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Although a lot of programs can be written in the relational and domain algebras as
considered so far, they are a formalism rather than a programming language. We have not
included any of the advanced programming language facilities, such as procedural and data
abstraction, event handling, instantiation and inheritance, processes and concurrency, or even
scoping or control structures.

Many proposals have been made and implemented to embed “database” facilities into
programming languages, from invocations of DBTG within COBOL or of SQL within C++,
to incorporating the relational algebra into modifications of languages such as Pascal, to
adding “persistence” to languages such as Smalltalk or C++ to attain “object-oriented data-
bases”. The common understanding behind these systems is that databases support querying,
through “query languages” which fall short of full programming capability. There is a need
for more than query languages, and so these extensions have been made.

This understanding of databases is limited. It goes without saying that a language for sec-
ondary storage should offer full programming capabilities, and not be limited to “querying”.
Regrettably, this has not been obvious to builders of database systems, and, indeed, current
vocabulary enshrines the distinction between the “two types” of language. For example,
the term “on-line analytical processing” (OLAP) had to be coined to describe a supposed
new dimension, distinct from “on-line transaction processing” (OLTP), to permit thinking
about programming as opposed to querying, while, in fact, querying is just a special case of
programming.

In the following, instead of making ad hoc bridges between two different worlds, we
unify database and programming language concepts, obtaining generalizations of both which
advance both.



The new facilities we discuss below do not necessarily enhance the power of Aldat. They
are mostly implementations of generally useful concepts which save the programmer thought
and code.

1 Computations

The most obvious limitation of our formalism so far is that it does not allow parametric
abstraction: procedures and functions. If we think about functions the way mathematics
does, they are special kinds of relation, namely relations in which the mapping is many-to-
one. Since we have a fairly full treatment of relations in the relational algebra, we can hope to
find the right perspective on programming language functions so that we can just use existing
ideas and syntax.

This perspective is given by programming languages that offer “constraint programming”.
In these languages, a relationship between different variables can be defined as a predicate
and used to calculate more than one subset of the variables given the complementary subset.

For example, the relationship between interest rates compounded over different periods
is

1+71=01+19)°
where interest rate i compounded p times is equivalent to interest rate I over the whole
period. (If p were 12, this relates annual interest, I, to monthly interest, i.) From this, given
values for any two of the variables, the third can be found.

This relationship exhibits a symmetry reminiscent of the symmetry of database relations,
in which any subset of attributes can be specified in a T-selector and the corresponding tuples
(and so the values of the other attributes) found.

We formulate it as a computation, a new term for a parametrized expression which can
be used to derive more than one of its parameters given values for the others.

comp IntPerChg(1,i,p) is
{I <—(1414)*x*p—1}
alt
{i <—=(1+1)=*x%(1.0/p) — 1}
alt
{p <— round(log(1 + I)/log(1+1))} ;

Instead of attempting to provide an implementation which automatically works out from
a single predicate all the functions it gives rise to, we give syntax, alt, which allows the pro-
grammer to combine heir own solutions. While this relies on the programmer to give correct
and consistent alternatives, it avoids the extreme difficulties of trying to do it automatically.
(If the constraint programming people find a general solution to the problem, we can adopt
it.)

The computation, e.g., IntPerChg, has attributes, just as a relation does. Unlike relations,
it has a type, and can only be used in ways consistent with this type. (A type system in a
programming language is a redundancy mechanism used to help detect programmer errors,
specifically in the use of parametric abstraction and of built-in operators. Relational opera-
tions have so far accepted any relation, and the only use a relational algebra implementation
has been able to make of typing is to ensure union-compatibility between join attributes.)

Computations are intended to behave as far as possible like relations. Indeed, “comp”
can be read as “compressed relation”, and IntPerChg can be considered to be the infinite
relation on all possible values consistent with the relationship.
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The typing restricts operations on IntPerChg so that they produce finite relations as
results. (We could specify that a new computation should be produced by any operation that
would otherwise lead to an infinite relation, but we avoid it for the same reason we avoid
automatic generation of all functions from a predicate. Such a specification would be called
“partial evaluation”.)

