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Abstract

There has been a great deal of recent inter-
est in methods for performing lifted inference;
however, most of this work assumes that the
first-order model is given as input to the sys-
tem. Here, we describe lifted inference algo-
rithms that determine symmetries and automat-
ically lift the probabilistic model to speedup in-
ference. In particular, we describe approximate
lifted inference techniques that allow the user to
trade off inference accuracy for computational
efficiency by using a handful of tunable parame-
ters, while keeping the error bounded. Our algo-
rithms are closely related to the graph-theoretic
concept of bisimulation. We report experiments
on both synthetic and real data to show that in
the presence of symmetries, run-times for infer-
ence can be improved significantly, with approx-
imate lifted inference providing orders of magni-
tude speedup over ground inference.

1 Introduction

While recent work in lifted inference [3, 15, 16, 17, 20] are
promising steps towards developing efficient inference al-
gorithms that can exploit the first-order structure provided
by most first-order probabilistic models (see [8] for a sur-
vey), all of these techniques assume the first-order structure
is provided in the input. In this work, we study the alternate
problem of identifying the symmetry present in an underly-
ing probabilistic model, and show how this can be exploited
to provide new lifted inference algorithms.

Our work builds on recent results on efficient query eval-
uation in probabilistic databases from the database com-
munity. A query over a probabilistic database results in a
very large graphical model which has many repeated fac-
tors. In prior work [18], we showed how, using the symme-
try present in the probabilistic model and methods closely

related to the graph-theoretic concept of bisimulation, it is
possible to compile a compressed version of the inference
problem. The compressed data-structure, called an rv-elim
graph, can then be used to perform faster inference. In
this paper, we show how the above techniques are generally
applicable to arbitrary graphical models, and, more impor-
tantly, develop approximate lifted inference techniques that
allow the user to trade off accuracy of inference for com-
putational efficiency. We show how our approximate lifted
inference techniques can compress the rv-elim graph well
beyond the compression achieved by exact lifted inference,
producing more impressive speedups while keeping the er-
ror bounded using certain tunable parameters.

Here is a summary of our contributions and results:

• We review the results from [18] and show how they are
applicable to general probabilistic graphical models.

• Using techniques based on approximate bisimulation,
we extend these methods and introduce a tunable pa-
rameter to move from approximate inference with high
speedups to exact inference with perfect accuracy.

• We introduce a second approximation method to bin
factors (or clique potentials) that are within a user-
specified ε distance of each other into common parti-
tions. Using these partitions, it is possible to compress
the rv-elim graph and perform even faster inference.

• We also show how to integrate our techniques with ex-
isting bounded complexity inference techniques (e.g.,
mini-buckets [5]) – that allows us to extend the use of
our techniques to domains with unbounded treewidth.

• We discuss how to integrate all of the above techniques
into one single inference engine that allows combina-
tions ranging from exact lifted inference to approximate
inference based on approximate bisimulation and factor
binning with the use of mini-buckets.

• We experiment with synthetic and real-world data, and
demonstrate how our techniques can achieve significant
speedups of upto two orders of magnitude over ground
inference and exact lifted inference with bounded error.
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Figure 1: An example probabilistic model.

In the next section, we review our earlier work on exact
lifted inference [18], in Section 3 we present our techniques
for approximate lifted inference, in Section 4 we evaluate
our approaches on synthetic and real-world data, in Sec-
tion 5 we review related work and we conclude with a few
pointers for future work in Section 6.

2 Background: Exact Lifted Inference with
the RV-Elim Graph

This section reviews material from [18]. We begin with
some notation. Let X denote a random variable that can
be assigned a value from a pre-defined domain denoted
by dom(X). Let f (X) denote a factor or clique poten-
tial that takes as arguments a set of random variables
X = {X1, . . .Xn}. f (X) denotes a mapping f : dom(X1)×
. . .× dom(Xn)→ ℜ≥0. Given a set of such factors, F =
{ f1, f2, . . . fm}, we can define a joint probability distribu-
tion over a set of random variables X by multiplying all
the factors Pr(X ) = 1

Z ∏ f∈F f (X f ) such that X f ⊆X
denotes the arguments of f ∈ F and Z denotes the par-
tition function. Given such a joint probability distribution
and a random variable X ∈X , let µ(X) denote its marginal
probability distribution such that µ(X) = ∑X \X Pr(X ).

In first-order probabilistic models, many factors come from
grounding out first-order rules. The factors obtained from
such rules map the same input to the same outputs and con-
stitute symmetry in the model. Consider the friends and
smokers domain where we want to infer the probability of
a person being a smoker. Then a rule such as Smoker(P1)∧
Friend(P1,P2)⇒ Smoker(P2) would ground out to pro-
vide

(n
2

)
factors with identical input-output mappings, as-

suming all pairs P1,P2 are friends. The notion of shared
factors precisely captures this symmetry.

We refer to two factors f and f ′ as being shared, de-
noted f ∼= f ′, if they contain the same input-output map-
pings, irrespective of whether they take the same ran-
dom variables as arguments. More precisely, let X =
{X1,X2, . . .Xn} and X′ = {X ′1,X ′2 . . .X ′n} denote the argu-
ments of f and f ′ respectively. Then, f (X) ∼= f ′(X′) iff
dom(Xi) = dom(X ′i ),∀i = 1, . . .n, and f (x) = f ′(x),∀x ∈
dom(X1)× . . .dom(Xn).

