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Abstract

We study a subclass of POMDPs, called De-
terministic POMDPs, that is characterized
by deterministic actions and observations.
These models do not provide the same gen-
erality of POMDPs yet they capture a num-
ber of interesting and challenging problems,
and permit more efficient algorithms. Indeed,
some of the recent work in planning is built
around such assumptions mainly by the quest
of amenable models more expressive than the
classical deterministic models. We provide
results about the fundamental properties of
Deterministic POMDPs, their relation with
AND/OR search problems and algorithms,
and their computational complexity.

1 Introduction

The simplest model for sequential decision making is
the deterministic model with known initial and goal
states. Solutions are sequences of actions that map
the initial state into a goal state that can be computed
with standard search algorithms. This model has been
studied thoroughly in AI with important contributions
such as A*, IDA*, and others [30, 34].

The deterministic model has strong limitations on the
type of problems that can be represented: it is not
possible to model situations where actions have non-
deterministic outcomes or where states are not fully
observable. In such cases, one must resort to more ex-
pressive formalisms such as Markov Decision Processes
(mdps) and Partially Observable mdps (pomdps). The
generality of these models comes with a cost since the
computation of solutions increase in complexity, spe-
cially for pomdps, and thus one gains in generality but
loses in the ability to solve problems. pomdps, for ex-
ample, are widely used as they offer one of the most

general frameworks for sequential decision making [19],
yet the known algorithms scale very poorly.

However, we have seen that an important collection
of problems that involve uncertainty and partial in-
formation have a common characteristic: they have
actions with deterministic outcomes and the observa-
tions generated at each decision stage also behave de-
terministically. Indeed, these models have been used
in recent proposals for planning with incomplete infor-
mation [15, 16, 27], appear in works of more general
scope [15, 20] and about causation [31], and are used
for learning partially-observable action models [1].

These models were briefly considered in Littman’s the-
sis [21] under the name of Deterministic POMDPs
(det-pomdps) for which some important theoretical
results were obtained. Among others, he showed that
a det-pomdp can be mapped into an mdp with an
exponential number of states and thus solved with
standard MDP algorithms, and that optimal non-
stationary policies of polynomial horizon can be com-
puted in non-deterministic polynomial time. Unfor-
tunately, det-pomdps briefly appeared as a curiosity
of theoretical interest and then quickly fade out from
consideration, to the point that, up to our knowledge,
there are no publications on this subject neither from
Littman or others.

Given the role of det-pomdps in recent investigations,
motivated mainly by the quest of amenable models for
decision making with uncertainty and partial informa-
tion, we believe that det-pomdps should be further
studied. In this paper, we carry out a systematic ex-
ploration of det-pomdps mainly from the complexity
perspective yet we outline novel algorithms for them.
We present three variants of the model: the fully ob-
servable, the unobservable and the general case, and
two metrics of performance: worst- and expected-cost.
As it will be shown, det-pomdps offer a tradeoff be-
tween the classical deterministic model and the gen-
eral pomdp model. Furthermore, their characteristics
permits the use of standard and novel AND/OR algo-



rithms which are simpler and more efficient that the
standard algorithms for pomdps [32, 36, 37], or the
transformation proposed by Littman.

The paper is organized as follows. First, we give exam-
ples of challenging problems that help us to establish
the relevance of det-pomdps. We then present the
definition and variants of the model in Sect. 3, the re-
lation with AND/OR graphs and algorithms in Sect. 4,
complexity analyses in Sect. 5, and finish with a brief
discussion in Sect. 6.

2 Examples

Numerous det-pomdps problem had been used to
evaluate and develop different algorithms for planning
with uncertainty and partial information. For space
reasons, we only provide few examples and brief de-
scriptions for some of them.

Mastermind. There is a secret word of length m over
an alphabet of n symbols. The goal is to discover the
word by making guesses about it. Upon each guess, the
number of exact matches and near matches is returned.
The goal is to obtain a strategy to identify the secret.

