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1. Are these two series similar?

(2 2 1 1)
(1 1 0 0)

Yes. So, unlike vectors, adding a constant
should not change anything.

Let’s “translate” by subtracting the average
value:
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We’ll just work with series that sum (and average) to 0 from now on.

2. (Digression on what this means in terms of vectors.)

Subtracting the average reduces the dimension of the space by 1, because there is now a linear
dependence among the coefficients of a vector v : v1 + v2 + ..vn = 0.

In two dimensions, a vector (c, s) becomes c−s
2 (1,−1): everything maps into the line (1,−1).

In three dimensions, everything maps into the subspace orthogonal to (1,1,1). If its basis vectors
are B1 = 1√

2
(1,−1, 0) and B2 = 1√

6
(1, 1,−2), then we have the mappings
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(What are the angles between these three projections?)
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3. Back to time series with zero averages.

The dot product of (1, 1,−1,−1) with itself is 4.

(Actually, let’s divide the result by the length of the series: so 1.)

The dot product of (1, 1,−1,−1) with (−1, 1, 1,−1) is 0.

But the second is just the first shifted, so if we are looking for similarity of time series, we would
like a shifted time series to match itself.

So try (∼, 1, 1,−1) · (−1, 1, 1,−1) = 3
4 .

Just in case, let’s look at

(∼,∼, 1,−1) · (−1, 1, 1,−1) = 0

(∼,∼,∼, 1) · (−1, 1, 1,−1) = −
1

4

and at

(1,−1,−1,∼) · (−1, 1, 1,−1) = −
3

4
(−1,−1,∼,∼) · (−1, 1, 1,−1) = 0

(−1,∼,∼,∼) · (−1, 1, 1,−1) =
1

4

This is called the cross-covariance, CCV, (after dividing by 4, the series length)

lag −3 −2 −1 0 1 2 3
CCV −.25 0 .75 0 −.75 0 .25

4. A first Aldat implementation of the cross-covariance uses

query(j q) cand(k c)
1 1 1 −1
2 1 2 1

3 −1 3 1

4 −1 4 −1
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and is

for lag <−− 3 : 3
let k be fun succ(lag) of j order j;
let qc be red + of q × c;
CCV <+ [lag,qc] in (cand ijoin [k, q] in query ;

end

(Note. This doesn’t give the results above: succ is cyclic. How must we modify the code? If
we use the code as is, what will the result be?)

But this uses a loop, which is not necessary since all the calculations may be done in any order.
To exploit Aldat parallelism, we must get away from this loop.

It really is a matrix multiplication.
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(How does this change if we allow cycles?)

We can build this matrix in Aldat using

lag(j) query(h q)
−3 1 1

−2 2 1

−1 3 −1
0 4 −1
1

2

3

let hm be red max of h;
let k be h − j;
qmat <−[j, k, q,hm] where 0 < k and k ≤ hm in (lag ijoin [h, q,hm] in query);

(How must this change to allow cycles?)

And here’s the matrix multiplication.

let qc be (equiv + of q × c by j)/hm;
[j, qc] in qmat ijoin cand ;

Now there is no loop and Aldat can do everything in parallel.

Is there a way to avoid both sequential processing and storing 2n− 1 copies of the time series?

(Note [Per94] calls this covariance function “biased” because we’ve divided by hm for every row,
even though only one of the sums has all hm terms. For his “unbiased” version, replace hm by
hm −abs(j) in the denominator—why?)

The definition of cross-covariance is given in, for example, [SS06, p.31].
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5. Let’s use the cross-covariance to pull a signal out of noise.

Here is Gaussian white noise.
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Here is a noisy signal (cos + 5×white).
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Here is a signal (2×cos(2×π×x/50+0.6×π)).
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And here is the cross-covariance of the noisy
signal and the true signal.
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How do we know to try a periodic signal when we are given only the noisy signal?
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We take the auto-covariance of the noisy signal, i.e., the cross-covariance of it with itself.
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Now we can define ([SS06, p.31]) the cross-correlation, which is the cross-covariance normalized.

