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Abstract

This paper studies quantum annealing (QA)
for clustering, which can be seen as an exten-
sion of simulated annealing (SA). We derive
a QA algorithm for clustering and propose an
annealing schedule, which is crucial in prac-
tice. Experiments show the proposed QA al-
gorithm finds better clustering assignments
than SA. Furthermore, QA is as easy as SA
to implement.

1 Introduction

Clustering is one of the most popular methods in data
mining. Typically, clustering problems are formulated
as optimization problems, which are solved by algo-
rithms, for example the EM algorithm or convex relax-
ation. However, clustering is typically NP-hard. The
simulated annealing (SA) (Kirkpatrick et al., 1983)
is a promising candidate. Geman and Geman (1984)
proved SA was able to find the global optimum with
a slow cooling schedule of temperature T . Although
their schedule is in practice too slow for clustering of
a large amount of data, it is well known that SA still
finds a reasonably good solution even with a faster
schedule than what Geman and Geman proposed.

In statistical mechanics, quantum annealing (QA) has
been proposed as a novel alternative to SA (Kadowaki
and Nishimori, 1998; Santoro et al., 2002; Matsuda
et al., 2009). QA adds another dimension, Γ, to SA
for annealing, see Fig.1. Thus, it can be seen as an ex-
tension of SA. QA has succeeded in specific problems,
e.g. the Ising model in statistical mechanics, and it is
still unclear that QA works better than SA in general.
We do not actually think QA intuitively helps cluster-
ing, but we apply QA to clustering just as procedure to
derive an algorithm. A derived QA algorithm depends
on the definition of quantum effect Hq. We propose
quantum effect Hq, which leads to a search strategy
fit to clustering. Our contribution is,

1. to propose a QA-based optimization algorithm for
clustering, in particular

(a) quantum effect Hq for clustering

(b) and a good annealing schedule, which is cru-
cial for applications,

2. and to experimentally show the proposed al-
gorithm optimizes clustering assignments better
than SA.

We also show the proposed algorithm is as easy as SA
to implement.

The algorithm we propose is a Markov chain Monte
Carlo (MCMC) sampler, which we call QA-ST sam-
pler. As we explain later, a naive QA sampler is in-
tractable even with MCMC. Thus, we approximate
QA by the Suzuki-Trotter (ST) expansion (Trotter,
1959; Suzuki, 1976) to derive a tractable sampler,
which is the QA-ST sampler. QA-ST looks like parallel
m SAs with interaction f (see Fig.2). At the begin-
ning of the annealing process, QA-ST is almost the
same as m SAs. Hence, QA-ST finds m (local) optima
independently. As the annealing process continues, in-
teraction f in Fig.2 becomes stronger to move m states
closer. QA-ST at the end picks up the state with the
lowest energy in m states as the final solution.

QA-ST with the proposed quantum effect Hq works
well for clustering. Fig.3 is an example where data
points are grouped into four clusters. σ1 and σ2 are
locally optimal and σ∗ is globally optimal. Suppose m
is equal to two and σ1 and σ2 in Fig.2 correspond to σ1

and σ2 in Fig.3. Although σ1 and σ2 are local optima,
the interaction f in Fig.2 allows σ1 and σ2 to search
for a better clustering assignment between σ1 and σ2.
Quantum effect Hq defines the distance metric of clus-
tering assignments. In this case, the proposed Hq lo-
cates σ∗ between σ1 and σ2. Thus, the interaction f
gives good chance to go to σ∗ because f makes σ1 and
σ2 closer (see Fig.2). The proposed algorithm actually
finds σ∗ from σ1 and σ2. Fig.3 is just an example.
However, a similar situation often occurs in cluster-
ing. Clustering algorithms in most cases give “almost”



Figure 1: Quantum annealing (QA)
adds another dimension to simulated
annealing (SA) to control a model.
QA iteratively decreases T and Γ
whereas SA decreases just T .

Figure 2: Illustrative explanation of QA. The left figure
shows m independent SAs, and the right one is QA algo-
rithm derived with the Suzuki-Trotter (ST) expansion. σ
denotes a clustering assignment.

globally optimal solutions like σ1 and σ2, where the
majority of data points are well-clustered, but some
of them are not. Thus, a better clustering assignment
can be constructed by picking up well-clustered data
points from many sub-optimal clustering assignments.
Note an assignment constructed in such a way is lo-
cated between the sub-optimal ones by the proposed
quantum effect Hq so that QA-ST can find a better
assignment between sub-optimal ones.

