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Abstract

We introduce a challenging real-world planning
problem where actions must be taken at each lo-
cation in a spatial area at each point in time. We
use forestry planning as the motivating applica-
tion. In Large Scale Spatial-Temporal (LSST)
planning problems, the state and action spaces
are defined as the cross-products of many lo-
cal state and action spaces spread over a large
spatial area such as a city or forest. These
problems possess state uncertainty, have com-
plex utility functions involving spatial constraints
and we generally must rely on simulations rather
than an explicit transition model. We define
LSST problems as reinforcement learning prob-
lems and present a solution using policy gradi-
ents. We compare two different policy formula-
tions: an explicit policy that identifies each lo-
cation in space and the action to take there; and
an abstract policy that defines the proportion of
actions to take across all locations in space. We
show that the abstract policy is more robust and
achieves higher rewards with far fewer parame-
ters than the elementary policy. This abstract pol-
icy is also a better fit to the properties that prac-
titioners in LSST problem domains require for
such methods to be widely useful.

1 INTRODUCTION

In some real world planning problems there are many ac-
tions to be taken in parallel over a spatial area. This is
the case, for example, in urban planning when zoning dif-
ferent areas of a city for different uses. In infectious dis-
ease control, decisions need to be made about allocating
medicine to thousands or millions of people spread across
space based on need, cost, transportation or any number of
other variables. In forestry planning, decisions come down
to whether to cut each tree or not, or to perform some other

activity at every point in the forest. We call problems of
this form Large Scale Spatial-Temporal (LSST) planning
problems.

After further motivating the problem with details from the
example of forestry planning we introduce a general defini-
tion of LSST planning as a reinforcement learning (Sutton
and Barto, 1998) problem and discuss the properties a so-
lution needs to possess. We demonstrate how policy gradi-
ents (Williams, 1992) can satisfy many of these properties
for LSST problems. We compare two policy formulations:
an explicit policy that identifies each location in space with
parameters for controlling the actions taken and an abstract
policy that represents the proportion of actions that will be
taken across the entire space. We show that this abstract
policy produces better results with far fewer parameters and
we argue that the level of abstraction it uses more closely
matches the level needed by human planners in forestry or
other LSST domains that would utilize this method to aid
in planning.

2 FORESTRY BACKGROUND

Forestry planning as it is practiced in British Columbia
will be used as our motivating example throughout this
paper. Forestry is a very important industry in British
Columbia generating 12% of the province’s GDP and em-
ploying around 200,000 people. Large regions of forest of
up to several hundred thousand hectares are licensed by the
government to forestry companies to cut trees and sell lum-
ber. The government places many constraints on manage-
ment activities: setting a maximum annual allowable cut,
specifying areas that are off limits, specifying spatial con-
straints to avoid a high density of cut areas and to protect
wildlife migration routes and habitats. Violations of these
constraints are enforced with large fines and possible revo-
cation of licence.

Suppose you are the head forester in charge of planning
for one of these companies. Your interest is to maximize
your return and minimize your fines incurred. This can be
achieved by providing a steady supply of logs over the long



term and maintaining a healthy forest. The forest is di-
vided up into many small spatial regions we will call cells
and you must decide for every cell whether to clear-cut the
whole cell, cut a portion of the trees or do nothing in that
cell this year.

One major impact on forest health is insect infestation such
as theMountain Pine Beetle (MPB)(Eng et al., 2004). MPB
are tiny beetles that burrow under the bark of pine trees lay-
ing eggs, cutting off nutrients and leaving a deadly blue
fungus that kills the tree. MPB are an endemic species
however, in recent decades, a lack of cold winters and the
large number of older trees resulting from years of forest
fire suppression have provided the MPB population with
the conditions they need for an explosive epidemic. Cut-
ting down trees before a brood spread can kill the beetles
but the rice-sized beetles are hard to detect until a year or
two after an attack. That is when the thousands of killed
trees are easily spotted by their distinctive red color. The
infestation is devastating the forests of British Columbia,
wiping out over 50% of the harvestable pine in the past 15
years and shows no sign of stopping at the provincial or
national borders.