If CCV (S1,S2 ) is the cross-covariance of two signals (time series), S1 and S2, then

• the auto-covariance of one signal, S1, is CCV (S1,S1 )

• the cross-correlation of S1 and S2 is

CCF (S1 ,S2 ) = CCV (S1 ,S2 )/
√

CCV (S1 ,S1 )[0] × CCV (S2 ,S2 )[0]

where the [0] notation means that only the central element, corresponding to lag = 0, is used
from the series representing the autocorrelations.

• the auto-correlation of S1 is CCF (S1,S1 ).

6. (Digression on the statistics of white noise.)

Here is the autocorrelation of the white noise, above.
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White noise can be drawn from any statistical distribution. We used a Gaussian (normal)
distribution above, but let’s work with finite distributions.

a)

values 1 2 3
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Two random variables, a1, a2 drawn independently from this distribution.

pa1a2
× 16 a1 × a2 × 16 pa1a2

× a1 × a2 × 162

a2 × 4 −5 −1 3 a2 × 4 −5 −1 3 a2 × 4 −5 −1 3
a1 −5 1 1 2 a1 −5 25 5 −15 a1 −5 25 5 −30 → 0
× −1 1 1 2 × −1 5 1 −3 × −1 5 1 −6 → 0
4 3 2 2 4 4 3 −15 −3 9 4 3 −30 −6 36 → 0

The covariance is the sum of this last matrix and is zero.

Extreme correlation: a2 = a1.

pa1a2
× 6 a1 × a2 × 16 pa1a2

× a1 × a2 × 6 × 16
a2 × 4 −5 −1 3 a2 × 4 −5 −1 3 a2 × 4 −5 −1 3

a1 −5 1 0 0 a1 −5 25 5 −15 a1 −5 25 0 0 → 0
× −1 0 1 0 × −1 5 1 −3 × −1 0 1 0 → 0
4 3 0 0 4 4 3 −15 −3 9 4 3 0 0 36 → 0

The covariance is (25+1+36)/6×16 = 0.6548

b)

values 4 5 6 7
probs. 0.1 0.2 0.3 0.4
mean 0 -2 -1 0 1

Two random variables, a1, b2 drawn independently from this and the previous distribution.

pa1b2 a1 × b2 × 16 pa1b2 × a1 × b2 × 162

b2 −2 −1 0 1 b2 −2 −1 0 1 b2 −2 −1 0 1
a1 −5 .1 .1 .05 0 a1 −5 2.5 1.25 0 −1.25 a1 −5 .25 .125 0 0
× −1 0 .1 .05 .1 × −1 .5 .25 0 −, 25 × −1 0 .025 0 −.025
4 3 0 0 .2 .3 4 3 −1.5 −.75 0 .75 4 3 0 0 0 .225

The covariance is the sum of this last matrix and is 0.6.

Let’s consider a time series of random variables: a1, b1, a2, b2.

Here is the (auto) covariance matrix of this time series (with itself).

γab t a1 b1 a2 b2

s a1 .6458 .6 0 .6
b1 .6 1 .6 0
a2 0 .6 .6458 .6
b2 .6 0 .6 1

(You should check that the auto-covariance of b is 1.)
White noise is any time series of random variables, w1, w2, .., whose autocovariance matrix is a

multiple of the unit matrix, e.g.

γw t w1 w2 w3 w4 ...
s w1 .6458 0 0 0 ...

w2 0 .6458 .6 0 ...
w3 0 0 .6458 0 ...
w2 0 0 0 .6458 ...

: : : : :
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Here is the autocorrelation of the white noise from Note 5.
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The central spur corresponds to the diagonal elements of the autocovariance matrix. Note that the
values are not zero everywhere else, but if we averaged over many instances of this time series all
but the central peak would vanish.

