατ
I be a vector of ατ

i

with i ∈ I and QI J a submatrix of Q taking entries
Qij with i ∈ I and j ∈ J . Then, we can define L+1 :=
L∩{i : yi = +1} and L−1 := L\L+1, and use (12) to

decompose ατ into [ατ>
L+

, ατ>
L− , ατ>

M , 0>]>, where
0 is a vector of all zeros. Using (10), we can get a
decomposed view of ∇D(ατ):

[∇LD(ατ)>,∇MD(ατ)>,∇RD(ατ)>]> := (13)

1
λ

 cτ
+1QLL+11+cτ

−1QLL−11+QLMατ
M

cτ
+1QML+11+cτ

−1QML−11+QMMατ
M

cτ
+1QRL+11+cτ

−1QRL−11+QRMατ
M

− 1

Since ∇MD(ατ) = 0 by the definition (11) of M, we
can use (13) to get a closed form representation of ατ

M:

ατ
M = Q−1

MM[λ1− cτ
+1QML+11− cτ

−1QML−11]. (14)

Note that Q−1
MM does not exist when QMM is rank

deficient. Nevertheless, standard optimization tech-
niques, such as the conjugate gradient method (No-
cedal and Wright, 1999), should always recover ατ

M as
a solution to a linear system.

An important observation from (4) is that the upper
bound cτ

yi
only changes linearly with τ : As we increase

the quantile parameter τ to τ + ε, we have

cτ+ε
yi

= cτ
yi
− yi ∆cε, where ∆cε :=

2ε

n
. (15)

Assume an ε deviation from τ does not change the in-
dex sets defined in (11), then (14) still holds for ατ+ε

M .
Therefore, we can use (15) to expand it as:

ατ+ε
M = ατ

M + ∆cε ∆ατ
M, where (16)

∆ατ
M := Q−1

MM[QML+11−QML−11].

The optimality condition (12) then allows us to recover
ατ+ε from ατ via:

ατ+ε
L+1

ατ+ε
L−1

ατ+ε
M

ατ+ε
R

 =


ατ
L+1
−∆cε

ατ
L−1

+ ∆cε

ατ
M + ∆cε ∆ατ

M
0

 . (17)

Proposition 3.1 For the dual of the quantile clas-
sification problem (8), there exists a set of quantiles
{τk}Kk=1, τk ∈ [0, 1], such that we can find a solu-
tion path ατ that is continuous in τ , and linear in
τ,∀τ ∈ (τk, τk+1).

See Appendix C for the proof of Proposition 3.1.

Proposition 3.1 shows that ατ is piecewise linear in
τ . Using (13) and (17), we can see that the gradient
∇D(ατ) has the same property. In particular, ∀ε ∈
(0, τk+1 − τk), we have ∇MD(α(τk+ε)) = 0 and

∇ND(α(τk+ε)) = ∇ND(ατk)

+
∆cε

λ
[QN L−11−QN L+11 + QN M ∆ατk

M], (18)

whereM is the margin index set associated with ατk+ε

and N := L∪R is the complement set ofM.

4 Finding the Dual Solution Path

It follows from Proposition 3.1 that if we can find a set
of quantile parameters: K := {τk}Kk=1, that divide the
interval [0, 1] into regions so that within these regions
ατ changes linearly with τ , i.e., the index sets: L,M,
and R remain fixed. Then we can quickly recover ατ

for any value of τ from a ατk via (17). In what follows
we present our algorithm (Algorithm 1) that is able to
identify all τk, which we call kinks.

4.1 The Algorithm

Our goal is to construct a sorted list of kinks {τk}Kk=1,
at which one of the following events happens:

1. Elements in N , i.e., not inM, move to M,
2. Elements inM move to L,
3. Elements inM move to R.

To this end, our algorithm starts with τ = 0, and then
moves forward toward τ = 1 to identify all values of τ
that alter the membership of an index.

Given a quantile parameter τk, its corresponding op-
timal dual solution ατk , and the associated index sets
L,M, and R, we know from the definition (11) that
∇iD(ατk) 6= 0, ∀i ∈ N . This means that Event
1 happens when an ε > 0 deviation from τk just
turns a nonzero element of the gradient to zero, i.e.,
∇iD(ατk+ε) = 0, i ∈ N . We immediately see from
(18) that the deviation that leads to Event 1 is:

εtoM = min{εi : εi > 0}i∈N , where (19)

εi :=
n

2

[
−λ∇iD(ατk)

QiL−11−QiL+11+QiM ∆α
τk
M

]
.