Navigation in Partially-Known Terrains. There
is a robot in a n× n grid that must navigate from an
initial position to a goal position. Each cell of the grid
is either traversable or untraversable. The robot has
perfect sensing within its cell but the traversability of
a subset of cells is unknown. The task is to obtain a
strategy for guiding the robot to its destination [20].

Diagnosis. There are n binary tests for finding out
the state of a system among m possible states. An
instance consists of a m×n binary matrix T such that
Tij = 1 iff test j is positive when the state is i. The
goal is to get a strategy for identifying the state [29].

Coins. There are n coins from which one is a coun-
terfeit of different weight, and there is a 2-pan balance
scale. A strategy that spots the counterfeit and finds
out whether is heavier or lighter is needed [30].

Domains from IPC. The problems in the 2006 and
2008 International Planning Competition for the track
on conformant planning consisted of domains covering
topics such as Blocksworld, circuit synthesis, universal
traversal sequences, sorting networks, communication
protocols and others [11], all of which are instances of
det-pomdps.

3 Model and Variants

Formally, a det-pomdp model is a tuple made of:

– a finite state space S = {1, . . . , n},

– finite sets of applicable actions Ai ⊆ A for i ∈ S,

– a finite set of observations O,

– an initial subset of states b0 ⊆ S, or alternatively
an initial distribution of states b0 ∈ ∆S,

– a subset T ⊆ S of goal (target) states,

– a deterministic transition function f(i, a) ∈ S, for
i ∈ S, a ∈ Ai, that specifies the result of applying
action a on state i,

– a deterministic observation function o(i, a) ∈ O, for
i ∈ S, a ∈ A, that specifies the observation received
when entering state i after the application of action
a, and

– positive costs c(i, a), for i ∈ S, a ∈ Ai that tells the
immediate cost of applying a on i.

For simplicity, we assume that goal states are absorb-
ing. That is, once a goal state is entered, the system
remains there and incurs in no costs, hence At = A,
f(t, a) = t and c(t, a) = 0 for t ∈ T .

The two options for b0 depend on whether the interest
is in minimizing the worst-case total accumulated cost,
or the expected total accumulated cost (see below). In
any case, b0 is called the initial belief state1 and de-
scribes the different possibilities for the initial state
which is not known a priori. Its importance is crucial
since, under the assumption of deterministic transi-
tions, if the initial state were known, then all future
states would also be known, and the model reduces to
the well-known deterministic model in AI [34]. Hence,
the only source of uncertainty in det-pomdp mod-
els comes from the initial state which further induces
an uncertainty on the observations generated at each
decision stage. Nonetheless, the model remains chal-
lenging, with respect to expressivity and computation,
as exemplified in the previous section.

Although the state of the system may not be fully ob-
servable, it is possible (and indeed useful) to consider
preconditions for actions. The role of preconditions is
to permit the knowledge engineer to design econom-
ical representations by leaving out from the specifi-
cation unimportant details or undesirable situations.
For example, if one does not want to model the effects
of plugging a 120V artifact into a 240V outlet, then
a simple precondition can be used to avoid such sit-
uations. Preconditions in the det-pomdp model are
expressed through the sets of applicable actions Ai. As
it is standard in planning, situations in which there are
no actions available are called dead ends.

1The term ‘belief state’ refers to a subset of states (or a
probability distribution on states) that is deemed possible
by the agent at a given point in time.



3.1 Optimality Criteria

Our goal is to compute strategies that permit the agent
to act optimally. We consider two optimality criteria,
and three variants of the model. For optimality, we
consider the minmax that minimizes the worst-case
cost of a policy, and the minexp that minimizes the
expected cost of a policy. The variants of the model
depend on the observation model:

• unobservable models in which O is a singleton and
thus observations return no information about the
state. This class is a subclass of the so-called con-
formant problems in planning [13].

• fully-observable models in which o(i, a) = i. This
class corresponds to fully observable mdps except
that the initial state is unknown, but after the ap-
plication of the first action the state is revealed.

• models with no assumptions on the observations.
This case corresponds to general det-pomdps and
include the previous cases.

Two optimization criteria and three variants combine
into six models: unobservable models with the minmax
and minexp criteria, fully-observable models with the
minmax and minexp criteria, and general models with
minmax and minexp criteria. Among these, the un-
observable and the general models are the interesting
ones; fully-observable models are trivial and patholog-
ical and thus will not be considered again.