2.1 SOLUTION CONSIDERATIONS

In a complex domain such as forestry there are many
researchers who have developed sophisticated simulation
models for different elements of forestry planning from tree
growth to MPB growth. The explicit transition models un-
derlying these simulations are too complex and varied to
be used as conditional probabilities so we must rely on the
simulations themselves as black boxes that provide a future
forest state given some proposed set of actions and the cur-
rent state. Generating simulations is expensive, so we need
to treat all simulation data as a precious resource to be used
as effectively as possible.

In many LSST planning domains a distinction is made be-
tween strategic, tactical and operational planning. Opera-
tional planning refers to the immediate implementation of
a low level plan (eg. which particular trees to cut in which
order). Tactical planning covers mid-sized regions over
medium timescales of less than 20 years. Tactical plans
take into account local conditions (eg. where to build roads
to access the forest, assigning workers, scheduling cutting
in different areas). Strategic planning takes place at the
highest levels, focussing on properties of the entire land-
scape, spatial constraints and total rewards into the long
term future over decades or centuries. Some strategic con-
siderations in forestry are : maintaining the proportion of
trees within an age class, balancing employment between
regions, satisfying spatial constraints, reducing overall pest
levels. The total number of cells in a landscape can range
from 100-100,000. In this paper we focus on strategic
planning, as this is the level where effective use of large
amounts of data can have the greatest impact and it is an
important area of research in Forestry planning.

The result of strategic planning is a strategic policy which
is concerned primarily with the proportions of actions taken
across the landscape and their impact on long term value.
The strategic policy does not express which actions to take
in particular cells in the landscape. This is due to the
fact that over the level of the entire landscape there are
many states that the reward function does not distinguish
between. Consider a reward function based purely on the
number of trees cut and constrained by a maximum allow-
able cut. There are many ways to achieve the maximum
value that involve different assignments of actions to par-
ticular cells. These distinctions are not relevant as long
as a policy can be defined to achieve the maximum value.
In practice, the person designing the strategic policy often
does not even have the authority to specify the lowest level
action choices (eg. “Clear-cut cell 1582”) as these choices
are made by experts on the ground based on their local con-
text in accordance with the strategic policy.

We thus have two major requirements for a good LSST
planning solution:

1. the method can efficiently find a high value policy
without having an explicit transition model for the
simulation

2. we want a strategic policy that does not commit to
more detail than necessary in order to maximize re-
ward

In the following sections we give a general definition of
LSST planning problems and show how to use policy gra-
dients to achieve these requirements.

2.2 CURRENT SOLUTIONS IN FORESTRY

Many existing planning solutions in forestry have relied
heavily on assuming spatial independence between cells in
a forest. The deterministic optimization models often used,
such as linear programming, break down when faced with
uncertainty about the state of the forest and cannot use any
information about spatial relations between cells. This is a
problem in forestry (J.P.Kimmins et al., 2005) since MPB
breaks the assumption of spatial independence and adds un-
certainty to the problem. MPB can fly between nearby cells
in the forest, so the immediate neighbourhood is always rel-
evant when planning which trees to cut in order to reduce
the spread of the pests and quickly salvage trees killed by
them.

Other solution methods commonly used in forestry plan-
ning are simulation modelling and meta-heuristics. Sim-
ulation modelling is an interactive approach where the
user specifies maps, constraints and preferences for var-
ious actions and the software carries out a simulation
while choosing actions consistent with the constraints and
preferences. Some example simulation tools are ATLAS
(http://www.forestry.ubc.ca/atlas-simfor) and SELES (Fall



et al., 2003). The results from these simulation planners are
often then fed through other tools for analysis after which
the user can alter the parameters of the simulation and run
it once again. These simulations will be a useful black box
to be used by higher level RL planning techniques.

The final set of methods in common use are stochastic lo-
cal search methods such as tabu search, genetic algorithms
and simulated annealing (Pukkala and Kurttila, 2005). The
general approach is to predefine fixed plans that could be
applied to a cell over the entire time horizon. The search
proceeds to assign one of these plans to each cell, evaluate
the outcome and make local improvement steps. Simulated
annealing has offerred the best hope for integrating spatial
relations of these methods but uncertainty is generally not
dealt with in a significant way.