Consider the small example shown in Figure 1. All ran-
dom variables are boolean valued. The priors on s1, s2,
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Figure 2: (a) RV-Elim graph for the running example (ver-
tices partitioned into 8 blocks, shading indicates partition-
ing), (b) corresponding compressed rv-elim graph.

s3 and t1, denoted by fs1 , fs2 , fs3 and ft1 , respectively, are
such that s1 and s2 are true with probability 0.8, s3 is
true with probability 0.6 and t1 is true with probability
0.5. The three random variables i j,∀ j ∈ {1,2,3} are each
true when their corresponding parents s j and t1 are both
true and this is enforced by the three factors fi j(i j,s j, t1)
which return 1 iff i j ⇔ s j ∧ t1 and return 0 otherwise. Of
the four priors, fs1(s1) and fs2(s2) represent a pair of shared
factors since they contain the same input-output mappings
( fs1(true) = fs2(true) = 0.8); similarly, fi1 , fi2 and fi3 are
also shared since they are all and factors.∗

Given a set of factors F , a set of random variables X
whose marginal probabilities we are interested in comput-
ing, and an elimination order O which contains all the ran-
dom variables to be summed over from F (we discuss how
to construct elimination orders subsequently), it is straight-
forward to construct an rv-elim graph G = (V,E,LV ,LE)
which is a directed acyclic graph (DAG) with vertex labels
LV and edge labels LE such that:

• If v is a root then it represents a factor f from F and its
label LV (v) is such that ∀ f ′ ∈F , f ′ ∼= f ⇔LV (v′) =
LV (v) where v′ denotes the vertex representing f ′.

• If v is an internal vertex, then it represents an intermedi-
ate factor created during inference, denoting a variable
elimination (summing over) operation formed by mul-
tiplying the factors represented by its parent vertices.
The edge labels on edges with v as head denote the or-
der in which the parents were multiplied and the label
on v denotes how the arguments of its parents overlap.

In Figure 2(a), we show the rv-elim graph generated for
our running example using the elimination order O =
{t1,s3,s2,s1} (variables on the right are eliminated first).
The vertex labels are shown next to each vertex. Notice that
fs1 and fs2 have been assigned the same label “a” but fs3 has

∗This is an example of a graphical model that may be con-
structed during query evaluation over probabilistic databases [18].



been assigned a different label “b”; similarly, fi1 , fi2 and fi3
have been assigned the same label “c”. Each internal vertex
corresponds to an elimination operation. For instance, ms1
denotes the intermediate factor produced by summing over
s1: ms1(i1, t1) = ∑s1

fs1(s1) fi1(i1,s1, t1) where fs1 is the first
multiplicand and fi1 is the second based on the edge labels.
The labels on internal vertices in Figure 2(a) denote how
arguments across its parents overlap. We illustrate how the
labels for the internal vertices were created by showing the
construction for LV (ms1):

• assign each random variable an id: s1 = 1, i1 = 2, t1 = 3

• begin constructing the label by going through each par-
ent’s arguments list and forming a tuple composed of
the arguments’ ids assigned in the previous step: since
fs1 is the first multiplicand and fi1 the second, we form
our label by concatenating “[1]” with “[2,1,3]”,

• add the id of the random variable being summed to the
end of the string: append the string “1” to our label.

Thus, the complete label for ms1 is “{[1], [2,1,3], 1}” (Fig-
ure 2(a)). For this example, we are interested in computing
the marginals for i1, i2 and i3 and these marginals are de-
picted by the leaf vertices.

The main goal of lifted inference is to avoid computing
shared factors repeatedly; instead each shared factor should
be computed once, and reused whenever required. For in-
stance, in Figure 2(a), we observe that ms1

∼= ms2 since their
parents form pairs of shared factors fs1

∼= fs2 and fi1
∼= fi2 .

This is where the rv-elim graph is useful, it helps us de-
termine the intermediate shared factors generated during
inference before we actually compute them.
Property 2.1. Vertices v1,v2 in rv-elim graph G represent
shared factors, denoted v1 ∼= v2, (i.e., fv1

∼= fv2 where fv
denotes the factor represented by v), iff:

• ∀u1
i→ v1,∃u2

i→ v2 s.t. fu1
∼= fu2 and vice versa (the

parents are pairwise shared, in order).

• LV (v1) = LV (v2) (arguments overlap info. matches).

In [18] we observed that by adapting the graph-theoretic
notion of bisimulation [11], one can determine the equiva-
lence class partitioning of the vertices. Applying the bisim-
ulation algorithm to an rv-elim graph partitions the set of
vertices into blocks B j such that ∀v1,v2 ∈ B j, fv1

∼= fv2 .
Once we have such a partition, it is easy to construct a
compressed version of the rv-elim graph where each block
B j is represented by a vertex and we introduce an edge

B j
i→ B j′ if ∃v1 ∈ B j,∃v2 ∈ B j′ s.t. v1

i→ v2. Figure 2(b)
shows the compressed rv-elim graph constructed from Fig-
ure 2(a) where we denote the blocks in square braces next
to each vertex; for instance, both ms1 and ms2 have been
collapsed to the same vertex D. The compressed graph can
then be used to perform inference efficiently.