2 Preliminaries

First of all, we introduce the notation used in this
paper. We assume we have n data points, and they
are assigned to k clusters. The assignment of the i-
th data point is denoted by binary indicator vector
σ̃i. For example, when k is equal to two, we denote
the i-th data point assigned to the first and the sec-
ond cluster by σ̃i = (1, 0)T and σ̃i = (0, 1)T , re-
spectively. The assignment of all data points is also
denoted by an indicator vector, σ, whose length is kn

because the number of available assignments is kn. σ
is constructed with {σ̃i}

n
i=1, σ =

⊗n
i=1 σ̃i, where ⊗ is

the Kronecker product, which is a special case of the
tensor product for matrices. Let A and B be matrices

where A=

(

a11 a12

a21 a22

)

. Then, A⊗B=

(

a11B a12B
a21B a22B

)

(see Minka (2000) for example). Only one element
in σ is one, and the others are zero. For example,
σ = σ̃1⊗σ̃2 = (0, 1, 0, 0)T when k = 2, n = 2, the first
data point is assigned to the first cluster (σ̃1 = (1, 0)T )
and the second data point is assigned to the second
cluster (σ̃2 = (0, 1)T ). We also use k by n matrix Y
to denote the assignment of all data,

Y (σ) = (σ̃1, σ̃2, ..., σ̃n). (1)

We do not store σ in memory whose length is kn, but
we store Y . We use σ only for the derivation of quan-
tum annealing. The proposed QA algorithm is like

 

 

cluster 1; cluster 2; cluster 3; cluster 4;

σ1 (local optimum) σ2 (local optimum)

σ∗ (global optimum)

Figure 3: Three clustering results by a mixture of four
Gaussians (i.e. #clusters=4).

parallel m SAs. We denote the j-th SA of the parallel
SA by σj . The i-th data point in σj is denoted by σ̃j,i,
s.t. σj =

⊗n
i=1 σ̃j,i. When A is a matrix, eA is the

matrix exponential of A defined by eA =
∑∞

l=0
1
l!A

l .

3 Simulated Annealing for Clustering

We briefly review simulated annealing (SA) (Kirk-
patrick et al., 1983) particularly for clustering. SA
is a stochastic optimization algorithm. An objective
function is given as an energy function such that a
better solution has a lower energy. In each step, SA
searches for the next random solution near the current
one. The next solution is chosen with a probability
that depends on temperature T and on the energy
function value of the next solution. SA almost ran-



domly choose the next solution when T is high, and
it goes down the hill of the energy function when T is
low. Slower cooling T increases the probability to find
the global optimum.

Algorithm 1 summarizes a SA algorithm for clustering.
Given inverse temperature β = 1/T , SA updates state
σ with,

pSA(σ;β) =
1

Z
exp [−βE(σ)] , (2)

where E(σ) is the energy function of state σ,
and Z is a normalization factor defined by
Z =

∑

σ exp(−βE(σ)). For probabilistic mod-
els, the energy function is defined by E(σ) ≡
− log pprob-model(X,σ) where pprob-model(X,σ) is given
by a probabilistic model and X is data. Note
pSA(σ;β = 1) = pprob-model(σ|X). For loss-function-
based models (e.g. spectral clustering), which searches
for σ = argminσ loss(X,σ), the energy function is de-
fined by E(σ) = loss(X,σ).

In many cases, the calculation of Z in (2) is intractable.
Thus, Markov chain Monte Carlo (MCMC) is utilized
to sample a new state from a current state. In this pa-
per, we focus on the Gibbs sampler in MCMC meth-
ods. Each step of the Gibbs sampler draws an assign-
ment of the i-th data point, σ̃i, from,

pSA(σ̃i|σ\σ̃i) =
exp [−βE(σ)]

∑

σ̃i
exp [−βE(σ)]

, (3)

where σ\σ̃i means {σ̃j |j 6= i}. Note the denominator
of (3) is summation over σ̃i, which is tractable (O(k)).

4 Quantum Annealing for Clustering

Our goal of this section is to derive a sampling al-
gorithm based on quantum annealing (QA) for clus-
tering. On the way to the goal, our contribution is
three folds, which are a well-formed quantum effect
in Section 4.1, an appropriate similarity measure for
clustering in Section 4.2 and an annealing schedule in
Section 4.3.