Uncertainty is also introduced to the otherwise relatively
predictable growth of trees by the fact that the exact loca-
tion and severity of the MPB infestation is unknown until
a year or two after an attack. Increasingly, there are ef-
forts in forestry planning to improve modelling of uncer-
tainty and complex, dynamic processes in the forest, such
as fire or pest infestations (Baskent and Keles, 2005). This
work contributes to those efforts by translating this spe-
cific domain into a general planning problem that can be
approached with recent advances from the artificial intelli-
gence community.

3 LSST DEFINITIONS

A landscape is partitioned spatially into a set of cellsC. We
assume these cells are disjoint and completely cover the
area of the landscape. Cell partitioning remains constant
over the planning horizon T .

Each cell, c ∈ C, at each timestep t ∈ [0, T ], has a state,
s ∈ S. Each cell-state is a column vector of real numbers
s[f ] for all cell-features f ∈ F . These features describe
different aspects of the cell such as elevation, the number
of trees in the cell, the number of trees per age class and
the number of MPB present in the cell. It is also possi-
ble to model spatial features in each cell which take into
account attributes of neighbouring cells. Such spatial fea-
tures provide a simple way to include some relevant spatial
information in local features of a cell. One such feature
we will use in our experiments is an aggregated count of
the number of MPB that will be invading the cell from all
neighbouring cells.

The landscape-state, s, represents the combined state1 of
all of the cells in the landscape as a function, (s : C → S).
The landscape-state at a particular timestep t and cell c is
denoted st[c].

Each cell has an action, a, taken from the set of cell-actions
1Variables or functions refering to the entire landscape of cells

will be set in bold.

A which in this simplified forestry problem consists of:
“clear-cut”, “thin trees” and “do nothing”. Similarly to
states, the landscape-action is a function (a : C → A)
representing the combined actions in all cells in the land-
scape and referred to for a particular timestep t and cell c
as at[c].

An LSST planning problem is defined as an MDP
〈S,A, r, P 〉where S andA are the sets of all possible land-
scape states and actions, r is a reward function and P is the
state transition model. The transition model P (st+1|st, at)
will generally not be available in LSST problems in any
explicit form. Instead, we assume there is access to simu-
lations of the domain developed by domain experts. These
external simulators return a new state when given the cur-
rent landscape-state and landscape-action. By making a se-
ries of calls to the simulator we can construct a trajectory,
k, of states and actions across all timesteps2,
k = 〈sk

0 ,ak
0 , sk

1 ,ak
1 , . . .〉.

The reward function, r(st,at, st+1) returns a real num-
ber representing the reward received for the actions taken
across the landscape st. The reward may contain local cell
components (eg. the value of cut trees), spatial components
(eg. constraints on the number of contiguously cut cells)
and even landscape-wide components (eg. a penalty for the
total number of MPB present). Other important constraints
in forestry are the annual allowable cut (AAC), as well as
upper and lower bounds on the proportion of the forest in
a different age classes (eg. no more than 20% of the forest
is less than 10 years old). The total discounted reward of a
trajectory is R(k) =

∑
t γtr(sk

t ,ak
t , sk

t+1) with a constant
discount factor γ ∈ [0, 1].

A partially observable MDP (POMDP) is defined as above
except that the states are now hidden and there is an addi-
tional set, O, of observations about the states. The proba-
bility distribution P (ot+1|at, st+1) models how likely the
observation is given the most recent action and the state that
resulted from that action. Although LSST planning prob-
lems are partially observable in general, for this paper we
focus on the fully observed problem.

3.1 POLICY DEFINITION

A cell-policy, π, is a distribution over actions for a given
cell-state. The probability of taking action a in a cell that
is in state s is given by π(s, a, θ). The policy parameters,
θ, are an A × F matrix of real numbers used to define the
policy as a Gibbs distribution of weighted state features:

π(s, a, θ) =
eθ[a]s

∑

b∈A

eθ[b]s
(1)

Where θ[a] is a vector of feature weights combined as a dot
product with the cell-state feature vector, s.

2When it is not relevant, the trajectory k will be dropped from
state and actions names.



3.2 LANDSCAPE POLICY

A general landscape-policy, π(s,a,θ), can be defined in
terms of π as the joint probability of choosing all of the
cell-actions in a given a set of cell-states, s. The landscape-
parameters θ define parameters for each local cell-policy.
The landscape-policy is computed as the product of the
probabilities for all cells given by the appropriate cell-
policies. We will provide two parameterizations for the
landscape-policy, πC and π1, shown below. The first for-
mulation, πC , defines an explicit policy by maintaining
separate parameters, θC : C → θ, for each cell and each
time step.