One caveat about the above approach is that since factor

Algorithm 1: Exact Bisimulation [18]

d(v) =
{

0, if v is a root
1+max{d(v′)|v′→ v ∈ E} /* compute depths */

ρ ←max{d(v)|v ∈V}
B0,l = {v|v is root∧LV (v) = l} /* compute initial partition */
C = {B0,l}
Bi = {v|d(v) = i},∀i = 1 . . .ρ
for i = 1 . . .ρ do

foreach v ∈ Bi do /* construct keys to partition on */
order parents by block-ids
construct label LV (v)
construct key kv with LV (v) and parents’ blocks-ids

add Bi,k = {v ∈ Bi|kv = k} to C
return C

multiplication is a commutative operation, the edge and the
internal vertex labels, both of which depend on the order
in which the factors are multiplied, can be dynamically al-
tered by choosing a different order. In [18], we proposed
ordering the parents of a node using their assigned block-
ids before assigning it to a block. This may lead to more
symmetry and compression. Algorithm 1 depicts the com-
plete bisimulation algorithm.

Finally to choose the initial elimination order to generate
the rv-elim graph, we run a bisimulation on the probabilis-
tic model itself (vertices denote random variables, edges
denote dependencies) to compress it. We then run a mod-
ified min-size heuristic [13] on the compressed graph, and
replace the vertices with the corresponding sets of random
variables to get an elimination order for inference.

3 Approximate Lifted Inference

While the above approach to performing exact lifted infer-
ence can provide significant speedups when the probabilis-
tic model contains moderate to large amounts of symmetry,
in many cases we can do much better if we are willing to
accept approximations in the marginal probability distribu-
tions computed. The main idea here is to explore looser
versions of Property 2.1 so that we can partition the ver-
tices of the rv-elim graph into bigger blocks and thus arrive
at a smaller compressed rv-elim graph. In what follows,
we describe two separate and orthogonal generalizations of
Property 2.1 that can be used to implement approximate
lifted inference. After that, we discuss how to combine our
techniques with bounded complexity inference algorithms
and finally, we discuss how to combine all of our proposed
ideas together into one approximate lifted inference engine.

3.1 Lifted Inference with Approximate Bisimulation

To introduce our first technique we require some notation.
Given a vertex, edge labeled graph G = (V,E,LV ,LE)
such as an rv-elim graph, let v0, . . .vn denote an n-length
vertex path such that ∀i = 0, . . .n : vi ∈V and ∀i = 0, . . . ,n−
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Figure 3: Results of running approximate bisimulation on the running example (shading indicates partitioning), (a) path-
length=0 (partitioning on labels, vertices partitioned into 6 blocks) (b) path-length=1 (vertices partitioned into 7 blocks),
(c) the compressed graph obtained at path-length=1.

1 : ∃ j s.t. vi
j→ vi+1 ∈ E. Further, we say that label path or

simply, path, l0(l′0)l1(l
′
1) . . . ln(l

′
n)ln+1 matches vertex path

v0, . . .vn+1 (and vice versa) if ∀i = 0, . . . ,n+1 : LV (vi) = li
and ∀i = 0, . . .n : LE(vi→ vi+1) = l′i .

We will now revisit Property 2.1 and try to assign it a path-
based interpretation. Using a simple induction (and the fact
that edges with the same head have distinct edge labels) it
is possible to show that two vertices v1 and v2 in an rv-elim
graph are bisimilar iff their incoming set of paths from the
roots are identical. For instance in Figure 2(a) recall that
ms1
∼= ms2 , which have the same set of incoming paths from

the roots {“a(1){[1], [2,1,3],1}′′,“c(2){[1], [2,1,3],1}′′},
the matching vertex paths for ms1 are fs1 ,ms1 and fi1 ,ms1 ,
resp., and the matching vertex paths for ms2 are fs2 ,ms2
and fi2 ,ms2 , resp. Notice that this path-based interpretation
of Property 2.1 shows that it is a fairly stringent criteria
(albeit necessary for exact inference). For instance, con-
sider a case when two vertices deep in the rv-elim graph
have large sets of long incoming paths and both sets are
almost identical except for one incoming path to the sec-
ond vertex which has that one label that does not allow it
to match any incoming path to the first vertex; based on
Property 2.1 these two vertices would be placed in differ-
ent blocks of the final partition and the compressed rv-elim
graph would be correspondingly bloated. This sort of be-
haviour is, in fact, on display in our running example where
µi2 � µi3 simply because, of the three incoming paths
to µi3 , “b(1){[1], [2,1,3],1}(1){[1,2], [2],2}′′ (matching
fs3 ,ms3 ,µi3 ) doesn’t match any of µi2 ’s incoming paths.

Instead of comparing sets of all incoming paths to vertices,
we propose to relax Property 2.1 by comparing sets of only
k-length (and less than k-length) incoming paths, where k
is a tunable parameter we refer to as the path-length. Our
compression algorithm permits high compression when the
path-length is set to a low value and approaches exact
bisimulation when we increase it. Figure 3(a) shows the
result of partitioning vertices in our example rv-elim graph
with k set to 0 where we simply partition vertices based on

their labels. Figure 3(b) is more interesting where we have
set k to 1 and so, compare incoming paths of length 1. Note
how, in this case, ms3 has been differentiated from ms1 and
ms2 since ms3 has an incoming path “b(1){[1], [2,1,3],1}′′
(matching fs3 ,ms3 ) of length 1 which doesn’t match any
incoming 1-length path of ms1 or ms2 . In contrast, ms1 ,
ms2 and ms3 were all placed into the same block in Fig-
ure 3(a). Also notice that, in Figure 3(b), µi1 , µi2 and µi3
are still partitioned into the same block (leaf vertices tiled
with green bricks) and this is because the only path that dif-
ferentiates µi3 from µi1 and µi2 is a path of length 2 (vertex
path fs3 ,ms3 ,µi3 ) which is beyond the scope of the current
path-length setting of 1. This changes however, when we
set path-length to 2 and obtain the results of exact bisimu-
lation shown earlier in Figure 2(a).