Because a computation can be thought of as a typed relation, we do not need to add new
syntax to invoke it. A T-selector will do.

Intint <— [p] where I = 0.12 & i = 0.01 in IntPerChg;

gives the result

Intint( p )
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The T-selector needed is a very special kind. The attributes in the where clause are
tested for equality with constant values and the tests are anded together. The attributes in
the projection list complement those tested. Because of this, and also because programmers
are more familiar with a simpler syntax, we can introduce “syntactic sugar” for this special
kind of T-selector.

Intint <— IntPerChg{0.12,0.01};

This syntax uses a positional convention, based on the order of the attributes in the declar-
ation of the computation. Generally, IntPerChg has three positions, separated by commas,
e.g., IntPerChg{0.12,0.01,}, with blank positions indicating the attribute to be projected. If
the attribute to be projected is the last, the comma before it may be omitted, as above. !
Thus

Intper <— [i] where I = 0.12 & p = 12 in IntPerChyg;
(Intper <— IntPerChg{0.12,,12};)

giving
Intper( i )
0.00948882
and

intper <— [I| where i = 0.01 & p = 12 in IntPerChy;
(intper <— IntPerChg{,0.01,12};)

giving

1Since computations and relations are closely connected, this syntactic sugar is also available for relations.
It gives the effect of array lookup. Although the syntax is defined to mean the corresponding T-selector, it
does not have to be implemented that way. Indeed, for relations we can gain much speed from a separate
implementation because this special T-selector does not require a scan of the whole relation, as does the
general T-selector.



intper( I
0.126825

T-selectore are not the only way a computation may be invoked. Since they are effectively
relations, they may be used, with restrictions due to type, anywhere relations may. In
particular, we can use a natural join to invoke a computation.

IntPer( I p )

0.06 12
0.06 24
0.07 12
0.07 24

ipc <— IntPerChg natjoin IntPer;

ipe( I p i
0.06 12 0.00486755
0.06 24 0.0024308
0.07 12 0.0056541
0.07 24 0.00282311

Computations support recursion in the usual way.

comp gcd(k,m, g) is
{ g <— if k£ < 0 then gcd{—k, m} else
if m < k then ged{m, k} else
if £k = 0 then m else gcd{m mod k, k}
};
Procedures are top-level computations. They take relations as parameters (although so

do the computations discussed above, in the context of nested relations) and are invoked as
statements in their own right.

comp ABCjoindecomp(R, S, T) is

{T <—Rijoin S; }

alt

{R<—-[A,B]in T;

S <—[B,C] in T;

b
The invocation must include syntax for type checking and to specify which alt is to be

invoked. Accordingly, parameters are invoked prefixed by in or out.

relation R(A7 B) <— {(070)7(2a0)7(071)7(171)}1
relation S(Ba C) <- {(an)a(]-:]-)a(Oal)a(laQ)}a
ABCjoindecomp(in R, in S, out T');
ABCjoindecomp(out U, out V, in T);

These prefixes are not needed in the earlier invocations, by T-selector or join, because the
syntax of these makes clear which attributes are input and therefore which are output.



comp Closure(TC, Graph, Parent, Child) is
{ temp <— Graph;

TC <— Graph,
Closure(in TC, in Graph, in Parent, in Child);
} alt

{ temp <— temp[Child icomp Parent| Graph,
if [| in temp then
{ TC <— TC ujoin temp;
Closure(in TC, in Graph, in Parent, in Child)
b

}; << Rebecca Lui, 1996 >>

Figure 1: Transitive Closure by Recursive Computation

If attribute names are used as parameters for a top-level computation, they are in or out
according to need.

comp joindecomp(X,Y,Z, R, S,T) is
{T <—Rijoin S; }
alt
{R<-[X,Y]inT;
S <—[Y,Z] in T;

joindecomp(out A, out B, out C, in U, in V, out W);
joindecomp(in A, in B, in C, out X, out Y, in W);

With this invocation syntax, we can write a recursive computation which is not just the
equivalent of a recursive function call in other languages. Figure 1 shows a computation to
find transitive closure of a Graph by combining edges with paths of length two with paths of
length three, and so on to paths of maximum length.