For partially-observable problems, the most general
form of a policy is a function that maps belief states
into actions. Beliefs are subsets of states for minmax
models and probability distributions over states for
minexp models. However, an optimal policy does not
need to specify an action for all possible beliefs: it just
need to consider the beliefs that could appear during
the execution of the policy.

3.2 Belief Dynamics and Closed Policies

In order to execute an action, the agent must be cer-
tain about its applicability no matter what is the cur-
rent state of the environment. Otherwise, the model
might end up in an inconsistent configuration with re-
spect to the specification. Hence, the set Ab of appli-
cable actions at b is Ab

.= ∩{Ai : i ∈ sup(b)} where
sup(b), called the support of b, is the collection of states
that are deemed possible at b, i.e. sup(b) .= b for sub-
sets of states and sup(b) .= {i : b(i) > 0} for distribu-
tions on states. Once an applicable action is executed,
each state in sup(b) changes into a new state making
up a new belief ba

.= {f(i, a) : i ∈ sup(b)} for subsets,
and ba(j) .=

∑
f(i,a)=j b(i) for distributions.

On the real environment though, the current state
transforms into a new state and an observation is gen-
erated, which is used to filter out states inconsistent
with it; i.e. the filtered belief is bo

a
.= {i ∈ ba : o(i, a) =

o} for subsets, and, for distributions, is

bo
a(i) .=

{
0 if ba(i) = 0 or o(i, a) 6= o,
ba(i)/ba(o) otherwise,

where ba(o) is a normalization constant.

From the point of view of the agent, which does not
know the current state of the environment, the set of
observations that may appear after the application of a
at b is o(b, a) .= {o(i, a) : i ∈ sup(ba)}. Under the min-
exp criterion, each observation has probability ba(o) of
being received once action a is applied at b.

Littman proposes an interesting representation for the
reachable beliefs in the probabilistic case [21], in which
a reachable belief b is represented by a table tb : S →
S ∪ {⊥} as follows. For b0, tb0(i) is i or ⊥ whether
b0(i) > 0 or not, and for bo

a where b is a reachable
belief, a ∈ Ab and o ∈ o(b, a), the table tbo

a
is given by

tbo
a
(i) = ⊥ if tb(i) = ⊥, ba(i) = 0 or o(i, a) 6= o, and

tbo
a
(i) = f(i, a) otherwise. In words, the entry tb(i)

tells what would be the current state had the initial
state been equal to i. The relation between b and tb is

b(i) ∝
∑

j∈S b0(j)|{j : tb(j) = i}|.

We are interested in optimal policies that are closed
with respect to the initial belief b0. Namely, that the
policy is defined over all the beliefs that may appear
during the execution of the policy. We say that a pol-
icy π is closed in a subset B of beliefs if π is defined
on each b ∈ B, and bo

π(b) ∈ B for each b ∈ B and
o ∈ o(b, π(b)), and that π is closed with respect to
b0, or just closed, if b0 ∈ Dom(π) and π is closed in
Dom(π). We will only consider closed policies. The
set of reachable beliefs from b0 using (closed) policy π
is the minimum subset R

.= R(b0, π) ⊆ Dom(π) such
that b0 ∈ R and π|R is closed with respect to b0.2 A
policy π is minimal if π = π|R(b0,π).

3.3 Graphs, Costs and Optimal Policies

Let us reason about the trajectories generated by a
policy π. At the beginning, the agent applies the ac-
tion a0 = π(b0). Then, the agent incurs in certain
immediate cost, which depends on the current state
and a0, and receives an observation o0, which also de-
pends on the current state and action, that is used by
the agent to update its initial belief into b1 = (b0)o0

a0
.

At the second decision stage, the agent applies the ac-
tion a1 = π(b1), incurs in a cost and receives a new

2f |A means the restriction of f to Dom(f) ∩ A.



observations o1 that is used to update the belief into
b2 = (b1)o1

a1
, and so on. This process continues until

the agent is certain that a goal state has been reached,
i.e. until the current belief b is a target belief charac-
terized by sup(b) ⊆ T . It is important to remark that
during the execution of a policy the agent cannot pre-
dict with certainty neither the costs nor the observa-
tions since s/he is not certain about the current state
of the environment.