4.1 Introducing Quantum Effect and the

Suzuki-Trotter expansion

Before we apply QA to clustering problems, we set
them up in a similar fashion to statistical mechanics.
We reformulate (2) by the following equation,

pSA(σ;β) =
1

Z
σT e−βHcσ, (4)

where Hc is a kn by kn diagonal matrix. Hc is called
(classical) Hamiltonian in physics. For example, we

have the following Hc when k = 2 and n = 2.

Hc =









E(σ(1)) 0 0 0
0 E(σ(2)) 0 0
0 0 E(σ(3)) 0
0 0 0 E(σ(4))









. (5)

In this example, σ(t) indicates the t-th assignment of
kn available assignments, i,e. σ(1) = (1, 0, 0, 0)T ,
σ(2) = (0, 1, 0, 0)T , σ(3) = (0, 0, 1, 0)T and
σ(4) = (0, 0, 0, 1)T . e−βHc is the matrix exponen-
tial in (4). Since Hc is diagonal, e−βHc is also di-
agonal with [e−βHc ]tt = exp(−βE(σ(t))). Hence, we
find σ(t)T e−βHcσ(t) = exp(−βE(σ(t))) and (4) equal
to (2). In practice, we use MCMC methods to sample
σ from pSA(σ;β) in (4) by (3). This is because we
do not need to calculate Z and it is easy to evaluate
σT e−βHcσ, which is equal to exp(−βE(σ)).

QA draws a sample from the following equation,

pQA(σ;β,Γ) =
1

Z
σT e−βHσ, (6)

where H is defined by H = Hc + Hq. Hq represents
quantum effect. We define Hq by Hq =

∑n
i=1 ρi where

ρi =





i−1
⊗

j=1

Ek



⊗ ρ ⊗





n
⊗

j=i+1

Ek



, ρ=Γ(Ek − 1k),

Ek is the k by k identity matrix, and 1k is the k by
k matrix of ones, i.e. [1k]ij = 1 for all i and j. For
example, H is,

H =









E(σ(1)) −Γ −Γ 0
−Γ E(σ(2)) 0 −Γ
−Γ 0 E(σ(3)) −Γ
0 −Γ −Γ E(σ(4))









, (7)

when k = 2 and n = 2. The derived algorithm depends
on quantum effect Hq. We found our definition of Hq

worked well. We also tried a couple of Hq. We explain
a bad example of Hq later in this section.

QA samples σ from (6). For SA, MCMC methods are
exploited for sampling. However, in quantum mod-
els, we cannot apply MCMC methods directly to (6)
because it is intractable to evaluate σT e−βHσ unlike
σT e−βHcσ = exp(−βE(σ)). This is because e−βH is
not diagonal whereas e−βHc is diagonal. Thus, we ex-
ploit the Trotter product formula (Trotter, 1959) to
approximate (6). If A1, ..., AL are symmetric matrices,

the Trotter product formula gives, exp
(

∑L
l=1 Al

)

=
(

∏L
l=1 exp(Al/m)

)m

+ O
(

1
m

)

. Note the residual of fi-

nite m is the order of 1/m. Hence, this approxima-
tion becomes exact in the limit of m → ∞. Since



H = Hc + Hq is symmetric, we can apply the Trotter
product formula to (6). Following (Suzuki, 1976), (6)
reads the following expression,

Theorem 4.1.

pQA(σ1;β,Γ)

=
∑

σ2

...
∑

σm

pQA-ST(σ1, σ2, ..., σm;β,Γ) + O

(

1

m

)

, (8)

where

pQA-ST(σ1, ..., σm;β,Γ)

≡
1

Z

m
∏

j=1

pSA(σj ;β/m)es(σj ,σj+1)f(β,Γ), (9)

s(σj , σj+1) =
1

n

n
∑

i=1

δ(σ̃j,i, σ̃j+1,i), (10)

f(β,Γ)=n log

(

1 +
k

e
kβΓ

m − 1

)

. (11)

The derivation from (6) to (8) is called the Suzuki-
Trotter expansion. We show the details of the deriva-
tion in Appendix A. (8) means sampling σ1 from

pQA(σ1;β,Γ) is approximated by sampling (σ1, ..., σm)
from pQA-ST(σ1, ..., σm). (9) shows pQA-ST is similar to
parallel {pSA(σj ;β/m)}m

j=1, but it has quantum inter-

action es(σj ,σj+1)f(β,Γ). Note if f(β,Γ) = 0, i.e. Γ =
∞, the interaction disappears, and pQA-ST becomes
m independent SAs. s(σj , σj+1) takes [0, 1] where
s(σj , σj+1) = 1 when σj = σj+1 and s(σj , σj+1) = 0
when σj and σj+1 are completely different. Thus, we
call s(σj , σj+1) similarity. Even with finite m, we can
show the approximation in (8) becomes exact after
enough annealing iterations has passed with our an-
nealing schedule proposed in Section 4.31.