The central spur doubles in width (figure below, left) if we plot a two-element moving average,

w2 t = (wt−1 + wt)/2

and trebles in width (figure below, right) if we plot a three-element moving average,

w3 t = (wt−2 + wt−1 + wt)/3
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These correspond to tridiagonal and 5-diagonal covariance matrices, respectively. For example,
[SS06, p.21] uses

γw(s, t) = E(wswt) = σ2
wδs,t

to show

γw3 (s, t) =















3/9 s = t
2/9 | s − t |= 1
1/9 | s − t |= 3
0 | s − t |≥ 3

(In order to reserve the terms “auto/cross-covariance/correlation” for these theoretical con-
structs, [SS06, p.31] use “sample auto/cross-covariance/correlation” for what we have been calling
“auto/cross-covariance/correlation”.)
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7. Scaling. In Note 1, we “translated” time series by subtracting their average values from each
term. This is called “shifting”. We may also want to “scale” a time series, e.g., 5, 5,−5,−5, before
comparing with another, e.g., 1, 1,−1,−1. We do this by dividing by its standard deviation.

The Pearson Correlation Coefficient between two time series S1 and S2 is CCF (Ŝ1 ,Ŝ2 )[0] where

Ŝ is S shifted and scaled. This is inversely related to the Euclidean distance between the shifted
and scaled time series, 1 − D2(Ŝ1 , Ŝ2 )/(2n), to be precise [SZ04, p.92].

We can also do time scaling. Here are global relative temperature plots, in Celsius degrees, the
first by year (from www.stat.pitt.edu/stoffer/tsa2/globtemp.dat, a data file for [SS06]), the second
by decade.
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They should be comparable, but we must change timescales. Either we downsample the annual
data

for k = 1:ceil(sizeX(1)/w), Y(k) = X(1+(k-1)*w); end

where w is the “window” size, or we upsample the decade data
for k = 1:sizeX(1)*w, Y(k) = X(1+floor((k-1)/w)); end

(See [SZ04, p.94].)

Here is the annual data again, with the downsampled data upsampled again and shown in red.
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(This plot also shows, in green, the upsampled result of downsampling by average value of each
group, not just the first value.)
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Here are the cross-correlations of the annual data with the up-sampled decade date, using first
values (left plot) and average values (right plot).
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For comparison, here is the autocorrelation of the annual data (with itself).
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An improvement on timescaling by integer factors is time warping: for two series of lengths m
and n, respectively, upsample both to the least common multiple, lcm(m,n). Then the distance
squared between the series is the sum of the squares of the difference between associated terms. In
the special case that lcm(m,n) = mn, this is

mn−1
∑

l=1

(xbk/mc − ybk/nc)
2/mn

which is the same as the distance squared between the upscaled series/mn.

For example, consider the series Y1 and Y2.

X 1 2 3 4 5 6 7 8 9 10 11 12 13
Y1 3 2 2 4 3
Y2 3 2 3 3
Y 3 4 3 2 2 1 2 2 3 4 5 4 3

(Y is a series from which Y1 and Y2 might have been sampled: they are consistent with each
other.)
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Here are the data (left figure) and the results of upsampling (right figure).
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The cross-correlation exceeds 0.6 at lags −1, 0 and 1.
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This is uniform time warping. Dynamic time warping stretches and squeezes the time axis to
minimize the distance between the two series,

The distance squared between series Y1 and Y2 is found from the rule

D2
DTW (Y1 ,Y2 ) = D2(firstY1 ,firstY2 ) + min







D2
DTW (Y1 , restY2 )

D2
DTW (restY1 ,Y2 )

D2
DTW (restY1 , restY2 )

where D2(firstY1 ,firstY2 ) = (firstY1 − firstY2 )2.
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This produces a tree of comparisons. The minimum distance seems to be 1.
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This is done with dynamic programming in O(mn) time. Since that is too expensive for long
series, local dynamic time warping does the dynamic programming within small neighbourhoods of
each point on the time axis (after globally stretching both series to the same length). Time warping
is partially discussed in [SZ04, pp.96–9].
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