We know from the optimality condition (12) that an
index i from M is just about to move into L (Event
2), when α

(τk+ε)
i = c

(τk+ε)
yi . Expanding both sides of

the last equation, using (15) and (16), shows that ε
satisfies

ατk
i +

2ε

n
∆ατk

i = cτk
yi
− yi

2ε

n
, i ∈M . (20)

Here care must be taken when ατk
i = cτk

yi
, i ∈ M,

i.e., ατk
i is on the boundary between L and M. In

this case (20) can be reduced to ε∆ατk
i = −εyi; and if

∆ατk
i > −yi, then an arbitrarily small ε > 0 will cause

α
(τk+ε)
i > c

(τk+ε)
yi , i.e., pushing the index i out toward

L. Taking this boundary case into consideration, we
determine a candidate ε using the following criteria:

εtoL = min{εi : εi ≥ 0}i∈M, where (21)

εi :=


0 if ατk

i = cτk
yi

& ∆ατk
i > −yi,

+∞ if ατk
i = cτk

yi
& ∆ατk

i ≤ −yi,
n
2 (cτk

yi
− ατk

i)/(∆ατk
i + yi) otherwise.

If εtoL = 0, we treat τk as a kink, and update the
index sets accordingly:

M←M\{itoL}, L ← L∪{itoL}, (22)

where itoL = {i : i ∈M, εi = εtoL},

such that the updated index sets coincide with the
index sets of the optimal dual solution ατ ,∀τ ∈
(τk, τk+1), τk+1 being the next kink.

Similarly, to detect Event 3, we find ε that satisfies
ατk+ε

i = 0, ∀i ∈ M, and isolate ατk
i = 0 case for

special treatment:

εtoR = min{εi : εi ≥ 0}i∈M, where (23)

εi :=


0 if ατk

i = 0 & ∆ατk
i < 0,

+∞ if ατk
i = 0 & ∆ατk

i ≥ 0,
n
2 (−ατk

i)/(∆ατk
i) otherwise.

In the case where εtoR = 0, we should recognize τk as
a kink, and shift the corresponding index from M to
R. See Algorithm 1 for detailed implementation.

4.2 Complexity Analysis

The time complexity of Algorithm 1 is dominated by
the calculation of ∆ατ

M (16), which involves solving
a linear system of size |M |. A standard solver such
as the conjugate gradient method converges to the so-
lution of such a linear system in at most O(r|M |2)
time, r being the rank of QMM. Having computed
∆ατ

M, the main cost of finding εtoM (19) is the
O(n| N |) cost of matrix-vector multiplication; and the

Algorithm 1 Dual Path Finding (DPF)

1: input data {(xi, yi)}ni=1 and regularizer λ
2: output sorted list of kinks τk, corresponding

dual solution ατk and index sets.
3: α0 = argmin D(α), s.t. 0 ≤ αi ≤ c0

yi
, ∀i

4: construct L, M and R for α0 via (11)
5: calculate ∇D(α0) and ∆α0

M
6: τ ← 0 and K ← {(0, α0

M,L,M)}
7: while τ < 1 do
8: ε← min{εtoM(19), εtoL(21), εtoR(23)}
9: update ∇D(ατ) to ∇D(ατ+ε) via (18)

10: update ατ to ατ+ε via (17)
11: adjust index sets according to the event that ε trig-

gers, e.g., if ε = εtoL, apply (22)
12: τ ← τ + ε
13: calculate ∆ατ

M
14: if ε = 0 then
15: overwrite the last element of K with

(τ, ατ
M,L,M) (cf. discussion in Sec. 4.1)

16: else
17: K ← K∪{(τ, ατ

M,L,M)}
18: end if
19: end while
20: return K

time required to find εtoL (21) and εtoR (23) is lin-
ear in |M |. Once we find all the kinks, we can re-
cover ατ for any τ ∈ [0, 1] via (17) in O(n) time
by noting that ατ

M = ατk

M + ∆c(τ−τk)∆ατk

M, where
∆ατk

M = (ατk+1
M − ατk

M)/∆c(τk+1−τk) and M is associ-
ated with ατk .