The partitioning based on comparing incoming k-length
paths can be obtained by computing k-bisimilarity [11] (for
which algorithms are available) since these two properties
are equivalent (this can be proved by induction). We for-
malize the k-bisimilarity property as follows:

Property 3.1. Given an rv-elim graph G = (V,E,LV ,LE),
∼=k is defined inductively. For vertices v1,v2 ∈V ,

• v1 ∼=0 v2 iff LV (v1) = LV (v2).

• v1 ∼=k v2 (k > 0) iff LV (v1) = LV (v2) and ∀u1
i→

v1,∃u2
i→ v2 s.t. u1 ∼=k−1 u2 and vice versa.

The algorithm for obtaining the partition based on ∼=k, Al-
gorithm 2, begins by computing the depth of each vertex
d(v) and constructing an initial partition based on labels
of the roots and the depths of internal vertices. Through-
out Algorithm 2, we maintain two partitions, X and C. In
the ith iteration, X maintains ∼=i−1 and is used to update C
where we construct ∼=i. Note that the inner two loops can
be performed in O(|E| logD + |V |) time (not counting the
time spent to construct the vertex labels), where D is the
maximum in-degree in the rv-elim graph. Thus, Algorithm
2 runs in O(k(|E| logD + |V |)) time (in contrast to Algo-
rithm 1 which runs in O(|E| logD + |V |) time). Note that



constructing the compressed rv-elim graph corresponding
to∼=k is a bit more complicated now since we are no longer
guaranteed that, if two internal vertices fall into the same
block of the partition, then the parents will also have been
placed into the same block (which holds for Property 2.1).
Figure 3(c) (compressed graph obtained at k=1) illustrates
this issue where all µ’s have been merged into one block
but their 1st parents are not, thus G has two 1st parents D
and F which is problematic if we want to use the com-
pressed graph to run inference. Here, we simply get rid of
the edge that corresponds to the smaller sized block (the
dotted edge F → G in Figure 3(c) since F represents a
block of size 1 versus D whose block size is 2) to maximize
the number of correct marginal probability computations.

3.2 Lifted Inference with Factor Binning

We now introduce another way of implementing approxi-
mated lifted inference using an orthogonal generalization
of Property 2.1. We begin by associating with Property 2.1
a distance-based interpretation. Recall that, Property 2.1
bins two factors into the same block of the partition when
we can guarantee that their input-output mappings are ex-
actly the same without actually computing them. Stated
differently, given any user-defined distance measure that
can measure the “distance” between two factors, Property
2.1 deems that these factors belong to the same block only
if the distance between them is zero. Note that the con-
verse is not true. That is, it is possible for two internal ver-
tices in the rv-elim graph to actually represent factors that
comprise of identical input-output mappings but because
their parents do not belong to the same blocks or because
the parents’ arguments don’t overlap in the same fashion,
Property 2.1 cannot bin these into the same block of the
partition. We illustrate this with the following example:

∑
Y


X Y f1
t t 0.8
t f 0.2
f t 0.4
f f 0.6

×
Y f2
t 0.5
f 0.5

 =
X mY
t 0.5
f 0.5

∑
Y ′


X ′ Y ′ f ′1
t t 0.2
t f 0.8
f t 0.6
f f 0.4

×
Y ′ f ′2
t 0.5
f 0.5

 =
X ′ mY ′

t 0.5
f 0.5

where t and f denote true and false resp. Notice
how factors f1 and f ′1 have different input-output map-
pings ( f1(t,t) = 0.8 6= 0.2 = f ′1(t,t)) and hence cannot
be binned into the same block which means that it is not
possible to determine that the resulting factors mY and mY ′

comprise of the same input-output mappings solely using
Property 2.1. This, in turn, means that any intermediate
factors derived from these two factors during the inference
process will always be binned separately, thus leading to a

Algorithm 2: Approximate Bisimulation(k)

d(v) =
{

0, if v is a root
1+max{d(v′)|v′→ v ∈ E}

ρ ←max{d(v)|v ∈V}
B0,l = {v|d(v) = 0∧LV (v) = l}
Bi = {v|d(v) = i}∀i = 1 . . .ρ

C←{B0,l}∀l ∪{Bi}
ρ

i=1
X ←C
for j = 1 . . .k do

for i = 1 . . .ρ do
foreach B ∈C at depth i do

order parents by block-ids in X
construct labels LV (v)∀v ∈ B
construct key kv∀v ∈ B with LV (v), parent
blocks-ids in X
partition B based on keys kv
replace B in C with new blocks

X ←C
return C

bloated compressed rv-elim graph.

Such symmetries can not be captured without actually
looking into the factors and computing the distance be-
tween them (any distance measure such as KL-divergence
or root mean squared distance would do). For this purpose,
we ask the user for a separate parameter ε , that specifies
an upper bound on the distance between two factors for
them to be considered shared. Note that, unlike the previ-
ous algorithm, we can not compute distance between two
intermediate factors without computing the factors.

