
Counting Belief Propagation

Kristian Kersting
Fraunhofer IAIS

Sankt Augustin, Germany

Babak Ahmadi
Fraunhofer IAIS

Sankt Augustin, Germany

Sriraam Natarajan
University of Wisconsin

Madison, USA

Abstract

A major benefit of graphical models is that most
knowledge is captured in the model structure.
Many models, however, produce inference prob-
lems with a lot of symmetries not reflected in
the graphical structure and hence not exploitable
by efficient inference techniques such as belief
propagation (BP). In this paper, we present a new
and simple BP algorithm, called counting BP,
that exploits such additional symmetries. Start-
ing from a given factor graph, counting BP first
constructs a compressed factor graph of clustern-
odes and clusterfactors, corresponding to sets of
nodes and factors that are indistinguishable given
the evidence. Then it runs a modified BP algo-
rithm on the compressed graph that is equiva-
lent to running BP on the original factor graph.
Our experiments show that counting BP is appli-
cable to a variety of important AI tasks such as
(dynamic) relational models and boolean model
counting, and that significant efficiency gains are
obtainable, often by orders of magnitude.

1 Introduction

Message passing algorithms, in particular Belief Propaga-
tion (BP), have been very successful in efficiently com-
puting interesting properties of probability distributions.
Many graphical models, however, produce inference prob-
lems with a lot of symmetries not reflected in the graphical
structure, and hence not exploited by BP. One of the most
prominent examples are first-order and relational proba-
bilistic models such as Markov logic networks [14]. Be-
sides relational probabilistic models, however, there are
also traditional, i.e., propositional probabilistic models that
often produce inference problems with a lot of symme-
tries. In this work, we will demonstrate this for the classical
model counting problem of computing the number of solu-
tions of a given propositional formula. This problem vastly

generalizes the NP-complete problem of propositional sat-
isfiability, and hence is both highly useful and extremely
expensive to solve in practice.

In this context, the present work makes two contributions.
The key contribution is the introduction of counting BP,
which is a BP approach that exploits additional symme-
tries and hence often scales much better than standard BP.
Its underlying idea is rather simple: group together nodes
and factors into clusternodes and clusterfeatures that are
indistinguishable in terms of messages received and sent
given the evidence. Exploiting this symmetry present in
the probabilistic model makes it often possible to greatly
compress the factor graph. More importantly, the com-
pressed graph can be used to perform a modified BP yield-
ing the same results as BP applied to the uncompressed fac-
tor graph. The second contribution is that we show that
such symmetries are actually encountered in challenging
AI tasks. Specifically, we apply counting BP to inference
for dynamic relational probabilistic models and to model
counting for Boolean formulas. As our experimental eval-
uation will show, in both application domains significant
efficiency gains are obtainable, often by orders of magni-
tude.

We proceed as follows. We start of by discussing some re-
lated work. We briefly review standard BP in Section 3. In
Section 4, we introduce counting BP. In Sections 5 and 6,
we apply CBP to approximate inference for dynamic rela-
tional models and to model counting of Boolean formulas.
Finally, we conclude and outline future research directions.

2 Related Work

The closest work to CBP is the recent work by Singla
and Domingos [17]. Actually, an investigation of their ap-
proach was the seed that grew into our proposal we present
in this paper. Singla and Domingos’s lifted first-order be-
lief propagation (LFOBP) builds upon [7] and also groups
random variables, i.e., nodes that send and receive identi-
cal messages. CBP, however, differs from LFOBP in two
important counts. First, CBP is conceptually easier than

LFOBP. This is remarkable because efficient inference ap-
proaches for first-order and relational probabilistic models
are typically rather complex. Second, LFOBP requires as
input the specification of the probabilistic model in first-
order logical format. Only nodes over the same predicate
can be grouped together to form so-called supernodes. That
means LFOBP coincides with standard BP for proposi-
tional MLNs, i.e., MLNs involving propositional variables
only. The reason is that propositions are predicates with ar-
ity 0 so that the supernodes are singletons. Hence, no nodes
and no features are grouped together. In contrast, CBP can
directly be applied to any factor graph over finite random
variables. In this sense, CBP is a generalization of LFOBP.