In term of memory requirement, saving kink informa-
tion at Step 17 of Algorithm 1 requires O(|M |) space
for ατ

M; and after the initial O(n) cost of saving the
entire L andM sets, we only need to keep track of the
indices that move into or out of the two sets to recover
them from their initial copy. We use the Q matrix
in our calculation, e.g., (19). The Q matrix is usu-
ally dense; and caching it requires O(n2) space. This
can be prohibitively expensive. However, noticing that
Q = (Y X)(X>Y), where Y is a diagonal matrix with
labels yi on its diagonal and X = [x>1 , · · · ,x>n] ∈ Rn×d

is a feature matrix, we can instead cache Y X, which
is often very sparse. But, constructing Q from Y X
at each step can be computationally expensive. For-
tunately, since only the product of Q with a vector
v is needed for our calculation, we can calculate it
as Qv = Y X(X>Y v) to leverage fast sparse matrix-
vector product, and hence reduce the computational
overhead. Although we do not have a formal bound
on the size of | K |, our experiments show that it never
exceeds O(n log n).

5 Related Work

Perhaps the closest in spirit to our paper is the work
of Hastie et al. (2004), who studied the influence of the

regularization constant λ on the generalization perfor-
mance of a binary SVM. They showed that solutions
to a SVM training problem is a piecewise linear func-
tion of λ. Based on this observation, they proposed
an algorithm that finds SVM solutions for all values
of λ. The regularization constant controls the balance
between the regularization term and the empirical risk
in the objective function (1) to prevent a classifier from
overfitting the training data. Therefore, it plays an im-
portant role in improving prediction accuracy on un-
seen data. The effect of τ on the behaviour of a SVM
classifier is fundamentally different from that of λ in a
sense that τ determines the trade-off between the true
positive rate (TPR) and the true negative rate (TNR)
of a classifier by assigning asymmetric costs to false
positive and false negative predictions. In applications
where an appropriate balance between TPR and TNR
is considered to be more important than prediction
accuracy, e.g., in medical diagnosis, using a quantile
classifier (3) with adjustable τ may be more desirable.

Although SVM classifiers with built-in asymmetric
misclassification costs have been applied to classifica-
tion problems that are characterized by highly skewed
training data and to problems arisen from medical di-
agnosis (Veropoulos et al., 1999; Morik et al., 1999;
Grandvalet et al., 2006), no rigorous statistical prop-
erties were established. The misclassification cost is
commonly chosen to reflect label proportions of train-
ing data or the ratio of false positive cost to false nega-
tive cost. From the optimization viewpoint training a
SVM with asymmetric costs is very similar to the stan-
dard SVM training problem. Hence, optimization soft-
ware such as SVMperf (Joachims, 2006) and LIBLINEAR
(Hsieh et al., 2008) can be used for training. A com-
mon strategy to train a SVM classifier with multiple
settings of asymmetric costs is to reassign costs, and
retrain. Our DPF method exploits the piecewise linear-
ity property of SVM dual solution, and finds the entire
solution path in one shot. This allows us to quickly
construct a classifier for any choice of misclassification
costs in the post-training phrase.

Quantile regression as an important statistical tool
(Koenker and Bassett, 1978) has recently received at-
tention from machine learning community. Takeuchi
et al. (2006) showed that a quantile regression problem
can be cast as a regularized risk minimization problem:

min
λ

2
‖w‖2 +

n∑
i=1

max(τ(yi − fi), (1− τ)(fi − yi)),

where τ ∈ (0, 1) and fi = w>xi. This regression prob-
lem is very reminiscent of the quantile classification
problem (3) we considered in this paper. In fact, by
following the same principle as discussed in Section 4
we can extend our DPF method to find quantile regres-

Table 1: Datasets and regularization constants λ.
Dataset Tr./Val./Te. Dim. Spa. λ

Diabetes 668/50/50 8 13.4 % 10−3

Spam 2500/2500/2500 48784 99.7 % 10−6

Splice 104/104/104 804 75.0 % 10−2

sion solutions for all choices of τ .

6 Experiments

We now evaluate the generalization performance of a
quantile classifier for various values of τ , and com-
pare the time complexity of our DPF method (Algo-
rithm 1) with a state-of-the-art linear SVM classifier:
LIBLINEAR version 1.32 (Hsieh et al., 2008). We used
the LBFGSB quasi-Newton method of Byrd et al. (1995)
to solve the dual problem at Step 3 of the Algorithm
1; and the conjugate gradient method was applied to
find ∆ατ

M at Step 13. We ran DPF without caching
the Q matrix.