To determine such a distance-based partitioning of the fac-
tors, we will need to solve the factor binning problem (FB):

Given: set of factors F = { f1, . . . fn}
threshold ε, distance function dist(·,·)

Return: argminF⊆F |F|
such that ∀ fi ∈F \F ∃ f ∈ F s.t. dist( fi, f )≤ ε

We will shortly show that the factor binning problem is
equivalent to the dominating set problem (DS):

Given: graph G with vertex set V and edge set E
denote by Nv neighborhood of vertex v

Return: argminD⊆V|D|
such that ∀vi ∈ V\D ∃v ∈ D s.t. v ∈ Nvi

Theorem 3.2. FB is equivalent to DS.

Proof. The proof is in two parts, we first show that any
instance of FB can be reduced to DS and vice versa. To
show the first part, we specify the reduction to DS. Given
an instance of FB, define the corresponding DS by setting:

DSFB : V = F ,N fi = { fi}∪{ f |dist( fi, f )≤ ε}



Algorithm 3: Factor Binning(ε)

d(v) =
{

0, if v is a root
1+max{d(v′)|v′→ v ∈ E}

ρ ←max{d(v)|v ∈V}
B0,l = {v|v is a root ∧LV (v) = l}

FB instantiate one factor per block B0,l
FB Bhs

0 ← compute hitting set and construct new set of blocks
by merging {B0,l}
C = Bhs

0
Bi = {v|d(v) = i},∀i = 1 . . .ρ
for i = 1 . . .ρ do

foreach v ∈ Bi do
order parents by block-ids
construct label LV (v)
construct key kv with LV (v) and parents’
blocks-ids

Bi,k = {v ∈ Bi|kv = k}
FB instantiate one factor per new block Bi,k
FB Bhs

i ← compute hitting set and construct new set of
blocks by merging {Bi,k}
C←C∪Bhs

i
return C

Note that any solution to DSFB is a solution to FB. We show
this by contradiction. Suppose solution D to DSFB is not a
solution to FB, i.o.w., ∃ fi ∈F \D s.t. dist( fi, f ) > ε, ∀ f ∈
D. This implies N fi ∩D = /0 which means that D is not a
solution to DSFB and thus we have a contradiction. Simi-
larly, any solution to FB is a solution to DSFB. Again, as-
sume that solution F to FB is not a solution to DSFB. Thus,
∃ fi ∈F \F s.t. N fi ∩F = /0. This implies dist( fi, f ) > ε,
∀ f ∈ F which means F is not a solution to FB and we have
a contradiction. Given that solution spaces of FB and DSFB
are same, and that the objective functions are also same, we
have shown that FB can be solved by solving DSFB.

The reduction in the other direction is also easy. Given an
instance of DS, define the corresponding FBDS by setting:

FBDS : F = V,ε = 0

dist(vi,v j) =
{

0 if (vi,v j) ∈ E
1 otherwise

It’s easy to show that DS, FBDS share the same soln. space.

DS is NP-Complete [7]. Further, Feige [6] showed that
DS is not approximable to a factor of (1−o(1))ln(|V|) un-
less NP has “slightly super-polynomial time” algorithms
(or NP ⊂ DT IME(nlog(log(|V|)))). One way to solve DS
is to utilize the fact that it is a special case of set cover
and use the obvious greedy heuristic (described below) for
set cover. This gives us an ln(|V|)-approximation algo-
rithm [21]. Thus, for our experiments we use the same
greedy approach to solve FB. FB is also equivalent to the ρ-
dominating set problem [2], which, in turn, is the converse
of the classic k-center problem [12] where we are given a

graph from which we need to choose a subset of k vertices
so that their distance from the other vertices is minimized.
Note that, when the distance function satisfies special prop-
erties, better algorithms may be available. For instance, for
euclidean spaces, near-optimal factor binning is possible
[10], especially when the factor sizes are not large.

The algorithm to obtain the greedy solution for FB is to
first construct each subset N fi (as defined above) and re-
peatedly pick fi corresponding to the current largest N fi to
include into our solution. Every time we pick fi, we update
all N f j ’s by deleting from them all factors that are within
ε distance of fi. Another question we need to consider is
whether to bin factors based on distance once and then run
approximate lifted inference or whether to bin the interme-
diate factors based on distance also. For our experiments,
we also binned the intermediate factors since this allows
us to compress the rv-elim graph more agrressively. Algo-
rithm 3 shows the complete algorithm to run approximate
lifted inference using FB. Algorithm 3 is essentially Algo-
rithm 1 with extra lines for FB computations (marked FB).

3.3 Bounded Complexity Lifted Inference

The approximation techniques we have introduced so far
do not alleviate the worst-case complexity of the inference
procedure. In other words, these techniques would not help
if the ground inference procedure is associated with high
treewidth (common with structured probabilistic graphical
models). Next we show how to incorporate the mini-bucket
scheme [5], a bounded complexity approximate (ground)
inference algorithm, with our ideas. This allows us to keep
a tight control over the complexity of inference incurred.