Sen et al. [16] recently presented another “clustered” in-
ference approach based on bisimulation. Like CBP, which
can also be viewed as running a bisimulation-like algorithm
on the factor graph, Sen et al.’s approach also does not re-
quire a first-order logical specification. In contrast to CBP,
it is guaranteed to converge but is also much more com-
plex. Its efficiency in dynamic relational domains, in which
variables easily become correlated over time by virtue of
sharing common influences in the past, is unclear and its
evaluation is an interesting future work.

Others such as Poole [13], Braz et al. [3, 4], and Milch et
al. [9] have developed lifted versions of the variable elim-
ination algorithm. They typically also employ a count-
ing elimination operator that is equivalent to counting in-
distinguishable random variables and then summing them
out immediately. These exact inference approaches are ex-
tremely complex, so far do not easily scale to realistic do-
mains, and hence have only been applied to rather small
artificial problems. Again, as for LFOBP, a first-order log-
ical specification of the model is required.

3 Belief Propagation

Let X = (X1, X2, . . . , Xn) be a set of n discrete-valued
random variables and let xi represent the possible realiza-
tions of random variable Xi. Graphical models compactly
represent a joint distribution over X as a product of fac-
tors [12], i.e.,

P (X = x) =
1
Z

∏
k
fk(xk) . (1)

Here, each factor fk is a non-negative function of a sub-
set of the variables xk, and Z is a normalization constant.
As long as P (X = x) > 0 for all joint configurations x,
the distribution can be equivalently represented as a log-
linear model: P (X = x) = 1

Z exp [
∑
i wi · gi(x)], where

the factors gi(x) are arbitrary functions of (a subset of) the
configuration x.

Graphical models can be represented as factor graphs. A
factor graph, as shown in Fig 1, is a bipartite graph that
expresses the factorization structure in Eq. (1). It has a

A

B

f
1

A B f
1

True True 1.2

True False 1.4

False True 2.0

False False 0.4

B

C

f
2

C B f
2

True True 1.2

True False 1.4

False True 2.0

False False 0.4

Figure 1: An example for a factor graph with associated
potentials. Circles denote variables (binary in this case),
squares denote factors.

variable node (denoted as a circle) for each variable Xi,
a factor node (denoted as a square) for each fk, with an
edge connecting variable node i to factor node k if and
only if Xi is an argument of fk. We will consider one fac-
tor fi(x) = exp [wi · gi(x)] per feature gi(x), i.e., we will
not aggregate factors over the same variables into a single
factor.

An important inference task is to compute the conditional
probability of variables given the values of some others, the
evidence, by summing out the remaining variables. The be-
lief propagation (BP) algorithm is an efficient way to solve
this problem that is exact when the factor graph is a tree, but
only approximate when the factor graph has cycles. One
should note that the problem of computing marginal prob-
ability functions is in general hard (#P-complete).

We will now describe the BP algorithm in terms of opera-
tions on a factor graph. The computed marginal probability
functions will be exact if the factor graph has no cycles, but
the BP algorithm is still well-defined when the factor graph
does have cycles. Although this loopy belief propagation
has no guarantees of convergence or of giving the correct
result, in practice it often does, and can be much more effi-
cient than other methods [11].

To define the BP algorithm, we first introduce messages
between variable nodes and their neighboring factor nodes
and vice versa. The message from a variable X to a factor
f is

µX→f (x) =
∏

h∈nb(X)\{f}

µh→X(x) (2)

where nb(X) is the set of factors X appears in. The mes-
sage from a factor to a variable is

µf→X(x) =
∑
¬{X}

f(x)
∏

Y ∈nb(f)\{X}

µY→f (y)

 (3)

where nb(f) are the arguments of f , and the sum is over
all of these except X , denoted as ¬{X}. The messages are
usually initialized to 1.

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

A,C

B

f1,f2

Figure 2: From left to right, the steps of CFG compressing the factor graph in Fig. 1 assuming no evidence. The
shaded/colored small circles and squares denote the groups and signatures produced running CFG. On the right-hand
side, the resulting compressed factor graph is shown. For details we refer to Section 4.

Now, the unnormalized belief of each variable Xi can be
computed from the equation

bi(xi) =
∏

f∈nb(Xi)

µf→Xi(xi) (4)

Evidence is incorporated by setting f(x) = 0 for states x
that are incompatible with it. Different schedules may be
used for message-passing. We will touch upon this issue
later again.