πC(s,a,θC) =
∏

c∈C

π(s[c],a[c],θC [c]) (2)

The second formulation, shown in (3), describes an abstract
policy where a single set of parameters, θ1, is used for all
cells in the landscape at that timestep.

π1(s,a,θ1) =
∏

c∈C

π(s[c],a[c],θ1) (3)

These two formulations will be used within a general policy
gradient algorithm and compared.

4 POLICY GRADIENTS

Policy gradient (PG) methods seek to find optimal policies
by following the gradient with respect to the policy param-
eters of a function describing the value of the current pol-
icy. PG researchers have recently achieved significant gains
in the types of reinforcement learning problems that can
be solved (Kersting and Driessens, 2008; Riedmiller et al.,
2007; Sutton et al., 2000; Williams, 1992). PG methods
require stochastic, parameterized policies and work well
when the state space is very large and the transition dy-
namics are not available. These properties match well with
LSST planning problems so PG methods seem a promising
place to start looking for solutions.

Policy gradient algorithms are founded on the observation
that the expected value of a stochastic policy can be com-
puted using previously sampled trajectories by weighting
the rewards actually received during each trajectory by the
probability of that trajectory given the current policy (Sut-
ton et al., 2000) (Riedmiller et al., 2007):

V θ = E
[
p(k|θ)R(k)

]
=

∫ ∞

0
p(k|θ)R(k)dk (4)

Where the probability of a trajectory k is:

p(k|θ) = p(s0)
∏

t

P (sk
t |sk

t−1,a
k
t−1)π(sk

t ,ak
t ,θt) (5)

As stated earlier, in LSST planning problems we will gen-
erally be given a black box simulator rather than the tran-
sition model P . However, it turns out that computing the
gradient of the value function with respect to the policy pa-
rameters,∇θV θ, does not require knowing V θ or P (Ried-
miller et al., 2007; Sutton et al., 2000):

∇θV θ = ∇θ

∫
p(k|θ)R(k)dk =

∫
∇θp(k|θ)R(k)dk

=
∫

p(k|θ)∇θ log p(k|θ)R(k)dk

≈ 1
|K|

∑

k∈K

∇θ log p(k|θ)R(k) (6)

Where K is the finite set of sampled trajectories. The log
trajectory likelihood, ∇θ log p(k|θ), needed in (6) can be
computed using (5) to be:

∇θ log p(k|θ) = ∇θ log p(s0) +∇θ

∑

t

log P (sk
t |sk

t−1,a
k
t−1)

+∇θ

∑

t

log π(sk
t ,ak

t ,θt)

=
∑

t

∇θ log π(sk
t ,ak

t ,θt) (7)

If we choose to use πC as the landscape policy then the
final gradient of the policy value becomes:

∇θV θ ≈ 1
|K|

∑

k

∑

t

∇θ log πC(sk
t ,ak

t ,θC
t )R(k)

=
1

|K|
∑

k

∑

t

∇θ log
∏

c

π(sk
t [c],ak

t [c],θC
t [c])R(k)

=
1

|K|
∑

k

∑

t

∑

c

∇θ log π(sk
t [c],ak

t [c],θC
t [c])R(k)

(8)

The basic policy gradient algorithm then involves two main
steps, generating samples and updating the policy. First,
a new sample trajectory, k, is generated using the current
policy parameters, θ, and this trajectory is used to compute
∇θV θ. Then, the policy parameters are updated by follow-
ing the gradient of the policy value:

θ′ = θ + µ∇θV θ (9)

Where µ is a learning rate that controls the size of the pol-
icy update steps. This learning rate is notoriously difficult
to choose as it needs to scale with the magnitude of the
derivative. Riedmiller et al. (2007) describe a few tech-
niques called optimal base-lining and Rprop to counteract
these difficulties which we use. We describe these methods
briefly here.