All possibles trajectories of π seeded at b0 form a
labeled directed (multi-)graph Gπ = (V,E, `) where
V = R(b0, π) and there is an edge (b, b′) labeled with o
iff b is non-target and b′ = bo

π(b) for some o ∈ o(b, π(b)).
In probabilistic models, edges (b, b′) labeled with o
have attached probabilities equal to bπ(b)(o).

Deterministic actions imply |sup(ba)| ≤ |sup(b)| with
strict inequality only if f(i, a) = f(j, a) for some
i 6= j in sup(b). Therefore, if a is applicable in b
and {b1, . . . , bm} is the collection of possible beliefs
after observations, then the collection {sup(bi)}m

i=1 is
a partition of sup(ba) and thus

∑
o∈o(b,a) |sup(bo

a)| ≤
|sup(b)| for each a ∈ Ab. Furthermore, if b <π b′ de-
notes the existence of a path b b′ in Gπ and b <d

π b′

the existence of a deterministic path, i.e. one in which
each node has outdegree of one, then
Theorem 1. Let Gπ be the graph for π. Then, (a)
if b <π b′ then |sup(b)| ≥ |sup(b′)|, (b) if b <π b′ and
|sup(b)| = |sup(b′)| then b <d

π b′, and (c) for minexp, if
b <π b′ and sup(b) = sup(b′) then b(i) = b′(σi) where
σ is a permutation of sup(b).

An immediate consequence is that for minexp models
the set of reachable beliefs is finite independently of the
initial belief. This fact was also observed by Littman
who gave the upper bound (1+|S|)|S| on the maximum
number of reachable beliefs as this is the maximum
number of tables. This is a marked difference with
respect to standard pomdps in which the number of
reachable beliefs is typically infinite as well as the size
of the policy graphs.
Theorem 2. The set R(b0, A) of reachable beliefs is
finite, the graph Gπ is finite for each policy π, and the
number of minimal policies is also finite.

To define the cost of a policy, we consider the cases
of whether Gπ is a DAG or not. In the latter case,
there is a cycle in Gπ along a deterministic path and
thus, for both optimization criteria, π incurs in infinite
cost once it gets trapped into the cycle.3 Therefore,
if Gπ has a cycle, its cost at b0 is set to infinity; i.e.
V max

π (b0) = V exp
π (b0)

.= ∞.
3In mdps, it is customary to use a factor to discount

future costs at a geometric rate so that every policy has
finite cost. We do not consider such factors as often they
are difficult to interpret and justify.

If Gπ is a DAG, the cost assigned by π at each belief is
defined inductively bottom-up from the sink nodes up
to the source b0. Indeed, being π closed, the sinks are
target beliefs which has zero cost under both criteria,
i.e. V max

π (b) = V exp
π (b) .= 0 if sup(b) ⊆ T . Once all

successors of b get values, the value at b is defined as

V max
π (b) .= cmax(b, π(b)) + max

(b,b′)∈Gπ

V max
π (b′),

V exp
π (b) .= cexp(b, π(b)) +

∑
o∈o(b,π(b))

ba(o) · V exp
π (bo

a),

where the costs over beliefs are defined as cmax(b, a) .=
maxi∈b c(i, a) and cexp(b, a) =

∑
i∈S b(i) · c(i, a). The

cost assigned by policy π to belief b0, either finite or
infinite, is called the cost of π. Clearly, if Gπ is a DAG,
then V exp

π (b0) ≤ V max
π (b0) < ∞.

A policy π is preferred to policy π′ under optimization
criterion ∆ if V ∆

π (b0) < V ∆
π′ (b0). A policy π is optimal

under ∆ if no other policy is preferred to it. Hence, by
Theorem 2, if there is a policy of finite cost, then there
is an optimal policy π∗ whose graph is a DAG. From
now on, when we say an optimal policy, we mean an
optimal policy of finite cost. If there is no policy of
finite cost, we say there is no optimal policy.