4 Counting Belief Propagation

Although already quite efficient, many graphical models
produce factor graphs with a lot of symmetries not reflected
in the graphical structure. Reconsider the factor graph in
Fig. 1. The associated potentials are identical. In other
words, although the factors involved are different on the
surface, they actually share quite a lot of information. Stan-
dard BP cannot make use of this information. In contrast,
counting BP – which we will introduce now – can make
use of it and speed up inference by orders of magnitude.

Counting BP performs two steps: Given a factor graph G,
it first computes a compressed factor graph G and then runs
a modified BP on G. We will now discuss each step in turn
using fraktur letters such as G, X, and f to denote com-
pressed graphs, nodes, and factors.

Step 1 – Compressing the Factor Graph: Essentially, we
simulate BP keeping track of which nodes and factors send
the same messages, and group nodes and factors together
correspondingly.

Let G be a given factor graph with variable and factor
nodes. Initially, all variable nodes fall into three groups
(one or two of these may be empty), namely known true,
known false, and unknown. For ease of explanation, we
will represent the groups by colored/shaded circles, say,
magents/white, green/gray, and red/black. All factor nodes
with the same associated potentials also fall into one group
represented by colored/shaded squares. For the factor

graph in Fig. 1 the situation is depicted in Fig. 2. As shown
on the left-hand side, assuming no evidence, all variable
nodes are unknown, i.e., red/dark. Now, each variable node
sends a message to its neighboring factor nodes saying “I
am of color/shade red/black”. A factor node sorts the in-
coming colors/shades into a vector according to the order
the variables appear in its arguments. The last entry of the
vector is the factor node’s own color/shade, represented as
light blue/gray square in Fig. 2. This color/shade signa-
ture is sent back to the neighboring variables nodes, essen-
tially saying “I have communicated with these nodes”. The
variable nodes stack the incoming signatures together and,
hence, form unique signatures of their one-step message
history. Variable nodes with the same stacked signatures,
i.e., message history can be grouped together. To indicate
this, we assign a new color/shade to each group. In our run-
ning example, only variable node B changes its color/shade
from red/black to yellow/gray. The factors are grouped in
a similar fashion based on the incoming color/shade signa-
tures of neighboring nodes. Finally, we iterate the process.
As the effect of the evidence propagates through the factor
graph, more groups are created. The process stops when no
new colors/shades are created anymore.

The final compressed factor graph G is constructed by
grouping all nodes with the same color/shade into so-called
clusternodes and all factors with the same color/shade sig-
natures into so-called clusterfactors. In our case, variable
nodes A, C and factor nodes f1, f2 are grouped together, see
the right hand side of Fig. 2. Clusternodes (resp. clusterfac-
tors) are sets of nodes (resp. factors) that send and receive
the same messages at each step of carrying out BP on G. It
is clear that they form a partition of the nodes in G.

Algorithm 1 summarizes our approach for computing the
compressed factor graph G, on which we can run BP with
minor modifications.

Step 2 – BP on the Compressed Factor Graph: Recall
that the basic idea is to simulate BP carried out on G on
G. An edge from a clusterfactor f to a cluster node Xi in G
essentially represents multiple edges in G. Let c(f,Xi) be

Algorithm 1: CFG – CompressFactorGraph
Data: A factor Graph G with variable nodes X and

factors f , Evidence E
Result: Compressed Graph G with clustervariable nodes

X and clusterfactor nodes f
Compute initial clusters of the Xis w.r.t. E;1

repeat2

foreach factor fk do3

signaturefk
= [];4

foreach node Xi ∈ nb(fk) do5

signaturefk
.append(Xi.color);6

signaturefk
.append(fk.color);7

Group together all fks having the same signature;8

Assign each such cluster a unique color;9

Set fk.color correspondingly for all fks;10

foreach node Xi ∈ X, i = 1, . . . , n do11

signatureXi
= [];12

foreach factor fk ∈ nb(Xi) do13

signatureXi
.append(fk.color);14

signatureXi .append(Xi.color);15

Group together all Xis having the same signature;16

Assign each such cluster a unique color;17

Set Xi.color correspondingly for all Xis;18

until grouping does not change ;19

the number of identical messages that would be sent from
the factors in the clusterfactor f to each node in the clus-
ternode Xi if BP was carried out on G. The message from
a clustervariable X to a clusterfactor f is µX→f(x) =

µf→X(x)c(f,X)−1 ·
∏

h∈nb(X)\{f}

µh→X(x)c(h,X) (5)

where nb(X) now denotes the neighbor relation in the com-
pressed factor graph G. The c(f,X) − 1 exponent reflects
the fact that a clustervariable’s message to a clusterfactor
excludes the corresponding factor’s message to the variable
if BP was carried out on G.