The similarity in (10) depends on quantum effect Hq.
A different Hq results in a different similarity. For ex-
ample, we can derive an algorithm with quantum effect
H′

q = Γ(Ekn −1kn). H′
q gives similarity s′(σj , σj+1) =

∏n
i=1 δ(σ̃j,i, σ̃j+1,i). Going back to Fig.3, we notice

s(σ1, σ2) > 0 but s′(σ1, σ2) = 0. In this case, pQA-ST

with H′
q is just m independent SAs because interaction

f is canceled by s′(σ1, σ2) = 0, and pQA-ST is unlikely
to search for σ∗. On the other hand, pQA-ST with Hq

is more likely to search for σ∗ because interaction f
allows σ1 and σ2 to go between σ1 and σ2.

Now, we can construct a Gibbs sampler based on
pQA-ST in a similar fashion to (3). Although the
sampler is tractable for statistical mechanics, it is in-
tractable for machine learning. We give a solution to

1The residual of the approximation in (8) is dominated
by β2Γ with small β and large Γ. Using the annealing
schedule proposed in Section 4.3, the residual goes to zero
as annealing continues (β → 0 and Γ → ∞).

σ1 = σ′
2 σ2

Figure 4: σ1 and σ2 give the same clustering but have
different cluster labels. Thus, s(σ1, σ2) = 0. After
cluster label permutation from σ2 to σ′

2, s(σ1, σ
′
2) = 1.

The purity, s̃, gives s̃(σ1, σ2) = 1 as well.

Figure 5: The schedules of β and f(β,Γ).

the problem in Section 4.2. We also discuss the an-
nealing schedule of β and Γ in Section 4.3, which is a
crucial point in practice.

4.2 Cluster-Label Permutation

Our goal is to make an efficient sampling algo-
rithm. In a similar fashion to (3), we can con-
struct a Gibbs sampler pQA-ST(σ̃j,i|{σ}

m
j=1\σ̃j,i) whose

computational complexity is the same as that of
(3). However, the sampler can easily get stuck in
local optima, which is for example pQA-ST(σ1, σ2)
in Fig.4. If we can draw σ′

2 in Fig.4 from σ2,
pQA-ST(σ1, σ

′
2) is a better state than pQA-ST(σ1, σ2) i.e.

pQA-ST(σ1, σ
′
2) ≥ pQA-ST(σ1, σ2) because s(σ1, σ

′
2) =

1, s(σ1, σ2) = 0 and f(β,Γ) ≥ 0 in (9). Since sam-
pler pQA-ST(σ̃j,i|{σ}

m
j=1\σ̃j,i) only changes the label of

one data point at a time, the sampler cannot sam-
ple σ′

2 from σ2 efficiently. In statistical mechanics, a
cluster label permutation sampler is applied to cases
such as Fig.4. The label permutation sampler does
not change cluster assignments but draws cluster label
permutation, e.g. σ′

2 from σ2 in one step. In other
words, the sampler exchanges rows of matrix Y (σ) de-
fined in (1). In the case of Fig.4, k is equal to four,
so we have 4! = 24 choices of label permutation. The
computational complexity of the sampler is O(k!) be-
cause its normalization factor requires summation over
k! choices. The sampler is tractable for statistical me-
chanics due to relatively small k. However, it is in-
tractable for machine learning where k can be very
large.

We introduce approximation of pQA-ST so that we do
not need to sample label permutation, whose com-



Algorithm 1 Simulated Annealing for Clustering

1: Initialize inverse temperature β and assignment σ.
2: repeat

3: for i = 1, ..., n do

4: Draw the new assignment of the i-th data
point, σ̃i, with a probability given in (3).

