BASICS: QT-Expressions
Relational Information Systems Chapter 4.1-1
(Revised 99/10)

November 30, 1999

Copyright (©1999 Timothy Howard Merrett
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than T. H. Merrett must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett,
School of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the taxpayers of Québec and of Canada who
have paid his salary and research grants while this work was developed at McGill University, and from
his students (who built the implementations and investigated the data structures and algorithms) and
their funding agencies.

A major activity in database research and development has been the formulation of query
languages. The facilities offered by query languages usually include the ability for a user,
who is not particularly trained in the use of computers or in the implementation of databases,
to interact directly with heir data. The interest in query languages has been twofold:

1. how great a variety of queres can a database cope with; and

2. how close can we make the query facilities to what the user is accustomed to, so as to
minimize the period of special training hey must endure?

These are separate issues and are to some extent antithetical to each other. We focus
on the first, since this book is intended for readers acquainted with computers. Everything
we have covered so far has been concerned with programming for databases and secondary
storage, and the present discussion is not an exception. What will be noteworthy about the
QT-expressions discussed here is that a very simple extension to T-selectors offers a surpris-
ingly complete query facility. With QT-expressions, we can subsume the query language as
a simple special operator of the programming language.

QT-expressions consist of QT-selectors, QT-predicates, and QT-counters, of which QT-
selectors are basic and the most important. We will develop the subject through examples,
using the relations in figure 1.

Supply(Comp Dept Item Vol)

Domtex Rug Yarn 10 Loc(Dept Floor)

Playsew Rug Yarn 17 Rug !
Rug 2
Playsew Toy Yarn 20 Shoe 9
Oddball Toy Yarn 13
. Toy 1
Domtex Rug String Y
Domtex Toy String 2
Playsew Toy String 10 Class(Item Type)
. Yarn A
Playsew Shoe String 3 :
. String A
Shoeco Shoe String 15
Ball B
Playsew Toy Ball 2 Sandal o
Oddball Toy Ball 2 anda

Figure 1: Relations to Illustrate QT-Selectors

1 QT-Selectors

What QT-selectors add to T-selectors is quantifiers, hence the “Q”. These remove from T-
selectors the restriction that the selection condition must evaluate to true or false on each
tuple of the relation individually. It introduces aggregate selectors, which permit a set of
tuples to determine the truth or falsity of a selection condition.

We start with the example quantified query

find items supplied to more than two departments
[Item| where {(#> 2) Dept} in Supply

The phrase, (#> 2), is a quantifier, prescribing “there must be more than two different
values of ...”. So (#> 2) Dept states “there must be more than two different Depts”. The
expression, #> 2, is a quantifier predicate, and the symbol, #, is a quantifier symbol. 1t is
easiest to read the attribute as immediately following the quantifier symbol, so the quantified
attribute, (#> 2) Dept, is pronounced “the number of Departments is greater than 2”.

To give the essentials of how the quantifier is used in the QT-selector, we show Supply,
projected on Item and Dept. The columns to the right of the relation give the count, # Dept,
for each Item, the value of the quantifier predicate, and finally the value of the Item for which
the predicate is true.

[Item, Dept| in Supply
(Item Dept) #Dept > 27 Item

Yarn Rug

Yarn Toy 2 f

String Rug

String Toy

String Shoe 3 t String
Ball Toy 1 f

Horizontal lines show the groupings by Iltem. For each group, we must calculate # Dept
and then test whether it is > 2. Items that meet this test are selected: in this case, only
String.

This process could be done with a sequence of projection, equivalence reduction, and
selection, but it can also be done with a single pass following a sort to group Dept within
Item. All the QT-expressions we will consider have this simple and relatively inexpensive
implementation: one pass following a sort. They will all be evaluated from right to left,
through the where clause to the projection list.

The quantifier predicate is so written so that any predicate involving a quantifier symbol
may be used. For example

find items supplied to two or three departments

[Item| where {(#=2 or #=3) Dept} in Supply
or

[Item| where {(1 <# or #< 4) Dept} in Supply
or...

find items supplied to an odd number of departments
[Item] where {(# mod 2 = 0) Dept} in Supply

Not every QT-selector can be evaluated by a sequence of T-selectors and other operations.
Here is a QT-selector which requires the special, one-pass (after sorting) implementation.

find items except those supplied in volumes of less than 10
[Item| where {(# = 0) Vol} Vol < 10 in Supply

Spelling out the implementation shows what happens. (The quantifier need not be applied
to Vol in this query; it does not really matter what attribute it is applied to, but since Vol is
already involved, it makes sense to use it.