This would be invoked by

Closure(out Ancestor, in Parent, in Sr, in Jr);

The types of the two alt blocks are, respectively, (out, in, in, in) and (in, in, in, in). So
we see that this invokes the first alt block first. The first alt block invokes the second, which
then invokes itself until all paths up to the maximum length have been processed. The code
computes Graph, Graph?, Graph®, .. in succession and accumulates the union in 7T'C.

Note that temp is a local variable, known only within the computation, but that it keeps
its value between invocations. It is an “own” variable in Algol 60 parlance (where these first
appeared historically), or “static” in C terminology.

Note also that Closure does not have to be invoked at top level as shown. If some relation,
R, had a nested attribute compatible with Graph, Closure could be invoked in a T-selector
or in a join to find the transitive closure of this relational attribute in every tuple of R.

2 Event Programming

Top-level computations without parameters can be used to implement event handlers. Event
programming is asynchronous programming, in which the code is invoked by actions external
to the program. Mouse events in a graphical user interface are such actions, leading to
responses from the software to interpret them and carry out the interpretations.



Event programming should not be confused with concurrent programming. It is much
more straightforward and does not need concurrent processes. In fact, the two basic ideas
are

e an event is a system-generated procedure call, and
e an event handler is a procedure.

In databases, the obvious “external” actions to respond to are updates. Here is an in-
ventory example.

relation Inventory
(PartNo, Descr, QOH, Supplier, Thr, ROQ) <— {
("1", "widget", 23, "Acme", 20, 50),
("2, "gizmo", 97, "Zedco", 10, 30)
};
in which we would like to support sales and consequent reordering if the quantity-on-hand,
QOH, drops below a pre-set threshhold, Thr.

update Inventory change
QOH <— if PartNo="1" then QOH —9 else QOH,;

Inventory
(PartNo  Descr  QOH Supplier Thr ROQ)
1 widget 14 Acme 20 50
2 gizmo 97 Zedco 10 30
SupplyHist
(PartNo  Descr Supplier Ordr Rcvd  Date)
1 widget Acme 50 DC 981103

SupplyHist records the order we have placed as a consequence, for 50 widgets (50 is the
reorder quantity, RO®), and must be generated by the code we are going to write.
We also want to be able to record receipts.

update Inventory change
QOH<—if PartNo="1" then (QOH+45 else QQOH;

Inventory
(PartNo  Descr  QOH Supplier Thr ROQ)
1 widget 59 Acme 20 50
2 gizmo 97 Zedco 10 30
SupplyHist
(PartNo  Descr Supplier Ordr Rcvd  Date)
1 widget Acme 50 DC 981103
1 widget Acme DC 45 981105

in which acme was able to supply only 45 of the 50 ordered, and SupplyHist records this.
The code to do this could be written as procedures for sales and receipts, but we do it
instead with an event handler invoked automatically by the updates. Figure 2 gives the event
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comp post:change:Inventory|QOH|() is
{ let Date be today();

let 0ldQOH be QOH:

let Ordr be ROQ);

let Rcvd be (long dc);

Reorder <— [PartNo,Descr,Supplier, Ordr, Rcvd, Date]

where QOH < 0ldQOH in (
(where QOH < Thr and Thr < 0ldQOH in Inventory)
ijoin [PartNo,oldQQOH] in TRIGGER

let Date be today();
let Ordr be (long dc);
let Rcvd be QOH — 0ldQOH,
Resupply <— [PartNo,Descr,Supplier, Ordr, Rcvd, Date]
where QOH > 0ldQOH in (
([PartNo,Descr,Supplier, QOH) in Inventory)
ijoin [PartNo,0ldQOH] in TRIGGER

SupplyHist <+ Reorder; SupplyHist <+ Resupply;

?