4.1 REDUCING THE VARIANCE OF∇θV θ

The varying magnitude ofR(k) can lead to high variance in
the estimate of∇θV θ, which will impede learning. Part of



the variance can be removed by subtracting a constant base-
line b from each occurrence of R(k) in equations (4) and
(8). This is valid since ∇θ

∫
p(k|θ)dk = ∇θ1 = 0 (Ried-

miller et al., 2007). The optimal baseline for our problem
(shown here for πC)is computed for each policy parameter
θ[α, f ] for every α ∈ A and f ∈ F as follows:

bt[α, f ] =
∑

k

[∑
t

∑
c∇αf log π(sk

t [c],ak
t [c],θC

t [c])
]2

R(k)
∑

k

[∑
t

∑
c∇αf log π(sk

t [c],ak
t [c],θC

t [c])
]2 (10)

Another technique used to improve policy gradient perfor-
mance is called Rprop (Riedmiller et al., 2007) which re-
places scaled updating using the full gradient as in eq (9)
with an update-value, ∆θ, which has the same direction
as ∇θV θ but a magnitude that is unrelated to the gradi-
ent. The magnitude of ∆θ is similar to the magnitude of
the parameters in θ and is updated incrementally based on
the progress of the policy search. To update the policy we
compute θ′ = θ + ∆θ and then increment the value of
∆θ in the appropriate direction based on the gradient. See
(Riedmiller et al., 2007) for more details.

4.2 SOLVING LSST PROBLEMS USING POLICY
GRADIENTS

The formulation for ∇θV θ in (8) requires us to know
∇ log π(s, a, θ). Our choice of policy parameterization al-
lows us to express this analytically. We compute the partial
derivative∇αfV θ with respect to parameter θ[α, f ] for ev-
ery α ∈ A and f ∈ F :

∇αf log π(s, a, θ) = ∇αf log
(

eθ[a]s

∑
b∈A eθ[b]s

)

= ∇αf log eθ[a]s −∇αf log
∑

b

eθ[b]s

= ∇αfθ[a]s−
∇αf

∑
b eθ[b]s

∑
b eθ[b]s

= ∇αfθ[a]s−
∑

b eθ[b]s∇αfθ[b]s∑
b eθ[b]s

This partial derivative will be different depending on
whether the action for this cell, a, matches the action as-
sociated with parameter being differentiated, α. Since all
the policy parameters are independent we know that for any
action a ∈ A and feature g ∈ F :

∇αfθ[a, g] =

{
1 if α = a and f = g

0 otherwise
(11)

This allows us to simplify∇αf log π(s, a, θ) to:

s[f ](1− π(s, α, θ)) : if α = a (12)
−s[f ]π(s, α, θ) : if α *= a (13)

4.3 LSST POLICY GRADIENT ALGORITHM

Combining all of these elements together we arrive at the
policy gradient algorithm that iteratively generates new tra-
jectories and updates the policy based on the current set of
trajectories:

Algorithm: LSST-PG(s0)
initialize θ randomly
∆θ = 0.1;K = ∅
repeat maxSamples times

// Sample new trajectory
〈s,a, R〉 = generateTrajectory(s0, θ)
K = K ∪ 〈s,a, R〉
// Update policy
update b as in (10)
∇θV θ = 1

|K|
∑

k

∑
t(R(k)− bt)∇θ log π(sk

t ,ak
t ,θt)

update∆θ using∇θV θ as in sec 4.1
θ = θ + ∆θ

return θ

generateTrajectory(s0, θ)
R = 0
for t = 0 to T do

〈at, rt, st+1〉 = runSim(st, θt)
R = R + γtrt

return 〈s,a, R〉

runSim(st, θt)
foreach c in C do

// sample action distribution
at[c] ∼ π(st[c],θC

t [c]) (or π(st[c],θ1
t ))

st+1 = externalSimulator(st,at)
rt = reward(st,at, st+1)
return 〈at, rt, st+1〉

We set the initial value of the gradient update-value,∆θ to
a value of 0.1 which has been found to be reasonable for
many problems (Riedmiller et al., 2007). The main loop
repeats untilmaxSamples is reached which is simply an up-
per bound on the number of trajectories to sample. Some
other condition could easily be used such as a measure of
the current convergence of the gradient. Note also that the
sample and update steps are independent and could be run
varying numbers of times or in parallel.

5 TWO ALGORITHM VARIANTS

In section 2.1, we outlined two major requirements of a
good LSST planning solution, dealing with the lack of an
explicit transition model and defining a strategic policy that
does not overcommit to too much low level detail.