The mini-buckets scheme is a modification of the variable
elimination algorithm [23] where at each step instead of
eliminating a random variable by multiplying all factors it
appears as argument in, one devises a set of mini-buckets
each containing a (disjoint) subset of factors that contains
that variable as argument and then eliminates the variable
separately from each mini-bucket. More precisely, given a
set of factors, one first constructs a canonical partition such
that all subsumed factors are placed into the same bucket of
the partition. A factor f is said to be subsumed by factor f ′

if any argument of f is also an argument of f ′. After con-
structing the canonical partition, the user has two choices:

• construct mini-buckets by restricting the total number
of arguments i (a user-defined parameter) in each mini-
bucket. Since inference complexity is directly affected
by the size of the largest factor encountered, this is one
way to control the amount of computation incurred.

• specify how many buckets m of the canonical parti-
tion to merge to form a mini-bucket. Again, this (indi-
rectly) controls the size of the largest factor generated
and keeps the complexity bounded.



Dechter and Rish [5] show how such a modification of
the variable elimination algorithm provides an upper bound
over the numbers produced in the resulting factors.

It is easy to combine our approaches with the mini-bucket
scheme. Instead of building the rv-elim graph by intro-
ducing internal vertices corresponding to intermediate fac-
tors produced by multiplying all factors involving a cer-
tain random variable as argument, we simply introduce ver-
tices corresponding to factors produced by the mini-bucket
scheme. Since our approaches work on any rv-elim graph,
this requires no change to the approaches presented earlier,
while keeping the complexity of inference bounded.

3.4 Unified Lifted Inference Engine

By interleaving the various steps, it is possible to combine
all the ideas we have presented in this section into one uni-
fied approximate lifted inference engine. Our combined
inference engine takes a set of eight parameters which de-
fine the combinations of techniques we would like to in-
voke (see Table 1). The experiments presented in the next
section use this generic inference engine.

4 Experimental Evaluation

We conducted experiments on synthetic and real data to
determine how lifted inference with approximate bisimu-
lation and factor binning perform on their own. We also
report experiments with our unified lifted inference engine
where we used both approaches in tandem. Each number
we report is an average over 3 runs, our implementation is
in JAVA and our experiments were performed on a machine
with a 3GHz Xeon processor and 3GB RAM. We compare
our results with two baseline algorithms: A ground infer-
ence procedure which is basically variable elimination [23]
modified so that we obtain all marginals in a single pass,
and the exact lifted inference procedure reviewed in Sec-
tion 2. We report two metrics for each experiment: run
times incurred by the various algorithms in seconds (Time)
and error measured by computing the average number of
marginal probabilities which were not within 10−8 of their
correct values (Avg. #Probs. Incorrect).

4.1 Synthetic Bayesian Network Generator

We set up a synthetic Bayesian network (BN) generator to
test various aspects of our algorithms. The generator pro-
duces BNs where the random variables are organized in
layers and random variables from the ith layer randomly
choose parents from the i−1th layer. For our experiments,
we generated BNs with 3 layers: 1st layer contained 1000
random variables, 2nd 500 and 3rd 250. We introduced pri-
ors randomly for each variable in the first layer, every 25th

prior was identical. The random variables in the last layer
are our query variables for which we computed marginal

Parameter Name: Description
UB (bisimulation): compresses rv-elim graphs if true
PL (path length): approximate bisimulation parameter,
use exact bisimulation when set to ∞

ε: factor binning parameter, uses factor binning if ε > 0
UMB (mini-bucket): allows using mini-buckets if true
ACR (arg. count restriction): if true then restricts
based on number of arguments in mini-buckets
MBR (mini bucket restriction): if ACR=true then this
is i (the max number of args per mini-bucket), else it is
interpreted as m (the number of canonical partition buck-
ets merged to form a mini-bucket).

Table 1: Parameters for our unified lifted inference engine.

probabilities. All random variables had domain of size
30. To generate factors defining the dependency between
random variables from the ith and i− 1th layers, for each
variable in the ith, we randomly chose 2 parents from the
previous layer. Two children can choose the same par-
ents, so we generated non-tree structured BNs. All factors
with children from the ith layer are identical. This closely
follows most structured probabilistic graphical models we
have come across, where the priors usually closely resem-
ble each other but may not be identical; whereas the factors
defining dependencies between various random variables
come from generic rules and are thus identical. We used
a parameter to control how many times a random variable
can be picked as a parent. This helps vary the complex-
ity of the inference problem. We also used a parameter to
add random noise after the factors are generated. We tried
other parameter settings as well and the trends were as ex-
pected. For instance, increasing domain size increases the
speedups obtained since with larger domains, we increase
the time spent summing over random variables and multi-
plying factors while running ground inference – our lifted
inference procedures are designed to save on this assuming
the symmetry among factors is kept constant. Similarly,
increasing the number of random variables with constant
symmetry also increases speedups obtained.