5: end for

6: Increase inverse temperature β.
7: until State σ converges

putational complexity is O(k!). In particular, we
replace similarity s(σj , σj+1) in (9) by the purity,
s̃(σj , σj+1). The purity, s̃(σj , σj+1), is defined by

s̃(σj , σj+1) ≡ 1
n

∑k
c=1 maxc′=1...k

[

Y (σj)Y (σj+1)
T
]

c,c′

where Y is defined in (1), and [A]c,c′ denotes the
(c, c′) element of matrix A. In the case of Fig.4,
s̃(σ1, σ2) = 1 whereas s(σ1, σ2) = 0. In general,
s(σ1, σ2) ≤ s̃(σ1, σ2).

Let σ̃j,i be the i-th data point of assignment σj . The
update probability of σ̃j,i with the purity is,

pQA-ST+purity(σ̃j,i|{σj}
m
j=1\σ̃j,i;β,Γ)

=
exp

[

− β
m

E(σj) + s̃(σj−1, σj , σj+1)f(β,Γ)
]

∑

σ̃j,i

exp
[

− β
m

E(σj) + s̃(σj−1, σj , σj+1)f(β,Γ)
] , (12)

where s̃(σj−1, σj , σj+1) = s̃(σj , σj−1) + s̃(σj , σj+1)
2.

The computational complexity of (12) is O(k2), but
caching statistics reduces it to O(k). Thus, Step 1 in
Algorithm 2 requires O(k2), and Step 5 requires O(k),
which is the same as SA.

Using another representation of σj and a different Hq,
we can develop a sampler, which does not need label
permutation. However, its computational complexity
is O(n) in Step 5, which is much more expensive than
O(k). Thus, the sampler is less efficient than the pro-
posed sampler even though the sampler does not need
to solve label permutation.

4.3 Annealing Schedule of β and Γ

The annealing schedules of β and Γ significantly af-
fect the result of QA. Thus, it is crucial to use good
schedules of β and Γ. In this section, we propose the
annealing schedule of Γ and β.

We address two points before proposing a schedule.
One is our observation from pilot experiments, and
the other is the balance of β and Γ. From our pilot

2Note s̃ is not commutative, and take care of the or-
der of the arguments of s̃. We use s̃(σj−1, σj , σj+1) =
s̃(σj , σj−1) + s̃(σj , σj+1), but we omit the reason due to
space.

Algorithm 2 Quantum Annealing for Clustering

1: Initialize inverse temperature β and quantum an-
nealing parameter Γ.

2: repeat

3: for j = 1, ...,m do

4: for i = 1, ..., n do

5: Draw the new assignment of the i-th
data point, σj,i, with a probability
given in (12).

6: end for

7: end for

8: Increase inverse temperature β, and decrease
QA parameter Γ.

9: until State σ converges

experiments, we observe QA-ST works well when it
can find suboptimal assignments {σj}

m
j=1 by conver-

gence. (12) shows QA-ST searches for a better assign-
ment from suboptimal {σj}

m
j=1. On the other hand,

when current {σj}
m
j=1 are far away from global opti-

mum or even sub-optima, QA-ST does not necessarily
work well. Comparing (12) with (3) in terms of β and
Γ, if β

m
≫ f(β,Γ), {σj}

m
j=1 are sampled from pSA(σj),

i.e. no interaction between σj and σj+1. On the other

hand, if β
m

≪ f(β,Γ), {σj}
m
j=1 become very close to

each other regardless of energy E(σj).

From the above discussion, β/m at the beginning
should be larger than f(β,Γ) and large enough to col-
lect suboptimal assignments, and f(β,Γ) should be-
come larger than β/m at some point to make {σj}

m
j=1

closer. The best path of β and f(β,Γ) would be like
f∗ in Fig.5. f1 in Fig.5 is stronger than β from the
beginning, which does not allow QA-ST to search for
good assignments due to too strong quantum inter-
action f(β,Γ)s̃(σj−1, σj , σj+1) in (12). f2 is always
smaller than β. Hence, QA-ST never makes {σj}

m
j=1

closer. In other words, QA-ST does not search for
a middle (hopefully better) assignment from {σj}

m
j=1.

Specifically, we use the following annealing schedule in
Step 8 in Algorithm 2.