The unnormalized belief of Xi, i.e., of any node X in Xi
can be computed from the equation

bi(xi) =
∏

f∈nb(Xi)

µf→Xi(xi)
c(f,X) (6)

Evidence is incorporated by setting f(x) = 0 for states x
that are incompatible with it. Again, different schedules
may be used for message-passing.

To conclude the section, the following theorem states the
correctness of counting BP.

Theorem 4.1. Given a factor graph G, there exists a
unique minimal compressed G factor graph, and algorithm
CFG(G) returns it. Running BP on G using Eqs. (5)
and (6) produces the same results as BP applied to G.

The theorem generalizes the theorem of Singla and Domin-
gos [17] but can essentially be proven along the same ways.
The trick is to view potentials associated with factors as
weighted clauses. Although very similar in spirit, counting
BP has one important advantage: not only can it be applied
to first-order and relational probabilistic models but also
directly to traditional, i.e., propositional models such as
Markov networks. We will demonstrate this by presenting
two significant showcases for the application of counting
BP: approximate inference for dynamic relational models
and model counting of Boolean formulas.

5 Dynamic Relational Domains

Stochastic processes evolving over time are widespread.
Traditionally, graphical models such as dynamic Bayesian
networks [5] have been used to represent uncertain pro-
cesses over time. DBNs represent the state of the world
as a set of variables, and model the probabilistic dependen-
cies of the variables within and between time steps. While
DBNs can often yield compact representations, many real-
world domains cannot be represented compactly using
them: domains can contain multiple types of objects as well
as multiple kinds of relations among them.

Formalisms that can represent objects and relations, as op-
posed to just random variables, have a long history in arti-
ficial intelligence. Recently, significant progress has been
made in combining them with a principled treatment of
uncertainty [6, 2]. First-order probabilistic models essen-
tially combine graphical models with elements of first-
order logic by defining template factors (such as Poole’s
parfactors [13]) that apply to whole sets of objects at once.
A simple and powerful such language is Markov logic [14].

5.1 Dynamic Markov Logic Networks

A Markov logic network (MLN) (a social network ex-
ample is shown in Table 1 (Top)) is a set of weighted
first-order clauses. Together with a set of constants rep-
resenting objects in the domain of interest, it defines a
Markov network with one node per ground atom and one
feature per ground clause. The weight of a feature is the
weight of the first-order clause that originated it. The
probability of a state x in such a network is given by
P (x) = 1

Z exp [
∑
i wi · gi(x)] = 1

Z

∏
i fi(x), where wi

is the weight of the ith clause, gi = 1 if the ith clause is
true, gi = 0 otherwise. Inference can be carried out by cre-
ating the ground network and applying belief propagation
to it, but this can be extremely inefficient because the size
of the ground network is in O(dc), where d is the number
of domain objects and c the highest clause arity.

In a stochastic logical process, the truth values of relations
depend on the time step t. For instance, a smoker may
quit smoking tomorrow. Therefore, we extend MLNs by

English First-Order Logic Weight
Most people do not smoke ¬Smokes(x) 1.4
Most people do not have cancer ¬Cancer(x) 2.3
Most people are not friends ¬Friends(x, y) 4.6
Smoking causes cancer Smokes(x)⇒ Cancer(x) 2.0
Friends have similar smoking habits Friends(x, y)⇒ (Smokes(x) <=> Smokes(y)) 2.0
Apriori most people do not smoke ¬Smokes(x, 0) 1.4
Apriori most people do not have cancer ¬Cancer(x, 0) 2.3
Apriori most people are not friends ¬Friends(x, y, 0) 4.6
Smoking causes cancer Smokes(x, t)⇒ Cancer(x, t) 2.0
Friends have similar smoking habits Friends(x, y, t)⇒ (Smokes(x, t) <=> Smokes(y, t)) 2.0
Most friends stay friends Friends(x, y, t)⇔ Friends(x, y, succ(t)) 5.0
Most smokers stay smokers Smokes(x, t)⇔ Smokes(x, succ(t)) 5.0

Table 1: (Top) Example of a social network Markov logic network inspired by [17]. Free variables are implicitly universally
quantified. (Bottom) Dynamic extension of the static social network model.

allowing the modeling of time. The resulting framework is
called dynamic MLNs (DMLNs).