4.2 Lifted Inference with Approximate Bisimulation

Our first set of experiments tests our algorithm for lifted
inference with approximate bisimulation. The results are
reported in Figure 4 (a) and Figure 4 (d). The plots show
that as we increase path-length (x-axis in these plots) the
time for inference (Figure 4 (a)) slowly increases but er-
ror decreases (Figure 4 (d)). The solid line with triangles
depict the results of running lifted inference with approx-
imate bisimulation without mini-buckets, and with path-
length set to 3 we see that the error stands around 18%;
the inference procedure took about 3 seconds to run, which
is almost a 3 times speedup over exact lifted inference
(which took 8.2 seconds) and almost a 9 times speedup
over ground inference (which took 25.95 sec). All the other
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Figure 4: Experimental results for the various inference algorithms. (a) and (d) report time and error for lifted inference
with approximate bisimulation (var. elim. took 25.95 sec and exact lifted inference took 8.2 sec). (b) and (e) report time
and error for lifted inference with factor binning (var. elim. took 33.12 sec and exact lifted inference took 25.24 sec). (c)
and (f) report time and error for the unified lifted inference engine.

lines in the plots correspond to lifted inference with approx-
imate bisimulation run with various mini-bucket schemes.
Among these, the mini-bucket scheme with mini-buckets
restricted by argument count at i = 3 seems to be a promis-
ing setting (dotted line with triangles) since it runs faster
than lifted inference with approximate bisimulation but
does not incur significantly higher error. Another interest-
ing thing that shows up in these plots is that with mini-
buckets with i = 4 or m = 2 at path-length set to 3, the time
taken to run inference goes up noticeably. This shows that
at very low path-lengths, using mini-buckets could actually
lead to loss of symmetry in the rv-elim graph.

4.3 Lifted Inference with Factor Binning

Our second set of experiments tests our factor binning ap-
proach. The results are shown in Figure 4 (b) and Figure
4 (e). For these experiments, we used root mean squared
distance to compare two factors. More precisely, given
two factors f1 and f2 with a common joint domain D,
dist( f1, f2) =

√
1
|D| ∑x∈D( f1(x)− f2(x))2. The plots show

that as we increase ε (on the x-axis) the times for infer-
ence go down (Figure 4 (b)), and the error goes up (Figure
4 (e)). On these experiments, ground inference took about
33 seconds and exact lifted inference took 25.24 seconds
which means factor binning without mini-buckets (solid
line with triangles) achieves a speedup of about 3.5 times
over exact lifted inference and a speedup of almost 5 times
over ground inference. Among the various mini-bucket

schemes, once again i = 3 (dotted line with triangles) seems
to be the best setting which gives small but noticeable re-
ductions in run-times at almost no cost to accuracy. Notice
that mini-buckets with small settings of either m or i tends
to perform very poorly neither giving good accuracies nor
providing good run-times and this is likely due to the sheer
number of factors with which we are dealing. At such small
settings, the mini-bucket scheme produces a lot of factors
and computing the hitting set (which has a quadratic time
complexity) becomes too expensive.

4.4 Unified Lifted Inference Engine

In our last set of experiments, we used both approximate
bisimulation (path-length=3) and factor binning (ε = 0.01)
with mini-buckets (restricted by argument count i = 3).
Here we report run-times for probabilistic models with
varying number of random variables. The results are re-
ported in Figure 4 (c) and Figure 4 (f). As should be clear
from Figure 4 (c), with increasing size of the probabilistic
model all three inference procedures, ground inference, ex-
act lifted inference and approximate lifted inference, show
an increase in run-time but there is an order of magnitude
difference in times between ground inference and exact
lifted inference (which partitions identical factors together)
and another order of magnitude speedup over exact lifted
inference for approximate lifted inference (which also bins
nearly identical factors together) while keeping the accu-
racy within bounds. Thus approximate lifted inference is
more than two orders of magnitude faster than ground in-



Dataset Inf. Alg. Time (s) Arith. Ops. Rem. Ops. Acc.

Cora Ground Inf. 163.5 163 0.5 77.8
Lifted Inf. 60.6 59.9 0.7 73

CiteSeer Ground Inf. 101.0 100.8 0.2 68.7
Lifted Inf. 65.0 63.9 1.1 66.8

(a)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 65  70  75  80  85  90  95

Pr
ec

isi
on

Recall

 0
 10000
 20000
 30000
 40000
 50000
 60000

 50  100  150  200  250

#I
nt

er
m

ed
ia

te
 F

un
ct

io
ns

#Entries to be De-Duplicated

Ground Inference
Lifted Inference

(b) (c)
Figure 5: (a) Times for Cora and CiteSeer. (b) Precision-Recall curve for Cora-ER and (c) number of factors generated.

ference. The accuracies for approximate lifted inference
for these experiments varied between 65-95%. For these
complex networks, we could not run ground inference on
models with more than 256 random variables due to mem-
ory limitations. Figure 4 (f) makes it clear how the run-
time between exact lifted inference and approximate lifted
inference varies. Here we set all priors in our probabilis-
tic model similar to each other but varied the probability
of two factors being identical to each other. The plot shows
that as this probability increases, exact lifted inference cap-
tures the symmetry and does better, whereas approximate
lifted inference keeps run-times low throughout.