Policy gradients provide a way to satisfy the first require-
ment as they do not require a model and only follow the



gradient of the policy value. One fairly obvious approach
is to define a landscape policy using πC which maintains
parameters for every aspect of the state space with θC

t [c]
defined for each and every cell. We will call this algorithm
LSST-PGC and it is simply the LSST-PG algorithm shown
above where πC fulfills the function of π in the code.

5.1 ABSTRACT ACTIONS

The algorithm LSST-PGC has two major problems. First, it
gives us an enormous number of parameters to search over
with |A|×|F |×T×|C| dimensions. As we mentioned ear-
lier, |C| could be on the order of 100,000 whereas |A|, |F |
and T are generally less than 100. This enormous space
makes convergence to an optimal policy very difficult.

The second problem is that LSST-PGC does not give us
a strategic policy but instead a very low level operational
policy. The optimal strategic policy should not distinguish
between particular cells. The policy should treat cells in-
terchangeably and define a pattern of actions that gives the
proportion of cells each action will be applied to across the
landscape. We do not want to require a commitment to par-
ticular actions for particular cells in our strategic policy.

The policy πC is, in essence, too focussed on the ‘trees’ to
ever see the ‘forest’ and find these patterns of actions. To
achieve a strategic policy we instead propose to use a sin-
gle, stochastic action for the entire landscape and a single
set of parameters θ1

t for each step in time. This is the policy
π1 shown in equation (3). We define a second algorithm,
LSST-PG1, where the role of π in LSST-PG is fulfilled by
π1 instead of πC . We also need to alter the sampling line
in the third method runSim to at[c] ∼ π(st[c],θ1

t ).

This shift to one set of parameters seems minor, but its im-
pact is profound. By optimizing π1 we will be learning
how to act on abstract cells that could occur anywhere in
the landscape. While the policy is still defined for each
cell, it now does not distinguish between cells based on
their identity. All cells are treated equally based on their
state features. Recall that cell features can also take into
account information from neighbouring cells such as MPB
spread.

One way to think about the difference between πC and π1

is by an analogy to time. A policy can be stationary or
nonstationary with respect to time. A stationary policy de-
fines one set of parameters for all timesteps. Similarly, π1

is stationary with respect to space. This spatially station-
ary policy defines a distribution over actions based on cell
features that apply to any cell in the landscape. Note that
this spatially stationary policy is well-defined for any num-
ber of cells and thus has arbitrary scale much as a station-
ary policy has arbitrary scale in terms of planning horizons.
A spatially stationary policy would have many advantages
during planning, allowing us to easily change scale or ap-
ply a learned policy to different subregions of the landscape
without modification.

6 EXPERIMENTS

The goal of our research is to develop a planning algorithm
that can utilize existing simulations from LSST domains in
a scalable way to find high value strategic policies. There
are a great variety of simulators in forestry that each re-
quire extensive expertise to set up and integrate with. We
decided for this stage of our research to develop our own
simple forest simulator to evaluate the performance of gra-
dient descent on this problem. Our simulator includes state
features for the distribution of tree species and age classes,
the level of MPB in a cell and its neighbouring cells. The
dynamics include tree birth, growth and death, replanting
of young trees after clearcutting, killing of trees by MPB
and the spread of MPB to nearby cells year to year.

We implemented the two algorithms, LSST-PG1 and LSST-
PGC , in Matlab and ran all tests on a dual processor Pen-
tium 4 3.2GHz PC with 2GB RAM running Windows XP.

The initial landscape states were varied randomly around
representative values for state features based on common
distributions present in data for BC forests for tree species,
tree age, MPB presence and other features.

The reward function assigns value to individual trees cut
and penalizes various properties of the landscape state,
such as, a quadratic penalty on the deviation from a de-
sired tree density for the entire landscape, linear penal-
ties for overcutting and for the number of trees killed by
MPB, and base costs for maintaining the forest (salaries,
license fees, etc.) to inhibit a strategy of no cutting at all.
Note that the reward function is not equally well defined
at all points. The “Do Nothing” policy 〈DoNothing =
1.0, ClearCut = 0.0, Thin = 0.0〉 is a bad policy to fol-
low in our model, as it is all cost and no revenue, but it is
actually much worse than the reward indicates. Modellers
are not willing to even assign a utility to situations where
the entire industry ceases to exist or, similarly, where all
of the trees are cut down and the ecosystem is totally de-
stroyed. Rewards can be defined accurately within “reason-
able” regions of policy space, but they must still be defined
at all points to serve as a signal to be used during policy
search.