[Item, Vol in Supply
(Item Vol) Vol< 10?7 #Vol =07 Item

Yarn 10 f

Yarn 13 f

Yarn 17 f

Yarn 20 f 0 t Yarn
String 2 t

String 5 t

String 5 t

String 10 f

String 15 f 2 f
Ball 2 t

Ball 2 t 1 f

This shows the right-to-left evaluation when an ordinary (not quantifier) predicate is
present. It also reveals that if we had done the T-selector,

[Item] where Vol < 10 in Supply,

first, no tuples with Item = Yarn would be left to give the answer. (However, even this query
may be expressed by relational algebra other than QT-selectors. Both pu-joins and o-joins
can solve it. There is nothing new about QT-selectors, except their simple implementation
and straightforward translation from natural language.)

This same approach permits multiple quantifiers:

find items supplied by at least two companies to more than one department

This does not have a completely obvious meaning, but it is easy to translate into a QT-

selector.

[Item] where {(# > 2) Comp, (# > 1) Dept} in Supply

To be sure of the meaning, we must follow through the procedure we have been developing.

[Item, Comp, Dept| in Supply

(Item Comp Dept) #Dept >17 #Comp >27 Item
Yarn Domtex Rug 1 f

Yarn Playsew Rug

Yarn Playsew Toy 2 t

Yarn Oddball Toy 1 f 1 f
String Domtex Rug

String Domtex Toy 2 t

String Playsew Toy

String Playsew Shoe 2 t 2 t String
Ball Playsew Toy

Ball Oddball Toy 1 f

But what if we turn it around?

find items supplied to more than one department by at least two companies
[Item| where {(# > 1) Dept, (# > 2) Comp} in Supply

The procedure is different. The answer is different.

[Item, Dept, Comp| in Supply

(Item Dept Comp) #Comp >27 #Dept >17 Item
Yarn Rug Domtex

Yarn Rug Playsew 2 t

Yarn Toy 0Oddball

Yarn Toy Playsew 2 t 2 t Yarn
String Rug Domtex 1 f

String ©Shoe Playsew

String ©Shoe Shoeco 2 t

String Toy Domtex

String Toy Playsew 2 t 2 t String
Ball Toy 0ddball

Ball Toy Playsew 2 t 1 f

Is there an error here? No, changing the order of quantifiers generally changes the meaning.

For example,

Vedyy>x # FyVzy>=z

in the case of integers: any integer has some larger integer, but no integer is larger than all

others.

There is a moral from even such a simple query. The meaning of natural language is
not always obvious, until we have executed a procedure to clarify it. This rings the knell
of any simple-minded “natural-language query” system. It also is hard on the notion of a

“non-procedural” language: there is always a procedure of some sort, and sometimes working
through a procedure is essential for understanding.

The quantifier symbol, #, is sufficient for any query, when taken in combination with the
domain algebra and the rest of the relational algebra. (We even saw that it adds no new
functionality.) But a second quantifier symbol, e, meaning “the proportion of”, is handy.
In fact, introducing it parallels the development of classical logic, which has two quantifiers,
existential (3) and universal (V). 3 is the special case, (#> 0), and we shall see that V is
(e =1).

find items supplied by all companies to the Toy department

[Item] where {(e¢ = 1) Comp} Dept = "Toy" in Supply
i.e.

[Item] where {(#/4 = 1) Comp} Dept = "Toy" in Supply
Here, we get no Itemss, because there are four companies, but each Item supplied to the Toy
department is supplied by only two of them.

[Item, Comp] where Dept = "Toy" in Supply

(Item Comp) eDept =17 Item
Yarn Oddball

Yarn Playsew .5 f

String Domtex

String Playsew .5 f

Yarn Oddball

Yarn Playsew .5 f

Note that this formulation puts a specific interpretation on “all”: “all” is relative to the
relational expression that follows the in. The count is done, in this case, in Supply of all the
different Companies, and this count is used to divide # to get the effect of e.

Two other possible interpretations of “all” are not followed. One is that “all” is relative
to all possible values of the attribute used in the database. This would presuppose that there
were domains, each with an explicit list of all possible values (or rule prescribing them),
which we do not do. In any case, the programmer can express this meaning for “all” with a
little manipulation of the relational and domain algebras.

A second unused interpretation of “all” would be to do the count of all values after the
selection condition, if any, in the QT-selector. In the above query, “all” would mean all
3 companies (Playsew, 0ddball, and Domtex) rather than all 4. Once again, not follow-
ing this interpretation is a somewhat arbitrary choice, except that it is the most subtle of
the interpretations and the hardest to remember; but a programmer can always force this
interpretation by using # with suitable other operations.