Our experiments used three datasets: the UCI
diabetes dataset (Asuncion and Newman, 2007), the
spam dataset for task A of the ECML/PKDD 2006 dis-
covery challenge,2 and 3 × 104 worm splice samples
from a biological dataset provided by Sören Sonnen-
burg.3 Table 1 summarizes the datasets and our pa-
rameter settings. In all experiments the regularization
parameter was chosen from the set 10{−6,−5,··· ,−1},
such that a SVM classifier with symmetric misclassi-
fication costs achieves the highest prediction accuracy
on the validation set, while generalization performance
is reported on the test set. We included a bias b in the
decision function: sign f(x) := w>x + b by using the
following strategy: xi ← [x>i , 1]>,w ← [w>, b]>.

All experiments were carried out on a Linux ma-
chine with dual 2.4 GHz Intel Core 2 processors
and 4GB of RAM. Our Python code is available
for download from http://users.rsise.anu.edu.
au/∼jinyu/Code/DPF.tar.gz.

Our first set of experiments shows the influence of the
quantile τ on the behaviour of a classifier. As ατ

changes, the generalization performance of the quan-
tile classifier in terms of TPR (a.k.a. sensitivity) and
TNR (a.k.a. specificity) changes accordingly. Figure 2
shows that TPR decreases (but not necessarily strictly
decreases) with τ , while TNR has an opposite trend.
This is because increasing τ corresponds to increasing
the false positive cost C+ (cf. Lemma 2.2; see also

2The original evaluation set (http://www.
ecmlpkdd2006.org/challenge.html) was equally di-
vided into training, validation, and test set.

3http://www.fml.tuebingen.mpg.de/raetsch/
projects/lsmkl

Figure 1, right), which leads the classifier to recognize
more and more instances as negative samples at an ex-
pense of a decreasing TPR. At τ = 0 (resp. τ = 1),
the classifier simply resorts to labeling all the points
as + (resp. −). Therefore at these extreme points, the
prediction accuracy depends on the proportion of the
positive and negative samples in the dataset. For in-
stance, on the splice dataset where 5.5% of the data
is labeled as +, we obtain 5.5% accuracy at τ = 0.
For intermediate values of τ the prediction accuracy
depends on cleanliness of the dataset measured as the
total percentage of the data which lies at the margin.
For instance, on the spam dataset for τ = 0, around
0.28% of the training samples were at the margin. This
number stabilized to about 0.32% for τ ∈ (0.0, 0.9],
leading to very stable classification accuracy, as can
be seen from Figure 2.

Clearly, finding the solution for any value of τ ∈ [0, 1]
is more time consuming than finding the solution for
a fixed τ . To investigate the excess time spent in this
endeavor, we compare the time complexity of our DFP
algorithm with one single run of LIBLINEAR, a state
of the art linear SVM training algorithm which can
handle asymmetric classification costs.4 Our second
comparator is the LBFGSB algorithm, which can also be
used to train a linear SVM for any fixed value of τ . The
core functions of LIBLINEAR and LBFGSB are imple-
mented in C++ and Fortran, respectively (We called
these functions through their Python wrappers.), while
our DPF algorithm is implemented in Python, which is
inherently 2 to 5 times slower. Therefore, our CPU
time comparison is in favor of LIBLINEAR and LBFGSB.

Recall that our DFP algorithm invokes any linear SVM
solver to find the initial solution,5 and then finds the
solution path by constructing K. We compute the ra-
tio of the CPU time spent on constructing K to the
average time required by LIBLINEAR to find a solu-
tion for a given τ . The averaging is done by running
LIBLINEAR (resp. LBFGSB) to compute the solution for
τ = 0.1, 0.2, . . . , 0.9. As shown in Table 2 on the
diabetes dataset DPF finds about 2×103 kinks, spend-
ing 2.8×103 (resp. 28) times of the average LIBLINEAR
(resp. LBFGSB) running time. The running time of DPF
increases to 3.6× 103 (resp. 69) times of that required
by a typical run of LIBLINEAR (resp. LBFGSB) on the
splice dataset where it finds over 2× 104 kinks. We
found empirically that the number of kinks, | K |, in-
creases with the size of training set, n, but is bounded
by n log(n).

4We called LIBLINEAR with input arguments ’-s 3 -B 1
-e 1e-3 -w1 (2-2τ) -w-1 (2τ) -c 1/(nλ)’.