7 RESULTS

Figure 1 shows a typical result for the total reward received
by the two algorithms. The reward is shown for each tra-
jectory sample and is averaged over 20 trials for a small
problem with 5 cells and 5 timesteps. Each trial sampled
200 trajectories and updated the policy after every 5 sam-
ples using all trajectories sampled up to that point. The ini-
tial policy for each trial was specified by uniform weights
across all state features combined with an initial action
distribution for the action components of the parameters:
〈DoNothing = 1.0, ClearCut = 0.0, Thin = 0.0〉. Ini-
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Figure 1: Total reward received average over 20 trials for
LSST-PGC and LSST-PG1 on 5 cells with 5 timesteps
after 200 samples with policy updates every five sam-
ples. Initial policy was 〈DoNothing = 1.0, ClearCut =
0.0, Thin = 0.0〉.

tially all timesteps (and cells) will have the same action
distribution before they begin diverging.

LSST-PG1 consistently finds higher value policies than
LSST-PGC . The abstract policy of LSST-PG1 is more ro-
bust across multiple trials whereas LSST-PGC fixes onto a
deterministic set of action assignments to particular cells
that is tuned to the start state for each trial.

Figure 2 shows the initial and final policies for the two al-
gorithms on a single trial of a 20 cell planning problem.
The initial policy in this trial was set to 〈DoNothing =
.8, ClearCut = .15, Thin = .05〉 for both algorithms.
The actions that are actually taken are not exactly the same
even with identical initial parameters because of the differ-
ent policy structures and stochastic choices being made but
the final policies are very different. LSST-PG1 has found
a policy that does even less cutting than the initial policy
but that cuts more in timesteps seven and eight to achieve a
higher value.

The LSST-PGC algorithm has found a policy with a much
higher proportion of cutting. This policy is deterministic,
each cell at each timestep always has the same action taken
over many different trajectory samples. LSST-PGC cannot
break out of this policy, even though it is incurring major
penalties for overcutting, because the value of a policy is
based on weighting rewards by the liklihood of past trajec-
tories under the current policy. This makes a deterministic
policy that doesn’t change between samples very attractive.
Once a deterministic policy is found, diverging on some
cell will only lower the expected value of the policy. Algo-

rithm LSST-PG1 does not have this problem since there are
fewer deterministic policies in which to get stuck and they
all have very low reward (all “Do Nothing, all “Cut” etc.).

Figure 3 shows the gradients of the combined parameters
for each action in a policy for the same trial as in fig-
ure 2. After the LSST-PGC policy converges to a nar-
row range of rewards the gradient begins converging. For
LSST-PG1, the variation in the gradient drops significantly
once a ’good’ policy is found.

The LSST-PG1 algorithm runs about three times faster than
LSST-PGC on the same number of trials and trajectories.
This is not surprising since both algorithms sample actions
for every cell and timestep while LSST-PGC uses more
memory and time managing the large number of parame-
ters. The actual runtimes for LSST-PG1 range from 2 min-
utes for a 5 cell, 5 timestep problem, up to 230 minutes
for a 10 timestep, 30 cell problem. With the current imple-
mentation we estimate that solving a problem with a couple
thousand cells would take about two days. Our implemen-
tation has a lot of room for efficiency improvements but
other advances will be needed to improve speeds even fur-
ther. For realistic problem sizes of hundreds of thousands
of cells, forestry planners currently expect runtimes of tens
of minutes (for linear problems) or up to several hours (for
’meta-heuristic’ solutions).

8 RELATED AND FUTUREWORK

We have used our own forest simulator here to keep imple-
mentation simple. To improve realism it would be best to
switch to a simulator in use by forestry planners. The tools
used for simulation planning such as those discussed in sec-
tion 2.2 could be used for this. We are working with re-
searchers in forestry to integrate our algorithmwith more of
their own data and simulations to experiment at the larger
scales needed for results to be useful for Forestry planning
experts.