We said above how to

find items supplied by all companies to the Toy department
so let us

find items supplied by most companies to the Toy department

[Item] where {(e > .5) Comp} in Supply

We have so far considered QT-selectors involving only the relation, Supply. More than
one relation can be involved in a QT-expression, but they must all be suitably combined into

a relational expression.

find departments that supply no items of type B
[Dept] where {(# = 0) Item} Type = "B" in (Supply ijoin Class)

Sales ijoin Class

(Dept Item Type) Type="B"? #ltem =07 Dept
Rug Yarn A f

Rug String A f 0 t Rug
Toy Ball B t

Toy Yarn A f

Toy String A f 1 f

Shoe String A f 0 t Shoe

(Note that if Shoe were not in Supply, but still remained a department, it would not appear
in the answer, even though Shoe does sell no items, and, in particular, no items of type B.)

find departments that sell at least two thirds of the items supplied to

the departments on the same floor

(We can pretend that Sales <— [Dept, Item| in Supply.)

let Count be equiv max of (par + of 1 order Item by Floor) by Floor;
([Dept] where (#/Count> 2/3) Item in (Sales ijoin Loc))

ijoin

([Floor, Item, Count] in (Supply ijoin Loc))

Sales ijoin Loc
(Dept Item Floor)

Rug Yarn 1
Rug Yarn 2
Toy Yarn 1
Toy String 1
Toy Ball 1

Supply ijoin Loc

(Floor Item Dept) Count

1

NN -

Yarn Rug 3
Yarn Toy 3
String Toy 3
Ball Toy 3
Yarn Rug 2
String Shoe 2

(...) ijoin [Floor, Item, Count] in (...)

(Dept Count Item Floor) #lItem >2Count/3? Dept
Rug 3 Yarn 1 1 f

Rug 2 Yarn 2 1 f

Toy 3 Yarn 1

Toy 3 String 1

Toy 3 Ball 1 3 t Toy

This example requires some explaining. We must compare counts of two different kinds
of Item. So while one may be counted with the quantifier symbol, #, the other requires
domain algebra, and, for generality, the full idiom to count numbers of different values of an
attribute. This idiom is used to count the Items supplied, and so the quantifier, (#/Count>

2/3), is applied to the Items sold.

It would not be enough just to compare two counts of Items coming from (possibly)
quite different relations: we must connect the sets of Items together so that we know, for
example, that we are not comparing {Widget, Gizmo, Whatchimacallit} with {Yarn,

String, Ball}, and, since the ratio of counts is > 2/3, incorrectly conclude that the first set
consists of at least two thirds of the second. So we must join the two sides together on Item.

The join must also include Floor, since the query says “on the same floor”. Finally, the
two sides, Sales and Supply, each must have the Floor, both for the join and for the group-by,
so they must each be joined with Loc.

2 QT-Predicates

Since we have a simple syntax and a one-pass implementation which so greatly extends the
capabilities of relational selection, we exploit these advantages in other directions. The first
is the QT-predicate, which simply leaves off the projection list and the where in order to
return a Boolean value.

all companies supply volumes in excess of 10
{(e =1) Comp} Vol > 10 in Supply

[Comp, Vol| in Supply
(Comp Vol) Vol> 107 eComp > 17

Domtex 10 f
Domtex 5 f
Domtex 2 £
Playsew 17 t
Playsew 20 t
Playsew 10 f 0.75 f
Playsew 5 f
Playsew 2 f
Oddball 13 t
Oddball 2 f
Shoeco 15 t

The attribute in the result of this expression has no name, just as for o-joins of relations
on the same attributes, or selectors with empty projection lists. This is consistent, since all
three of these give Booleans. However, it may be useful to assign the result to a relation,
which should thus have an attribute. We propose a default attribute name, .bool, to permit
this. The programmer can soon rename it, e.g.,

let allCompVol10 be .bool;

3 QT-Counters

The second adaptation of the QT-selector is the QT-counter, which permits the quantifier
symbols, # and e, to quantify the answer attributes in the project list. Simple examples of
each are

find the number of departments to which string is supplied

[# Dept| where Item = "String" in Supply

[Dept where Item = "String" in Supply

(Dept) # Dept
Rug

Toy

Shoe 3

and
Find the proportion of departments to which string is supplied

[eDept] where Item = "String" in Supply
[Dept where Item = "String" in Supply

(Dept) #Dept/3
Rug

Toy

Shoe 1.0

Again, as in QT-predicates, the resulting attribute(s) is(are) anonymous, so there must
be a default name, say .numeric (or, in a less flexible type system, .intg and .real). Clearly
there may be more than one counted attribute in the projection list, but the resulting types
must all be different or there will be ambiguities in the result. This limitation can be cleaned
up if there proves to be strong need for multiply counted results.