5Although in theory this is true, in practice we find that
in the extreme case of τ = 0, LIBLINEAR’s performance de-
grades dramatically. Therefore, we exclusively use LBFGSB
as an initial solver

Table 2: Average CPU seconds for recovering a solution from kink information (Recover) contrasted with the
average time of running LIBLINEAR and LBFGSB to find ατ for τ ∈ {0.1, 0.2, · · · , 0.9}. We also show the time
required by DPF for path-finding. The final column | K | lists the number of kinks.

CPU Seconds
Dataset Recover LIBLINEAR LBFGSB DPF | K |
Diabetes 0.003 0.004 0.401 11.104 1886
Spam 0.012 0.467 11.102 1106.413 6660
Splice 0.103 0.363 19.155 1315.878 22611

It is not surprising that DFP is computationally more
expensive than a single run of LIBLINEAR and LBFGSB.
But as can be seen in Table 2, after one run of DFP,
we can recover the solution for any τ efficiently. For
instance, on the spam dataset, this only requires 0.012
seconds, compared to 0.467 seconds (resp. 11.102 sec-
onds) for a single run of LIBLINEAR (resp. LBFGSB).

7 Conclusions and Outlook

In this paper we first show that minimizing the asym-
metric hinge loss will lead to a quantile classifier which
is risk optimal for asymmetric misclassification costs.
We then present an algorithm which finds the entire so-
lution path of a quantile classifier in a principled way.
Given the entire solution path, we can construct a clas-
sifier for any given asymmetric classification cost very
efficiently. Admittedly, our numerical experiments are
preliminary. Running conjugate gradient repeatedly
to find ατ

M is the main bottleneck in our DFP al-
gorithm. We are exploring decomposition methods,
which can take advantage of warm starts to reduce
the computational burden. Future work includes ex-
tension of our algorithm to quantile regression and to
multi-class classification problems.

Acknowledgements

NICTA is funded by the Australian Government’s
Backing Australia’s Ability and the Centre of Excel-
lence programs. This work is also supported by the
IST Program of the European Community, under the
FP7 Network of Excellence, ICT-216886-NOE.

References

A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited
memory algorithm for bound constrained optimiza-
tion. SIAM Journal on Scientific Computing, 16(5):
1190–1208, 1995.

A. Conn, N. Gould, and P. Toint. Global convergence
of a class of trust region algorithms for optimization

with simple bounds. SIAM journal on numerical
analysis, 25(2):433–460, 1988.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification and Scene Analysis. John Wiley and
Sons, New York, 2001. Second edition.

Y. Grandvalet, J. Marithoz, and S. Bengio. A prob-
abilistic interpretation of SVMs with an applica-
tion to unbalanced classification. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neu-
ral Information Processing Systems 18, pages 467–
474, Cambride, MA, 2006. MIT Press.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The
entire regularization path for the support vector ma-
chine. JMLR, 5:1391–1415, 2004.

C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi,
and S. Sundararajan. A dual coordinate descent
method for large-scale linear SVM. In W. Cohen,
A. McCallum, and S. Roweis, editors, ICML, pages
408–415. ACM, 2008.

T. Joachims. Training linear SVMs in linear time. In
Proc. ACM Conf. Knowledge Discovery and Data
Mining (KDD). ACM, 2006.

R. Koenker and G. Bassett. Regression quantiles.
Econometrica, 46(1):33–50, 1978.

Y. Lin. Support vector machines and the bayes rule in
classification. Data Mining and Knowledge Discov-
ery, 6(3):259–275, 2002.

J. J. Moré and G. Toraldo. Algorithms for bound
constrained quadratic programming problems. Nu-
merische Mathematik, 55(4):377–400, 1989.

K. Morik, P. Brockhausen, and T. Joachims. Combin-
ing statistical learning with a knowledge-based ap-
proach - a case study in intensive care monitoring. In
Proc. Intl. Conf. Machine Learning, pages 268–277.
Morgan Kaufmann, San Francisco, CA, 1999.

J. Nocedal and S. J. Wright. Numerical Optimization.
Springer Series in Operations Research. Springer,
1999.

J. Platt. Probabilities for SV machines. In A. J. Smola,
P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages
61–73, Cambridge, MA, 2000. MIT Press.