Specifically, we introduce fluents, a special form of predi-
cates whose last argument is time. In this paper, we focus
on discrete time processes, i.e., the time argument is non-
negative integer valued. Furthermore, we assume a succes-
sor function succ(t), which maps the integer t to t + 1.
There are two kinds of formulas: intra-time and inter-time
ones. Intra-time formulas specify dependencies within a
time slice and, hence, do not involve the succ function. In
contrast, inter-time clauses involve the function succ. To
enforce the Markov assumption, each term in the formula
is restricted to at most one application of the succ func-
tion, i.e., terms such as succ(succ(t)) are disallowed. A
dynamic MLN is now a set of weighted intra- and inter-
time formulas. Given the domain constants, in particular
the time range 0, . . . , Tmax of interest, a DMLN induces a
MLN and in turn a Markov network over time.

As an example consider the social network DMLN shown
in Table 1 (Bottom). The first three clauses encode the
initial distribution at t = 0. The next two clauses are
intra-time clauses that talk about the relationships that ex-
ist within a single time-step. They say that smoking causes
cancer and that friends have similar smoking habits. Of
course, these are not hard clauses as with the case of first-
order logic. The weights presented in the right column
serve as soft-constraints for the clauses. The last two
clauses are the inter-time clause and talk about friends and
smoking habits persisting over time.

This model is similar to a dynamic Bayesian network ex-
cept that it is undirected. Assume that there are two con-
stants Anna and Bob. Let us say that Bob smokes at time
0 and he is friend with Anna. Then the ground Markov
network will have a clique corresponding to the first two
clauses for every time-step starting from 0. There will also
be edges between Smokes(Bob) (correspondingly Anna)

an between the Friends(Bob, Anna) for consecutive time-
steps.

5.2 Lifted First-Order Factored Frontier

To perform inference, we could employ any known MLN
inference algorithm. Unlike the case for static MLNs, how-
ever, we need approximation even for sparse models: Ran-
dom variables easily become correlated over time by virtue
of sharing common influences in the past.

Classical approaches to perform approximate inference in
DBNs are the Boyen-Koller (BK) algorithm [1] and Mur-
phy and Weiss’s factored frontier (FF) algorithm [10]. Both
approaches have been shown to be equivalent to one itera-
tion of BP but on different graphs [10]. BK, however, in-
volves exact inference, which for probabilistic logic mod-
els is extremely complex, so far does not scale to realistic
domains, and hence has only been applied to rather small
artificial problems. In contrast, FF is a more aggressive ap-
proximation. It is equivalent to (loopy) BP on the regular
factor graph with a forwards-backwards message protocol:
each node first sends message from “left” to “right” and
then sends messages from ”right” to ”left”. Hence, the ba-
sic idea of lifted first-order factored frontier (LFOFF) is to
plug in counting BP in place of BP in FF.

5.3 Experimental Evaluation

We used the social network DMLN in Table 1 (Bottom).
There were 20 people in the domain. For fractions r ∈
{0.0, 0.25, 0.5, 0.75, 1.0} of people we randomly choose
whether they smoke or not and who 5 of their friends
are, and randomly assigned a time step to the information.
Other friendship relations are still assumed to be unknown.
Cancer(x, t) is unknown for all persons x and all time
steps. The ”observed” people were randomly chosen. The
query predicate was Cancer.

Figure 3: (Left) Ratios (LFOFF / FF) of number of edges and messages computed. The lower the value, the greater the
speed-up when using LFOFF in place of FF. (Middle) Ratios (Forwards-Backwards / Flooding protocol) of number of
messages computed. The lower the value, the greater the speed-up when using the FB protocol in place of the FL protocol.
(Right) Probability estimates for cancer(A, t) over time.

In the first experiment, we investigated the compression ra-
tio between standard FF and LFOFF for 10 and 15 time
steps. Fig. 3 (Left) shows the results for 10 time steps.
The results for 15 were similar and therefore omitted here.
As one can see, the size of the factor graph as well as the
number of messages sent is much smaller for LFOFF.