Figure 2: Inventory Event Handler

handler. This is a procedure body with a system-generated “name”. The components are
post to invoke the handler after the update has been done (pre is the alternative), change
so the handler is invoked by a change (add and delete are the other options), and the names
of the relation and attribute(s) changed.

The code creates either Reorder or Resupply depending on whether the change in QOH
is negative or positive. This is detected by comparing QOH with old(Q)OH. The latter comes
from the system-generated relation TRIGGER, which contains the old values of the changed
relation, Inventory in this case. (TRIGGER is present in every event handler, but is local
and available only internally.) For Resupply, further tests are needed, first to check that QOH
has dropped below Thr, and second to check that this is the first time (oldQOH > Thr).

Of course, an event handler may contain a further update, even to the relation whose
update invoked the handler. This last would amount to a recursive call of the handler, and
can be useful. Here is a little exercise to generate the integers from 0 to 4, each a tuple in
10ta.

comp post:add:iota() is
{ let nmin! be (red min of n) — 1;
let n be nmini;
update iota add
[n] in [nminI] where nmini>= 0 in iota;

The cascade of updates is started by

relation start(n) <— {(4)};
update iota add start;



3 Instantiation

For a start, we introduce state into computations. So far, the computations we have seen
have been functional in the programming language sense of this word: the same input always
gives the same output; there are no “side-effects”2.

A useful example is a counter. This increments a state variable (count) every time it
is called. As a computation, it has two modes of operation. The usual mode has only an
output, the current value of count. The initialization mode has only an input, the value to
which count is to be set. Because it is a computation, these modes can be implemented as

two alt blocks.

comp counter(ct) is

state count intg;

{ count <— ct

} alt

{ count <— count + 1;

ct <— count

};
The state variable persists between invocations of counter, and is accessible by all alt blocks.
This is an idea which commenced with the own variables of Algol 60, and continues in the
static variables of C. (But it is not at all the static variable of Java, as we shall see.)

After initialization and a succession of calls,

c0 <— counter{0};
cl <— counter{};
c2 <— counter{};
c3 <— counter{};

we can look at the latest value.
c3(ct)
3

The notion of state leads to a new requirement, instantiation. Functions (without state)
or computations without state can be used for many different purposes without interference.
For example, a sqrt () function may calculate the square root of 4 or of 10 or of w. (This may
even happen at the same time for different programs: while program P is finding sqrt(2.0),
program () may be calculating sqrt(e) and there will be no problem, because re-entrant
code is usually used for “library” functions such as this.

However, a program cannot alternate invocations of counter to count apples on one hand
and oranges on the other, unless special provisions have been made for the two different
counts not to get mixed up: the state is not “re-entrant” and a copy must be made for each
use.

In an “object-oriented” programming language, a keyword, new, is used to make new
instances. This is a low-level approach. Dealing with one “object” at a time is akin to dealing
with one tuple at a time®. Since Aldat has no notion of “tuple”, it should also have no notion

2We have hitherto focussed on the many-to-one aspect of functions, without considering that they are
“memoryless”. This is the important aspect here. If the code in a parametric abstraction (loosely called a
“function” in some programming languages) remembers its previous invocations through a state, it is not
many-to-one. The same input values can result in different output values as a consequence of the history.

3The simple-minded mappings between relational and “object-oriented” databases exactly identify an
“object” with a tuple, which is hardly necessary, given facilities to deal with whole subsets of the tuples in a
relation, as we said about diagrams in section 4 of chapter 1.1.



of “object”, and so we have no new operator.

The original intention of “object-orientation” was to be able to instantiate large numbers
of states, such as might be used to describe the atoms in a kinetic model of a gas or the cells
in an organism. Instantiation in connection with relations lends itself very easily to such a
requirement, as we shall see.