β = β0r
i
β , Γ = Γ0 exp(−ri

Γ), (13)

where rβ and rΓ are constants and i denotes the i-
th iteration of sampling. (13) comes from the follow-
ing analysis of f(β,Γ). When kβΓ

m
≪ 1, (11) reads,

f(β,Γ) ≈ −n log
(

βΓ
m

)

= nri
Γ − n log

(

βΓ0

m

)

. Thus,

the path of f(β,Γ) become f∗ in Fig.5 when Γ0 is
large enough and rβ < rΓ. In this paper3, we set Γ0

to a large value such that f(β,Γ) ≈ 0 until β = m.
This means pQA-ST(σ1, ..., σm) is just m independent

3When QA-ST is applied to loss-function-based mod-
els, “until β = m” should be calibrated according to loss-
functions.



instances of pSA(σj ;β/m) until β = m.

Note there is not much difference of difficulty between
SA and QA-ST to choose annealing schedules. In gen-
eral, we should choose the schedule of Γ to be f∗ when
the schedule of β is given. As shown in the next sec-
tion, QA-ST works well with rΓ ≈ rβ×1.05. Thus, the
difficulty of choosing annealing schedules for QA-ST is
reduced to that of choosing the schedule of β for SA.

5 Experiments

We show experimental results in Fig.6. In the top
three rows of Fig.6, we vary the schedule of Γ with a
fixed schedule of β to see QA-ST work better than the
best energy of m SAs when the schedule of Γ lets the
path of f(β,Γ) be f∗ in Fig.5. In the bottom row of
the figure, we compare QA-ST and SA with a slower
schedule of β. This experiment shows whether QA-
ST still works better than SA or not while the slower
schedule of β improves SA.

We apply SA and QA-ST to two models, which are a
mixture of Gaussians (MoG) with a conjugate normal-
inverse-Wishart prior and the latent Dirichlet allo-
cation (LDA) (Blei et al., 2003). For both mod-
els, parameters are marginalized out, and E(σ) ≡
− log p(X,σ) where X is data. Thus, QA-ST and SA
search for maximum a posteriori (MAP) assignment
σ. MoG is applied to MNIST data set, and LDA is
applied to NIPS corpus and Reuters. For MNIST, we
randomly choose 5,000 data points and apply PCA
to reduce the dimensionality to 20. NIPS corpus has
1,684 documents, and we randomly choose 1000 words
in vocabulary. We also randomly choose 1000 doc-
uments and 2000 words in vocabulary from Reuters.
We set k to 30, 20 and 20 for MNIST, NIPS corpus
and Reuters, respectively. We use the same schedule of
β for QA-ST and SA. In particular, we use the same
rβ for QA-ST and SA, and we set β0 = 0.2 for SA
and β0 = 0.2m for QA-ST. The difference of β0 for
SA and QA-ST keeps QA-ST similar to SA in terms
of β-annealing for fair comparison (see (3) and (12)).
For each data, we vary rΓ from 1.02 to 1.20 with fixed
rβ . When rβ ≤ rΓ, the path of f(β,Γ) becomes f∗ in
Fig.5. For any data set, m is set to 50 for QA-ST. We
set m of SAs so that m SAs consume the same time as
QA-ST. Thus, we can compare QA-ST and m SAs in
terms of iteration in Fig.6. Consequently, m of SA was
set to 51, 55 and 55 for MNIST, NIPS and Reuters,
respectively4. In Fig.6, we plot only after β = m for
QA-ST and β = 1 for SA, which happen at the same
iteration for QA-ST and SA.

4QA-ST and m SAs took 21.7 and 22.0 hours for
MNIST, 62.5 and 62.8 hours for NIPS and 9.9 and 10.0
hours for Reuters.

In Fig.6, the left column and the middle column show
the minimum and the mean energy of {σj}

m
j=1. Since

this is an optimization problem, we are interested in
the minimum energy in the left column. For each data,
QA-ST with f∗ achieved better results than SA. The
right column of Fig.6 shows the mean of purity s̃. As
we expect, the larger rΓ resulted in the higher s̃. The
bottom row of Fig.6 shows the result of NIPS with the
slower schedule of β than the schedule in the third row
of Fig.6. Although SA found better results than the
third row of Fig.6, QA-ST still worked better than SA.
Our experimental results are also consistent with the
claim of Matsuda et al. (2009), which is that QA works
the better than SA for more difficult problems. QA
worked better for LDA than MoG. The right column
of Fig.6 shows s̃ of LDA converged to smaller values
than that of MoG. This means LDA has more local
optima than MoG.

In this section, we have shown QA-ST achieves better
results than SA when the schedule of Γ is f∗ in Fig.5.
We have also shown even with the slower schedule of
β, QA-ST still works better than SA.