In the second experiment, we compared the “forwards-
backwards” message protocol with the “flooding” proto-
col, the most widely used and generally best-performing
method for static networks. Here, messages are passed
from each variable to each corresponding factor and back at
each step. Again, we considered 10 time steps. The results
shown in Fig. 3 (Middle) clearly favor the FB protocol.

For a qualitative comparison, we finally computed the
probability estimates for cancer(A, t) using LFOFF and
MC-SAT, the default inference of the ALCHEMY system1.
For MC-SAT, we used default parameters. There were four
persons (A, B, C, and D) and we observed that A smokes
at time step 2. All other relations where unobserved for
all time steps. We expect that the probability of A having
cancer has a peak at t = 2 smoothly fading out over time.
Fig. 3 (Right) shows the results. In contrast to LFOFF,
MC-SAT does not show the expected behaviour. The prob-
abilities drop irrespective of the distance to the observation.

So far, the results clearly favor CBP over BP. A compres-
sion and thereby a speed-up, however, is not guaranteed. If
there are no symmetries – such as the random 3-CNF in the
next section – CBP essentially coincides with BP.

6 Model Counting

Model counting is the classical problem of computing the
number of solutions of a given propositional formula. It
vastly generalizes the NP-complete problem of proposi-

1http://alchemy.cs.washington.edu/

tional satisfiability, and hence is both highly useful and ex-
tremely expensive to solve in practice. Interesting appli-
cations include multi-agent reasoning, adversarial reason-
ing, and graph coloring, among others. In this section, we
present a new approach to compute a probabilistic lower
bound on the model count based on counting BP.

6.1 Counting using Belief Propagation

Our approach, called CBPCOUNT, is based on BPCOUNT
for computing a probabilistic lower bound on the model
count of a Boolean formula F , which was recently in-
troduced by Kroc et al. [8]. The basic idea is to effi-
ciently obtain a rough estimate of the “marginals” of propo-
sitional variables using belief propagation with damping.
The marginal of variable u in a set of satisfying assign-
ments of a formula is the fraction of such assignments with
u = true and u = false respectively. If this informa-
tion is computed accurately enough, it is sufficient to recur-
sively count the number of solutions of only one of “F with
u = true” and “F with u = false”, and scale the count
up accordingly. Kroc et al. have empirically shown that
BPCOUNT can provide good quality bounds in a fraction
of the time compared to previous, sample-based methods.

BPCOUNT works as follows. A propositional variable u
is called balanced if it occurs equally often positively and
negatively in all solutions of a given formula F . Now, BP-
COUNT performs t iterations, keeping track of the mini-
mum count obtained over these iterations. In each itera-
tion, (1) it computes the marginals of all variables running
BP without evidence on the factor graph composed of the
propositions in F as variable nodes and the clauses in F
as factors, (2) identifies the most balanced variable u, uni-
formly randomly set u to true or false, (3) simplifies F
by performing any possible unit propagations, and (4) re-
peats the process. An exact counter such as CACHET [15] is
called when the formula is sufficiently simplified. At this

Figure 4: Ratios CBPCOUNT/BPCOUNT between 0.0 and 1.0 of the cummulative sum of edges computed respectively
messages sent. A ratio of 1.0 means that CBP sends exactly as many messages as BP; a ratio of 0.5 that it sends half
as many messages. (Left) 2bitmax 6: Using CBP saved 88.7% of the messages BP sent in the first iteration of CBP-
COUNT; in total, it saved 70.2% of the messages. (Middle) Random 3-CNF wff-3-100-150: No efficiency gain. The
small difference in number of edges is due to a differently selected proposition due to tie breaking. (Right) ls8-norm: In
the first iteration of CBPCOUNT, using CBP saved 99.4% of the messages BP sent. In total, this value dropped to 44.6%.

point, let s denote the number of variables randomly set
in this iteration before calling CACHET, and let Mc be the
model count of the residual formula returned by CACHET.
The count of this iteration can be computed as 2s−α ×Mc

where α is a ”slack” factor pertaining to our probabilistic
confidence in the bound. Here, 2s can be seen as scaling up
the residual count by a factor of 2 for every uniform random
decision we made when fixing variables. After t iterations,
the minimum of the counts over all iterations is reported as
lower bound for the model count of F . As Kroc et al. point
out, the reported count is correct with probability 1−2−α·t.