But first we look at a mechanism for data abstraction. This is the second of the two pillars
of “object-orientation”, along with state and instantiation. It gives the ability to isolate a
module of code from all other code in a program except through a specified interface. This
is a list of names, often of functions and procedures, sometimes of ordinary variables, which
the module “exports” and allows other modules to see and use. It also is echoed in the
using module, in a similar list which specifies the subset of these names that it will use. The
rest of the names within the supplying module, not to mention all the code, are hidden from
other modules. This hiding is central to data abstraction [Par71] because it prevents any
exploitation of the supplying module except through the interface, including uses that take
advantage of special features of the implementation. Such modules are called abstract data
types.

It has been argued [AM84] that special syntax is not needed for these modules, provided
that “first-class” procedures exist and that they can be made persistent—to endure beyond
the lifetime of the program that created them. A first-class data type is one which can be
used anywhere any other data type can be used, in particular as return values from other
procedures. In many programming languages, integers, say, are first-class, but functions are
not.

The argument goes that the formal parameter list of a procedure and the actual paremeter
list of the invocation provide fine export and import lists, and can include functions and
further procedures if procedures are first-class, and specifically if they can be created within
the procedure that serves as the abstract data type and can be returned to user procedures
through the parameter lists. Futhermore, if the abstract data type is a persistent procedure,
it can be placed in a library, or become a library, and its interface procedures and variables
made available for the long term.

Persistence is not a problem for Aldat: everything (i.e., relations, e.g., computations)
is potentially persistent. First-class computations are not a problem either: these are just
computations, i.e., relations, which are attributes of other computations, i.e., relations, which
is to say, they are nested. So in figure 3, we create a class, which is an abstract data type
with state, using no new or special syntax.

Here, the computation ba is the class, with “methods” (computations) BALANCE and
DEPOSIT. There is only one alt block in ba, so it is the ordinary class of most “object-
oriented” programming. The BALANCE method simply returns the value of the state variable
bal, which is a familiar and basic use of methods. The DEPOSIT method has two alt blocks
and so is more unusual. The first alt block uses the parameter to change the balance. (The
second alt block uses a second state variable, oldbal, to figure out what the last deposit was,
and is a little redundant, except that it highlights the temptation computations present of
trying to think about a procedure from all angles, not a harmful impulse at all.)

Now consider the issue of instantiation. We would like to have bal (and oldbal) states for
each of a number of diffrent accounts, such as might be listed in a relation.

relation accts(ACCNO, CLIENT) <— { (1729,"joe"), (4104, "sue") };

We instantiate by putting the computation, ba, and the relation, accts, together. How else



domain DEPOSIT comp(DEP);
domain BALANCE comp(BAL);
comp ba(BALANCE, DEPOSIT) is
state bal intg;

state oldbal intg;

{ comp DEPOSIT(DEP) is

{ oldbal <— bal;

bal <— bal + DEP,

} alt

{ DEP <— bal — oldbal, }
comp BALANCE(BAL) is

{ BAL <— bal, };

bal <— 0;

oldbal <— 0;
5

Figure 3: A Class For Bank Accounting

but by a natural join?
accounts <— accts ijoin ba;

The result is the relation accounts(ACCNO, CLIENT, BALANCE, DEPOSIT). Two of
these attributes are computations, which we can think of as nested relations. The result is
the Cartesian product of ba and accts, because they share no attributes. There is no point in
repeating the whole “value” of BALANCE and DEPOSIT, which is just their code. However,
we do want each tuple of the result to have an instantiated state, consisting of bal and oldbal,
so the ijoin between a relation and a class is implemented to do just this.