3.4 Policy Forms and Sizes

Unobservable Models. As there is no information
on which to branch, plans for unobservable models are
linear sequences of actions that take the initial belief
into a goal belief. Hence, Gπ is a single path of form

b0 → b1 → b2 → · · · → bn−1 → bn.

By Theorem 1, |sup(b0)| ≥ · · · ≥ 1. Let us say that
a “jump” occurs at bi if |sup(bi)| > |sup(bi+1)|, and
that 〈bi, . . . , bi+m〉 is a “chunk” if it is a maximal sub-
sequence with |sup(bi)| = · · · = |sup(bi+m)|. There
are at most |S| jumps in the sequence so we need to
bound the size of a largest chunk. Theorem 1 implies
that the actions in the chunk map states in a 1-1 way,
i.e. that actions behave like permutations over states.
As it will be shown later, the size of a chunk can be
exponential in some problems.

Let us introduce the notion of diameter of a model
that allow us to bound the length of a largest chunk.
For a set of actions A and belief b, denote with R(b, A)
the set of beliefs reachable from b using only actions
in A, and with R∗(b, A) the set of beliefs with sup-
ports of size |sup(b)| that are reachable from b using
only actions in A. A belief in R∗(b, A) is said to be
k-reachable if it can be reached from b through the
application of at most k actions from A. The di-
ameter of R∗(b, A) is the least integer k such that
every b′ ∈ R∗(b, A) is k-reachable, and the diameter



of a model M is the maximum over the diameters of
R∗(b, A) for all b ∈ R(b0, A). The model has polyno-
mial diameter if its diameter is O(poly(|S|, |A|)).

If R(b0, A) is of polynomial size, the model is of poly-
nomial diameter but the converse is not necessarily
true. If M is of polynomial diameter, the lengths of
the chunks are of polynomial length. Thus, unobserv-
able problems of polynomial diameter have optimal
policies of polynomial size.

General Models. Optimal policies are DAGs in
which paths correspond to sequences of beliefs with
non-increasing supports. As before,
Theorem 3. Models of polynomial diameter have op-
timal policies of polynomial size.

Proof. It remains to show the claim for general models.
Let π be an optimal policy. A subset B of beliefs is
called an anti-chain iff there are no two different beliefs
b, b′ ∈ B with b <π b′. An induction shows that if B is
an anti-chain, then |sup(b0)| ≥

∑
b∈B |sup(b)|. Thus,

since |sup(b0)| ≤ |S|, all anti-chains have size at most
|S|. On the other hand, the assumption implies that
all paths in Gπ have polynomial length. Therefore, Gπ

is of polynomial size since the beliefs at depth k form
an anti-chain and thus their number is at most |S|.

4 AND/OR Graphs

We establish a relation between policies and AND/OR
graphs that can be exploited by algorithms. An
AND/OR graph is a tuple G = (V1 ∪ V2, E, T, n0, c)
where V1 and V2 are finite sets of AND and OR nodes,
E ⊆ (V1∪V 2)\T×(V1∪V2) is a subset of directed edges
between nodes, T ⊆ V2 is subset of terminal nodes,
n0 ∈ V1 ∪ V2 is the root node, and c : E ∪ T → R∗ is
a cost function over edges and terminal nodes [26]. A
solution is a subgraph H spanned by a subset of edges
H(E) such that (1) n0 ∈ H, (2) if n ∈ H \ T is AND
node then all its outbound edges are in H(E), and (3)
if n ∈ H \T is OR node then one of its outbound edges
is in H(E). A solution is valid iff it is acyclic. Costs
c(H) can be associated to valid solutions H inductively
from the sinks up to the root by

VH(n) .=

 c(n) n ∈ T
max(n,n′)∈H(E) c(n, n′) + VH(n′) n ∈ V1

c(n, n′) + VH(n′) n ∈ V2

A stochastic graph associates probabilities p(n, n′) to
the edges (n, n′) incident at AND nodes n so that∑

(n,n′)∈E p(n, n′) = 1. The cost VH is similarly de-
fined except that VH(n) .=

∑
(n,n′)∈H(E)(c(n, n′) +

VH(n′))p(n, n′) for AND nodes. In any case, the cost
c(H) is defined as VH(n0), and a solution is optimal if
its cost is no larger than the cost of any other solution.