4.5 Experiments on Real-World Data

We experimented with a number of real world datasets.
We first report results on the Cora [14] and CiteSeer [9]
datasets. The Cora dataset contains 2708 machine learn-
ing papers with 5429 citations; each paper is labeled from
one of seven topics. The CiteSeer dataset consists of 3316
publications with 4591 citations; each paper is labeled with
one of 6 topics. The task is to predict the correct topic label
of the papers. We divided each dataset into three roughly
equal splits and performed three-fold cross valiation. For
each experiment, we train on two splits and test on the
third, randomly choosing 10% of the papers’ class labels to
be our query nodes. Each number we report is an average
across all splits. Note that, for these experiments, using the
citations in the datasets we produce Markov networks with
unbounded treewidth and then perform collective classifi-
cation [19], so we compare against ground inference with
mini-buckets restricted to 6 arguments. Also, while testing
on the third split, we include as evidence topic labels of the
papers belonging to the training set linked to from the test
set. We tried various parameter settings with our approxi-
mate lifted inference engine and report the best results. As
Table 5 (a) shows, we obtained a 2.7 times speedup for
Cora and 1.55 times speedup for CiteSeer with our approx-
imate lifted inference engine over ground inference. The
loss in accuracy was 4.8% for Cora and 1.9% for CiteSeer.
These results were obtained with path length = 2, ε = 0.01
and using mini-buckets restricted to 6 arguments. We also
show how much time was spent by each inference scheme
to multiply factors and sum over random variables (arith-
metic operations or “Arith. Ops.” in Table 5 (a)) and the
remaining operations (or “Rem. Ops.” in Table 5 (a)). As
should be clear from Table 5 (a), the various bisimulation

algorithms and hitting set computations do not really add
much overhead on these datasets; we spend about 0.2 sec-
onds, for Cora, and 0.9 seconds, for CiteSeer, more than
ground inference to implement lifted inference.

We also experimented with the Cora dataset for entity res-
olution (Cora-ER) [1]. For this experiment, we used a
Markov logic network with 46 distinct rules. Unfortu-
nately, we could not get any noticeable speedup for this
dataset. This dataset consists solely of random variables
with domain size 2 (match/non-match). As a result, all the
factors produced are extremely small in size (size of a fac-
tor is determined by the number of rows in it) which im-
plies that the time spent performing arithmetic operations
(multiplying factors and eliminating random variables) is
not the bottleneck during inference. The techniques pro-
posed in this paper are mainly directed towards reducing
the time spent to perform arithmetic operations. However,
we do present the precision-recall curve we obtained for
Cora-ER (Figure 5 (b), increasing argument count restric-
tion for the mini-buckets scheme reduces precision but in-
creases recall) and we also counted the number of interme-
diate factors computed by ground and lifted inference for
various samplings of the dataset consisting of 50-250 bib-
liographic citations to be deduplicated. Figure 5 (c) shows
that lifted inference produces far fewer intermediate factors
during inference than ground inference; recall that ground
inference produces an intermediate factor everytime a ran-
dom variable is eliminated but lifted inference saves on this
computation by computing one factor for each block in the
final partitioning. This, in turn, indicates that the dataset
possesses symmetry which could lead to speedups if the do-
main sizes of the random variables and factors were large.
Note that Figure 5 (c) also gives an idea of the reduced
memory consumption for lifted inference.

5 Related Work

Poole [17] was one of the first to show that variable elimi-
nation [23] can be modified to directly work with first-order
representations of random variables and factors (or clique
potentials) to avoid propositionalization. Subsequently,
de Salvo Braz et al. [3] further developed on Poole’s work
and referred to it as inversion elimination. They also in-
troduce another technique for lifted inference known as
counting elimination which is more expensive than inver-
sion elimination but can help in certain situations where
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Figure 6: Inversion elimination is a special case of
bisimulation-based inference: the rv-elim graph and its
compressed version. Labels not shown for legibility.

the ground model’s treewidth renders ground inference in-
feasible. It is straightforward to show that the bisimula-
tion approach to lifted inference subsumes inversion elim-
ination (and partial inversion [4]). Given a computation
of the form ∑Y ∑Xi ∏i ψ(Xi,Y ) (all ψ’s are shared fac-
tors), inversion elimination avoids the complexity of elim-
inating each Xi,∀i = 1, . . .n separately by pushing each
summation of Xi against the corresponding ψ , eliminat-
ing Xi once and then eliminating Y : ∑Y ∑Xi ∏

n
i=1 ψ(Xi,Y )

= ∑Y ∏
n
i=1 ∑Xi ψ(Xi,Y ) = ∑Y ∏

n
i=1 ψ ′(Y ) = ∑Y ψ ′n(Y ) =

ψ ′′(). Figure 6 shows how our approach achieves the same.

In other related work, Singla and Domingos [20] propose
an approach where they run a bisimulation-like algorithm
on the factor graph representing the probabilistic model to
find clusters of random variables that send and receive iden-
tical messages which helps speed up inference with loopy
belief propagation (LBP) [22], a ground approximate infer-
ence algorithm. Our approaches differ from theirs on two
counts: first, their approach requires as input the specifica-
tion of the probabilistic model in first-order format (ours,
in effect, determines the first-order representation) and sec-
ond, as the authors acknowledge in their paper, LBP often
has problems with convergence, whereas the approach we
describe in Section 2 always returns exact marginals and
the approach we describe in Section 3, even though it is
approximate, is always guaranteed to converge.

6 Conclusion and Future Work

In this paper, we described light-weight, generally appli-
cable approximation algorithms for lifted inference based
on the graph theoretic concept of bisimulation. Essentially,
our techniques are wrap-arounds for variable elimination
[23] and can be used whenever variable elimination is ap-
plicable, including computing joint conditional probabil-
ities and MAP assignments (by switching from the sum-
product operator to max-product). One interesting avenue
of future work is to look for other bounded complexity in-
ference algorithms (besides mini-buckets) that can be com-
bined with the techniques introduced in this paper. Other
avenues of future work are determining the optimal values
of the various parameters (path-length and ε) automatically
and building the compressed rv-elim graph directly from
the first-order description of the probabilistic model.
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