Except for the fact that bal and oldbal are hidden, i.e., inaccessible except, partially,
through the interface names, BALANCE and DEPQOSIT, the new relation can be thought of
as

accounts

(A CCNO CLIENT bal oldbal)
1729 joe 0 0
4104 sue 0 0

where the 0 values come from the initialization code in the class, ba.
Reading the balance of each account is easy.

acctbal <— [ACCNO, [BAL] in BALANCE)] in accounts;

On the other hand, if we want to make a deposit, we may not use domain algebra, because
the domain algebra is functional (in the sense that it admits no side-effects). We must use
update syntax instead, because we are changing the relation.

update accounts change DEPOSIT(100) using where ACCNO = 4104 in accounts;

We can use this to write a more elaborate procedure to transfer money between two
accounts.

comp transfer(FROMACC, TOACC, AMT) is
{ update accounts change DEPOSIT(—AMT)
using where ACCNO=FROMACC in accounts;
update accounts change DEPOSIT(AMT)
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using where ACCNO = TOACC in accounts;
}

Here we use it to move $50 between the two accounts.
transfer(in 1729, in 4104, in 50);

How would we write code to require a password to change or read any particular account?

4 Inheritance

With instantiation, we are well on the way to “object oriented” databases. Since “objects”
are at the same low level of abstraction as tuples, and since Aldat has no notion of tuple,
it is appropriate that we use higher-level terminology. Instances imply classes which they
instantiate, so we will term what we are aiming at “class programming” for “class databases”.

Classes in turn imply subclasses, and subclasses imply inheritance. This is a further code-
saving mechanism which allows members of a subclass automatically to acquire the attributes
of the parent class. Here is s simple example.

relation Couch(Id, Length, Width);
relation Chair(Id, Base);

relation Furniture(Id, Manuf );
Couch isa Furniture;

Chair isa Furniture;

Here, Couches and Chairs form subclasses of Furniture. Although they do not explicitly
have all the attributes of Furniture, they plainly should: if any piece of furniture has a
manufacturer, so does any chair. Couches and Chairs each have additional attributes, not
shared by other furniture.

The significance of the isa syntax is that it makes the common attribute, Manuf, available
to the inheriting subclasses. Any reference to this attribute in connection with Couches, say,
will automatically acquire the appropriate value from Furniture. Here, for example, is a
projection.

[Manuf ] in Couch
The effect of this is defined to be
[Manuf | in (Couch natjoin Furniture)

As far as Couch and Chair are concerned, Manuf can be thought of as a virtual attrubute,
but, unlike those of the domain algebra, one whose value is taken from an actualization
elsewhere. Figure 4 shows this viewpoint.

Not only can isa be defined in this way, it can also be implemented as a natural join.
However, many “object-oriented” applications of this sort are low-activity (meaning that only
a very small proportion of the tuples in the relation are needed by the transaction) and so
better implemented by pointer-dereferencing instead of by the full join. That is okay: we
have syntactic sugar (isa instead of ijoin) for a special case, and we can also provide a special
implementation for the syntactic sugar. The definition in terms of joins makes the meaning
precise, but does not oblige us to implement inheritance in this way.

We can extend the syntax in the expected way.

relation Couch(Id, Length, Width);
relation Furniture(Fid, Manuf);
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Furniture Couch
(Id Manuf) (Id  Length Width) Manuf

1 Mobel 1 15 5 Mobel
2 Furn 2 17 5 Furn
3 Mobel 3 18 6 Mobel
21 Mobel
22 Furn Chair

(Id  Base) Manuf

21 4 Mobel

22 5 Furn

Figure 4: An Inherited Attribute

Couch [Id isa Fid] Furniture;
which permits
[Manuf] in Couch
to be syntactic sugar for
[Manuf] in (Couch [Id natjoin Fid] Furniture)

We note that only syntactic elements enter these definitions. This leaves the semantics
unconstrained. There are two semantic constraints normally associated with inheritance, and
obeyed by the above examples. First, the join attribute (Id, Fid) is a key of both parent and
subclass. Second, there is the inclusion dependence,

[1d] in Couch C [Fid] in Furniture

which asserts the subset relationship.

The syntactic definitions, above, guarantee neither of these semantic constraints. In the
interest of leaving this generalization open for future interpretation and exploitation, we do
not impose the constraints or give the guarantee.

5 Scoping
6 Concurrency
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