The basic idea of CBPCOUNT now is to plug in count-
ing BP in place of BP. However, we have to be a little
bit more cautious: propositional variables can appear at
any position in the clauses. This makes high compression
rates unlikely because, for each clusternode (set of propo-
sitional variables) and clusterfeature (set of clauses) com-
bination, we carry a count for each position the clusternode
appears in the clusterfeature. Fortunately, however, we deal
with disjunctions only (assuming the formula f is in CNF).
Therefore, we can safely sort the message color signatures
while compressing the factor graph. Reconsider the exam-
ple from Fig. 2 and assume that the potentials associated
with f1, f2 encode disjunctions. Indeed, assuming B to be
the first argument of f1 does not change the semantics of
f1. As our experimental results will show this can result in
huge compression rates and large efficiency gains.

6.2 Experimental Evaluation

We have implemented (C)BPCOUNT based on SAMPLE-
COUNT 2 using our own Python (C)BP implementation.

2www.cs.cornell.edu/˜sabhar/software/
samplecount/

We ran BPCOUNT and CBPCOUNT on the circuit synthe-
sis problem 2bitmax 6 with damping factor 0.5 and con-
vergence threshold 10−8. The formula has 192 variables,
766 clauses and a true count of 2.1 × 1029. The result-
ing factor graph has 192 variable nodes, 766 factor nodes,
and 1800 edges. The statistics of running (C)BPCount are
shown in Fig. 4 (Left). As one can see, a significant im-
provement in efficiency is achieved when the marginal es-
timates are computed using CBP instead of BP: CBP re-
duces the messages sent by 88.7% when identifying the
first, most balanced variable; in total, it reduces the num-
ber of messages sent by 70.2%. Both approaches yield the
same lower bound of 5.8×1028, which is in the same range
as Kroc et al. report. Getting exactly the same lower bound
was not possible because of the randomization inherent to
BPCOUNT. Constructing the compressed graph took 9%
of the total time of CBP. Overall, CBPCOUNT was about
twice as fast as BPCOUNT, although our CBP implemen-
tation was not optimized.

Unfortunately, such a significant efficiency gain is not al-
ways obtainable. We ran BPCOUNT and CBPCOUNT on
the random 3-CNF wff-3-100-150. The formula has
100 variables, 150 clauses and a true count of 1.8 × 1021.
Both approaches yield again the same lower bound, which
is in the same range as Kroc et al. report. The statistics of
running (C)BPCount are shown in Fig. 4 (Middle). CBP
is not able to compress the factor graph at all. In turn, it
does not gain any efficiency but actually produces a small
overhead due to trying to compress the factor graph and to
compute the counts.

In real-world domains, however, there is often a lot of
redundancy. As a final experiment, we ran BPCOUNT
and CBPCOUNT on the Latin square construction problem
ls8-norm. The formula has 301 variables, 1601 clauses

and a true count of 5.4× 1011. Again, we got similar esti-
mates as Kroc et al.. The statistics of running (C)BPCount
are shown in Figure 4 (Right). In the first iteration, CBP
sent only 0.6% of the number of messages BP sent. This
corresponds to 162 times less many messages sent than BP.

To summarize, the experimental results show (a) CBP-
COUNT can indeed speed-up BPCOUNT and (b) there are
real world cases, in which CBP computes several orders of
magnitude less many messages than BP.

7 Conclusions

The key contribution of this paper is the introduction of
counting BP, a novel, scaleable belief propagation ap-
proach. CBP constructs a compressed factor graph of clus-
tervariables and clusterfactors, corresponding to sets of
nodes and factors that are indistinguishable given the ev-
idence, and applies a modified belief propagation to this
factor graph. It has been used to implement two novel algo-
rithms for challenging AI tasks: a lifted factor frontier algo-
rithm for approximate inference in dynamic Markov logic
networks and an efficient approach for computing a lower
bound on the model count for Boolean formulas. A num-
ber of experiments have shown that significant efficiency
gains are obtainable when running counting BP instead of
standard BP, often by orders of magnitude.

This work suggests several lines of future work such as ap-
proximate grouping of nodes and factors, developing gen-
eralized CBP variants, using CBP for (relational) learning,
and applying it to real world domains. Most promising is
to further explore the link to SAT-based techniques e.g. for
efficient planning and first-order model counting.