P. Sollich. Bayesian methods for support vector ma-

0.0 0.2 0.4 0.6 0.8 1.0
τ

0.0

0.2

0.4

0.6

0.8

1.0
P
e
rf

o
rm

a
n
ce

diabetes

tpr
tnr
accuracy

0.0 0.2 0.4 0.6 0.8 1.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
ce

spam

tpr
tnr
accuracy

0.0 0.2 0.4 0.6 0.8 1.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
ce

splice

tpr
tnr
accuracy

Figure 2: Our DFP algorithm is able to recover the solution for all values of τ , which allows us to plot the true
positive rate, true negative rate, and accuracy on the test dataset.

chines: Evidence and predictive class probabilities.
Machine Learning, 46:21–52, 2002.

I. Takeuchi, Q. V. Le, T. Sears, and A. J. Smola.
Nonparametric quantile estimation. J. Mach. Learn.
Res., 7, 2006.

K. Veropoulos, C. Campbell, and N. Cristianini. Con-
trolling the sensitivity of support vector machines.
In Proceedings of IJCAI Workshop Support Vector
Machines, pages 55–60, 1999.

A Proof of Lemma 2.2

Proof Let Lx(f) be the risk conditioned on X = x:

Lx(f) = E [((1 + Y)/2− τY)(1− Y f(X))+|X = x] =
τ(1− η(x))(1 + f(x))+ + (1− τ)η(x)(1− f(x))+,

then we only need to show that f∗(x) minimizes Lx(f)
for any fixed x.

We first show that if η(x) < τ then the minimizer f∗

satisfies f∗(x) = −1. Suppose not, that is, there exists
x0 such that η(x0) < τ but f∗(x0) 6= −1. Let f̃(x) be
the same as f∗(x) except that f̃(x0) = −1. Using the
shorthand f∗(x0) = f∗, f̃(x0) = f̃ and η(x0) = η, we
obtain

Lx0(f
∗) = τ(1− η)(1 + f∗)+ + (1− τ)η(1− f∗)+
≥ (1− τ)η[(1− f∗)+ + (1 + f∗)+]

≥ 2(1− τ)η = Lx0(f̃),

where the last inequality comes from Jensen’s in-
equality since (.)+ is a convex function. For the first
inequality the bound is achieved only if f∗ ≤ −1; and
for the second inequality the bound is achieved only
if f∗ ∈ [−1, 1]. Thus when f∗ 6= −1 it leads to a
contradiction. A symmetric argument can be used to
show that if η(x) > τ then f∗(x) = 1.

B KKT Optimality Conditions

The Lagrangian of the constrained optimization prob-
lem (8) takes the form of

L(α,β,γ) := D(α)−
n∑

i=1

βiαi +
n∑

i=1

γi(αi − cτ
yi

),

where βi and γi are non-negative Lagrange multipli-
ers. The KKT conditions (Nocedal and Wright, 1999)
suggest that at optimum (ατ ,β∗,γ∗) we have

∇iL(ατ ,β∗,γ∗) = ∇iD(ατ)− β∗i + γ∗i = 0,

β∗i ατ
i = 0,

γ∗i (ατ
i − cτ

yi
) = 0,

0 ≤ ατ
i ≤ cτ

yi
, β∗i ≥ 0, γ∗i ≥ 0, ∀i.

Simple analysis reveals that the above KKT optimality
conditions constrain ατ to take the form given in (12).

C Proof of Proposition 3.1

Proof Suppose the index sets (11) of ατ remain
unchanged for all τ ∈ (τk, τk+1). The linearity of
ατ in (τk, τk+1) follows directly from (17). Let
ε = τk+1 − τ , compute ατ+ε from ατ via (17), and
let τk+1 be chosen in such a way that the membership
of an index i changes at ατ+ε. This can only happen
when ατ+ε

i takes its boundary values: 0 or cτ+ε
yi

with
∇iD(ατ+ε) = 0, which means either an i ∈ M is
about to leave M, or an i /∈ M just moves into
M, where M is the margin index set of ατ . We
now show that ατ+ε is optimal. To show this, we
only need to show ατ+ε

i is optimal. By construction
∇iD(ατ+ε) = 0, and since ατ+ε

i only takes 0 or cτ+ε
yi

,
the KKT optimality conditions (Appendix B) can be
easily satisfied with appropriate choices of β∗i and
γ∗i , implying that ατ+ε

i is optimal. Hence, ατ+ε is
optimal. Therefore, we can set ατk+1 = ατ+ε, and
use it as a starting point to construct subsequent
dual solution path via (17). The dual solution path
explored in this way is clearly continuous in τ .