4.1 From Models to Graphs and Algorithms

The relation between det-pomdps and AND/OR
graphs is direct. For a model M , we construct an
AND/OR graph GM such that the solutions of GM co-
incide with the solutions of M . Indeed, given a model
M with minmax criterion, the graph GM is given by

– V1
.= {ba : b ∈ R(b0, A), a ∈ Ab},

– V2
.= R(b0, A),

– T
.= {b ∈ V2 : sup(b) ⊆ T},

– if b ∈ V2 \ T then (b, ba) ∈ E for a ∈ Ab,
– if ba ∈ V1 then (ba, bo

a) ∈ E for o ∈ o(b, a),
– n0

.= b0,
– c(b) .= 0 for b ∈ T ,
– c(b, ba) .= cmax(b, a) for b ∈ V2 and a ∈ Ab,
– c(ba, bo

a) .= 0 for ba ∈ V1 and o ∈ o(b, a).

For minexp, the graph must be extended into a
stochastic graph with labels p(ba, bo

a) = ba(o), and
c(b, ba) must be replaced by cexp(b, a). Also observe
that the beliefs in the graph can be represented with
probability distributions or with Littman’s tables.

This relation permits the use of diverse algorithms.
Firstly, since the number of reachable beliefs is finite,
then all reachable beliefs can be enumerated and Value
or Policy Iteration applied on the resulting mdp over
belief space (this is essentially Littman’s proposal);
both algorithms are guaranteed to converge in a fi-
nite number of steps. However, we can do better since
optimal policies are acyclic and thus consistently im-
proving policies exist. Therefore, more efficient algo-
rithms can be used such as label setting methods and
Dial’s algorithm [3, 7].

Explicit algorithms as the above require enough mem-
ory to compute the set of reachable beliefs. If no
such memory is available, search-based algorithms that
generate beliefs incrementally and that use admissible
heuristics to focus the search must be used. Relevant
algorithms in this class are the classical AO* [6, 23, 26],
LAO* [14], RTDP-like algorithms [2, 4], and LDFS [5].
AO* can only be used on acyclic graphs; LAO*, RTDP
and LDFS do not have this restriction.

5 Complexity

The complexity of pomdps had been thoroughly
studied. Results for different optimization criteria,
probabilistic and non-deterministic variants, and so
on are known [17, 22, 25, 28, 33]. Littman [21]
obtained important complexity results about det-
pomdps for problems with non-negative costs (i.e. with
non-positive rewards):



• deciding the existence of a policy that incurs in zero
cost for an infinite-horizon det-pomdp is PSPACE-
complete, and

• deciding the existence of a policy of polynomial
length that incurs in zero cost for a det-pomdp is
NP-complete

In this section, we extend this results as follows:

• deciding the existence of a policy of finite cost
for det-pomdps of polynomial diameter is NP-
complete,

• there are det-pomdps on which all policies of finite
cost are of super-polynomial size,

• give new class of problems on which the existence of
policies can be checked in non-deterministic polyno-
mial time, and

• give some sufficient conditions for testing whether a
det-pomdp is of polynomial diameter.

All these results, as well as Littman’s results, are based
in the assumption that the models are encoded in a
flat language; that is, that the models are encoded
with O(poly(|S|, |A|, h)) bits where h is the maximum
number of bits needed to specify a cost or probability.
The general question that we address here is whether
there is a policy that reaches the goal with certainty.
Namely,

Policy Existence for Flat Models (PEF): Is
there a policy of finite cost for flat model M?

The fact that pef only considers flat models is impor-
tant because with compact representations, an expo-
nential number of states can be described and thus a
double-exponential number of beliefs could be needed.

Theorem 4. The PEF problem for unobservable mod-
els of polynomial diameter is NP-complete.