Our work builds upon research on model-free reinforce-
ment learning (RL)(Sutton and Barto, 1998) and policy
gradient methods (Riedmiller et al., 2007). Sutton et al.
(2000) described the basis for using policy gradients within
an RL framework. The algorithm presented here includes
some extensions to basic PG such as reward baselining and
Rprop. More advanced PG techniques are available such
as natural gradients, which have been shown by Riedmiller
et al. (2007) to significantly improve performance by com-
puting the reward baseline using the Fisher information ma-
trix of the gradient. Another obvious next step is to fully
model the uncertainty about the current state and use policy
gradients to solve a POMDP version of the LSST problem.
Also, the independence of the update policy and generate
trajectory steps would make parallelization of the algorithm
straightforward.

Outside of policy gradient methods there is Least Square
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Figure 2: In each cell the available actions are 〈“DoNothing′′, “ClearCut′′, “ThinTrees′′〉. The number of cells as-
signed each of these actions are shown as areas. The initial and final policies after optimization for both LSST-PG1 and
LSST-PGC are shown. This trial used 200 sampled trajectories using, 10 timesteps and 20 cells. The initial policy was set
to 〈DoNothing = .8, ClearCut = .15, Thin = .05〉 for both algorithms.

Policy Iteration (LSPI) (Lagoudakis and Parr, 2001), an-
other RL approach that uses a parameterized policy and
learns without a transition model by using a stored history
of sampled trajectories. As the policy changes the value of
the policy can be recomputed based on these trajectories.

LSST problems also have many similarities to multi-agent
planning problems as each cell can be viewed as an agent
while we are seeking to optimize a joint reward based on
the actions of all agents. Guestrin et al. (2002) applied
LSPI to multi-agent problems to find an initial estimate
of the value function and specify a policy in proportion
to the values of each action. New research into decen-
tralized (PO)MDPs (Seuken and Zilberstein, 2008) brings
together various threads in coordinated multi-agent plan-
ning into one language. LSST planning problems could be
a rich problem domain for this new field. However, many
multi-agent methods assume that the value function is a lin-
ear combination of the local value functions of individual
agents. In LSST problems this assumption does not always
hold as there are nonlocal constraints on actions across the
landscape such as landscape cut quotas.

The explicit policy, πC , is overly detailed and unwieldy for
real world planning. The abstract policy, π1, is at a more
appropriate, strategic level of abstraction but it is merely
the other extreme end of a spectrum of policies. In be-
tween are varying levels of abstraction that could be de-
fined by using more than one set of policy parameters ap-
plied to groups of cells. These groups could be learned
from clustering of features or by hierarchical decomposi-
tion of cell-state space by iteratively adding new features
to define groups of similar cells. Another idea along these
lines to explore is using multiple weighted policies where
the weights determine which policies are applied to which
cells and these weights are part of the learning process.

Spatial relations between cells are a major component of
LSST problems which we have addressed here with simple
aggregation features from neighbouring cells. This method
could be expanded with more complex relational aggre-
gators or by adding new variables modelling relations be-
tween groups of cells and represented in the reward and
policy functions. Recently, Kersting and Driessens (2008)
introduced a non-parametric policy gradient approach that
might be useful for LSST planning. Their method uses a
gradient tree boosting approach for learning policies in re-
lational domains.

The long timescales used in LSST problems ensure that
long term plans will not be followed blindly for any length
of time. Thus, planning over time periods of varying
lengths, such as is done in the SMDP literature (Barto and
Mahadevan, 2003), could be useful. There may be enor-
mous gains available to be made by dynamically allowing
greater abstraction of policies, models and time granularity
as time progresses.

9 CONCLUSIONS

In this paper we have introduced Large Scale Spatial-
Temporal planning problems, which are very challenging
instances of general planning where states and actions are
spatially divided into components. We have described how
to apply RL techniques to these problems and demonstrated
one way to use policy gradient methods to find good poli-
cies in a simulated forestry planning problem. We showed
that use of a spatially stationary policy formulation greatly
reduces the parameter space to be searched and improves
the value of the resulting policy.

We hope that raising awareness about this particular set of
problems will benefit both the UAI research community
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Figure 3: Policy gradients for parameters relating to each action, summed across all cells and timesteps for one trial with
200 sampled trajectories, 20 cells and 10 timesteps.

and the many researchers and planners in real-world plan-
ning domains with LSST structures who are looking for a
way to make their very complex problems more manage-
able.
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