6 Discussion & Conclusion

Many techniques to accelerate sampling have been
studied. Such techniques can be applied to the pro-
posed algorithm. For example, the split-merge sampler
(Richardson and Green, 1997) and the permutation
augmented sampler (Liang et al., 2007) use a global
move to escape from local minima. These techniques
are available for the proposed algorithm as well. We
can also apply the exchange Monte Carlo method.

We have applied quantum annealing (QA) to cluster-
ing. To our best knowledge, this is the first study of
QA for clustering. We have proposed quantum effect
Hq fit to clustering and derived a QA-based sampling
algorithm. We have also proposed a good annealing
schedule for QA, which is crucial for applications. The
computational complexity of QA is larger than a single
simulated annealing (SA). However, we have empiri-
cally shown QA finds a better clustering assignment
than the best one of multiple-run SAs that are ran-
domly restarted until they consumes the same time as
QA. In other words, QA is better than SA when we run
SA many times. Actually, it is typical to run SA many
times because SA’s fast cooling schedule of tempera-
ture T does not necessarily find the global optimum.
Thus, we strongly believe QA is a novel alternative to
SA for optimizing clustering. In addition, it is easy to
implement the proposed algorithm because it is very
similar to SA.

Unfortunately, there is no proof yet that QA is bet-
ter than SA in general. Thus, we need to experimen-
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Figure 6: Comparison between SA and QA varying annealing schedule. rΓ, f2 and f∗ in legends correspond to
Fig.5. The left-most column shows what SA and QA found. QA with f∗ always found better results than SA.

tally show QA’s performance for each problem like this
paper. However, it is worth trying to develop QA-
based algorithms for different models, e.g. Bayesian
networks, by different quantum effect Hq. The pro-
posed algorithm looks like genetic algorithms in terms
of running multiple instances. Studying their relation-
ship is also interesting future work.
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A The Details of the Suzuki-Trotter

Expansion

Following Suzuki (1976), we give the details of deriva-
tion of Theorem 4.1. The following Trotter product
formula (Trotter, 1959) says if A1, · · · , An are sym-
metric matrices, we have

exp

(

L
∑

l=1

Al

)

=

(

L
∏

l=1

exp(Al/m)

)m

+ O

(

1

m

)

. (14)

Applying the Trotter product formula to (6), we have

pQA(σ1;β,Γ) =
1

Z
σT

1 e−β(Hc+Hq)σ1

=
1

Z
σT

1

(

e−
β
m

Hce−
β
m

Hq

)m

σ1 + O

(

1

m

)

. (15)

Note

σT
1

(

eA
)2

σ1 = σT
1 eA
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(

∑
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σ2σ
T
2

)

eAσ1

=
∑

σ2

σT
1 eAσ2σ

T
2 eAσ1. (16)

Hence, we express (15) by marginalizing out auxiliary
variables {σ′

1, σ2, σ
′
2, ..., σm, σ′

m},
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σT
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Hcσ′

jσ
′T
j e−

β
m

Hqσj+1,

(19)

where σm+1 = σ1. To simplify (19) more, we use the
following Lemma A.1 and Lemma A.2.

Lemma A.1.

σT
j e−

β
m

Hcσ′

j =exp

(

−
β

m
E(σj)

)

δ(σj , σ
′

j)

∝pSA(σj ;β/m)δ(σj , σ
′

j), (20)

where δ(σj , σ
′
j) = 1 if σj = σ′

j and δ(σj , σ
′
j) = 0 oth-

erwise.

Proof. By the definition, e−
β
m

Hc is diagonal with

[e−
β
m

Hc ]tt = E(σ(t)), and σj and σ′
j are binary in-

dicator vectors, i.e. only one element in σj is one and
the others are zero. Thus, the above lemma holds.

Lemma A.2.

σ′T
j e−

β
m

Hqσj+1 ∝ es(σ′

j ,σj+1)f(β,Γ). (21)

Proof. Substituting (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
and eA1+A2 = eA1eA2 when A1A2 = A2A1, we find,
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where σ̃j,i is the i-th element of Kronecker product of
σj , s.t. σj =

⊗n
i=1 σ̃j,i. Substituting the following

(23) and (24) into (22),
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we have
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Using Lemma A.1 and Lemma A.2 into (19), (17) be-
comes,

1

Z
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1
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)m

σ1

=
1

Z

∑
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From (15) and the above expression, we have shown
Theorem 4.1.