Proof. Inclusion is direct by guessing a polynomially-
sized policy and checking it. For hardness, we re-
duce sat using the method in [25] almost verbatim.
Let φ be a 3-CNF formula with variables x1, . . . , xn

and clauses C1, . . . , Cm. A variable x 1-appears (0-
appears) in clause C if x ∈ C (x ∈ C). We construct an
unobservable model M(φ) as follows. The set of states
is S = {[xi, Cj ] : 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪ {t, f}. States
t and f mean satisfiable and unsatisfiable respectively.
The actions set(i, v), for 1 ≤ i ≤ n and v ∈ {0, 1}, are
used to set the value of variables: set(i, v) maps state
[xi, Cj ] ([xn, Cj ]) to either t or [xi+1, Cj ] (to either t
or f) whether xi v-appears in Cj or not. The initial
belief is b0 = {[x1, Cj ] : 1 ≤ j ≤ m} and t is the unique
target state. M(φ) is of polynomial size and diameter,
and has a policy of finite cost iff φ is satisfiable.

Corollary 5. The PEF problem for general models of
polynomial diameter is NP-complete.

Proof. Hardness is direct since unobservable models
are a special case. Inclusion follows by guessing a pol-
icy of polynomial size (Theorem 3) and checking it.

Sometimes, it is easy to verify that a model is of poly-
nomial diameter. Indeed, if |sup(b0)| = k the number
of reachable beliefs is O(nk). If k is a constant then
the number of reachable beliefs is polynomial as well as
the diameter. For another case, consider the (global)
transition graph TM that is a directed graph whose
nodes are the states and there is an edge (i, j) iff there
is action a ∈ Ai such that j = f(i, a). If TM is acyclic,
except for self-loops, the model has linear diameter.
Examples are knowledge-gathering problems such as
Mastermind, 12-coins and Diagnosis. The IPC prob-
lem for sorting networks is also of this type.

Theorem 6. If |sup(b0)| is constant, then the diame-
ter is polynomial. If TM is acyclic, except perhaps for
self-loops, then the diameter is linear.

As noted in Theorem 1, there is a close connection be-
tween the diameter of a model and permutations over
states. Thus, the study of permutations provides im-
portant insight for estimating the diameter of models.

5.1 Permutation Groups and Their Diameter

The set of permutations with composition forms a mul-
tiplicative group. The order of a permutation σ is the
least n such that σn is the identity permutation. It
is well known that a permutation can be written in
cycle notation as a product of disjoint cycles, and that
the order of σ = C1C2 . . . Cm (in cycle notation) is the
least common multiple for the lengths of the cycles.

For example, σ =
(

1 2 3 4 5 6 7 8
3 4 5 7 8 6 2 1

)
can be

written as σ = (1, 3, 5, 8)(2, 4, 7)(6) and its order is
ord(σ) = lcm{4, 3, 1} = 12.

Consider now an unobservable model with a single ac-
tion a with empty precondition that corresponds to a
permutation σ = C1C2 · · ·Cm over states. Further-
more, suppose that b0 has m states one from each
cycle Ci. Then, the repeated application of a over
b0 generates a trajectory 〈b0, . . . , bk〉 of different be-
liefs if k < ord(σ). Since observations filter nothing,
|sup(b0)| = · · · = |sup(bk)| and there is a chunk of
length k +1. If k is large, the size of an optimal policy
could be large as well. We use this idea to proof

Theorem 7. There is an unobservable model for
which all policies are of super-polynomial size.



Proof. Let S = {1, . . . , n}. First, we show that there
is a permutation σ over S with super-polynomial or-
der. If σ = C1 . . . Cm in cycle notation, then |C1| +
· · · + |Cm| = n and ord(σ) = lcm{|C1|, . . . , |Cm|}, so
we need to show that there are integers {d1, . . . , dm}
whose sum is n and lcm is super-polynomial in n.