Acknowledgements The authors would like to thank Pe-
dro Domingos, Parag Singla, and the anonymous review-
ers for their comments. Kristian Kersting and Babak Ah-
madi gratefully acknowledge the support of the Fraunhofer
ATTRACT fellowship STREAM. Sriraam Natarajan grate-
fully acknowledges support of the Defense Advanced Re-
search Projects Agency under DARPA grants FA8650-06-
C-7606 and HR0011-07-C-0060.

References
[1] X. Boyen and D. Koller. Tractable inference for com-

plex stochastic processes. In Proc. of the Conf. on
Uncertainty in Artificial Intelligence (UAI-98), pages
33–42, 1998.

[2] L. De Raedt, P. Frasconi, K. Kersting, and S.H. Mug-
gleton, editors. Probabilistic Inductive Logic Pro-
gramming, volume 4911 of Lecture Notes in Com-
puter Science. Springer, 2008.

[3] R. de Salvo Braz, E. Amir, and D. Roth. Lifted First
Order Probabilistic Inference. In Proc. of the 19th In-

ternational Joint Conference on Artificial Intelligence
(IJCAI-05), pages 1319–1325, 2005.

[4] R. de Salvo Braz, E. Amir, and D. Roth. MPE
and Partial Inversion in Lifted Probabilistic Variable
Elimination. In Proc. of the 21st AAAI Conf. on Arti-
ficial Intelligence (AAAI-06), 2006.

[5] T. Dean and K. Kanazawa. A Model for Reasoning
about Persistence and Causation. Computational In-
telligence, 5:142–150, 1989.

[6] L. Getoor and B. Taskar, editors. An Introduction to
Statistical Relational Learning. MIT Press, 2007.

[7] A. Jaimovich, O. Meshi, and N. Friedman. Template-
based inference in symmetric relational Markov ran-
dom fields. In Proc. of the Conf. on Uncertainty in Ar-
tificial Intelligence (UAI-07), pages 191–199, 2007.

[8] L. Kroc, A. Sabharwal, and B. Selman. Leveraging
Belief Propagation, Backtrack Search, and Statistics
for Model Counting. In Proc. of the 5th Int. Conf.
on the Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization
Problems (CPAIOR-08), pages 127–141, 2008.

[9] B. Milch, L. Zettlemoyer, K. Kersting, M. Haimes,
and L. Pack Kaelbling. Lifted Probabilistic Inference
with Counting Formulas. In Proc. of the 23rd AAAI
Conf. on Artificial Intelligence (AAAI-08), July 13-17
2008.

[10] K.P. Murphy and Y. Weiss. The Factored Frontier Al-
gorithm for Approximate Inference in DBNs. In Proc.
of the Conf. on Uncertainty in Artificial Intelligence
(UAI-01), pages 378–385, 2001.

[11] K.P. Murphy, Y. Weiss, and M.I. Jordan. Loopy Belief
Propagation for Approximate Inference: An Empiri-
cal Study. In Proc. of the Conf. on Uncertainty in Ar-
tificial Intelligence (UAI-99), pages 467–475, 1999.

[12] J. Pearl. Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 2. edition,
1991.

[13] D. Poole. First-Order Probabilistic Inference. In Proc.
of the 18th International Joint Conference on Artifi-
cial Intelligence (IJCAI-05), pages 985–991, 2003.

[14] M. Richardson and P. Domingos. Markov Logic Net-
works. Machine Learning, 62:107–136, 2006.

[15] T. Sang, F. Bacchus, P. Beame, H. Kautz, and
T. Pitassi. Combining component caching and clause
learning for effective model counting. In Proc. of the
7th Int. Conf. on Theory and Applications of Satisfia-
bility Testing (SAT-04), 2004.

[16] P. Sen, A. Deshpande, and L. Getoor. Exploiting
Shared Correlations in Probabilistic Databases. In
Proc. of the Intern. Conf. on Very Large Data Bases
(VLDB-08), 2008.

[17] P. Singla and P. Domingos. Lifted First-Order Be-
lief Propagation. In Proc. of the 23rd AAAI Conf. on
Artificial Intelligence (AAAI-08), pages 1094–1099,
Chicago, IL, USA, July 13-17 2008.