The Prime Number Theorem says that the num-
ber of primes less than N is asymptotically equal to
N/ log N . Hence, the number of primes in [n1/2, n3/4]
is asymptotically equal to 4n3/4/3 log n− 2n1/2/ log n
which dominates n1/4. Therefore, for sufficiently large
n, we can choose bn1/4c different primes in [n1/2, n3/4].
Their sum is bounded by n3/4 × n1/4 = n and
thus these primes can be extended into a collection
{d1, . . . , dm} of integers whose sum is equal to n. Since
all primes are different and at least n1/2, their lcm is
at least n

1
2 n1/4

which dominates nk for any constant
k. Estimations on the expected order of random per-
mutations are also known [9, 12, 38].

For the model, let a be an action that is like σ and
let b0 be the subset containing the “first” state from
each cycle Ci. Let a′ be another action that maps
s into a target if s is the “last” state in a cycle, or
into s otherwise. The optimal plan is the sequence of
ord(σ)− 1 repetitions of a followed by a′.

However, even in cases of non-polynomial diameter,
we can test in non-deterministic polynomial-time the
existence of policies for some models (proof below).

Theorem 8. If each action is a permutation with
empty precondition, then the PEF problem is in NP,
even if the model is not of polynomial diameter.

The group Sn of all permutations over n elements is
called the symmetric group of degree n. Let A ⊆ Sn

be a subset. Then, A generates the subgroup 〈A〉 of
all permutations that can be formed by finite compo-
sitions of elements from A. A permutation σ ∈ 〈A〉 is
k-expressible if it is the product of at most k permuta-
tions from A. The diameter of 〈A〉 is the least integer
k such that every permutation in 〈A〉 is k-expressible.
Problems related to generated groups have a tradition
in computer science. For example, Furst, Hopcroft and
Luks [10] gave a polynomial-time algorithm for decid-
ing whether a permutation σ is generated by the set
A, and Jerrum [18] showed that computing the size of
a smallest generator set is PSPACE-complete.

Proof Sketch for Theorem 8. We do it for unobserv-
able models; the proof for general models is a bit more
involved. Since actions are permutations, the size of
beliefs do not change with actions. If there is a solution
b0 → · · · → bn where bn is a target belief, then by The-
orem 1, there is a permutation σ such that sup(b0) is

mapped 1-1 into sup(bn). Thus, it is enough to guess σ
and then test, in polynomial-time using the algorithm
in [10], if σ is generated by the actions.

More important to us are results about diameters of
groups. Driscoll and Furst [8] showed that if the gen-
erators are all cycles of bounded length, the diameter
is O(n2), while McKenzie [24] showed that if all gener-
ators move at most k elements, the diameter is O(nk).

Theorem 9. If every action has empty precondition,
and is a permutation that moves a constant number
of states or all cycles are of bounded length, then the
model is of polynomial diameter.

6 Discussion

We have shown that the Deterministic POMDP model
first studied by Littman is more relevant than pre-
viously thought for two reasons. First, a number of
important and challenging problems in planning cor-
respond to such models, and second since they pro-
vide a tradeoff between the restricted yet efficient clas-
sical deterministic model and the general but inef-
ficient pomdp model. We have shown novel com-
plexity results that show this tradeoff: while check-
ing the existence of plans in classical deterministic
(flat) problems is NL-complete (via st-Reachability
[35]), and checking the existence of plans for pomdps
is EXPTIME-complete [21], we have that checking the
existence of plans for det-pomdps of polynomial di-
ameter is NP-complete, and that for det-pomdps in
which the actions are permutations with empty pre-
condition is in NP. Furthermore, we give polynomial-
time checkable conditions for polynomial diameter.

We also proposed a relation between det-pomdps
and AND/OR graphs that permit the use of general
AND/OR search algorithms. Although we did not per-
form an experimental evaluation, it is clear that such
algorithms should outperform in practice the explicit
mapping of a det-pomdp into an mdp.

It is important to emphasize that det-pomdps are not
“general” pomdps, and hence one should be careful
when evaluating general algorithms with them. Due
to the reduced complexity of the model, det-pomdps
must be tackled as a more specialized class which is
likely to scale better.

In the future, we would like to further study the re-
lation between det-pomdps and permutation groups
and to implement algorithms based of AND/OR
search.

Acknowledgments. Thanks to the reviewers for
valuable comments and pointers to related work.
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