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Introduction

Much of the present literature on constraints cites Ivan Sutherland’s Ph.D. thesis of almost thirty years
ago [3] as a seminal work. This thesis is easy to read, but you only find out how comprehesive and valuable
his system is when you fill in the missing details. Here is a discussion of the constraint system in Sketchpad.

First, an introduction. Sketchpad is a drawing system, using a lightpen, screen, and 32 special buttons
on an innovative computer with 64K words (at 36 bits per word) of core memory with a 6 usec access time,
and magnetic tape secondary memory — a kind of super Apple ][. The system can use the buttons to
select drawing modes (straight line, circle '), to copy or delete, or to move data to plotter or to and from
tape. More important than this, Sketchpad permits the user easily to define constraints on the components
of the drawing, which are thereafter automatically satisfied. Sketchpad also maintains a library of both
drawings and constraints, so the system grows more useful the more it is used. 2

For instance, to draw a parallelogram, the four vertices may be placed in roughly their right positions
using the light pen, then constrained to make the parallelogram. (Actually, one would draw the four lines,
but it is the vertices that are constrained.) We can use two constraints to do this. The first constrains the
distance from vertex 2 to vertex 3 to equal the distance from vertex 0 to vertex 1. The second constrains
2 and 3 so that a line connecting them would be parallel to a line from 0 to 1.

Both of these are quaternary constraints: they have four vertices as arguments. Sketchpad allows
unary, binary, ternary, and quaternary constraints.

As another example, to draw a hexagon, draw a circle, then a six-sided polygon within it, and constrain
each vertex to lie on the circle (that is, to be pairwise cocircular). Then constrain each pair of sides to be
the same length (the same equality constraint used for the parallelogram).

The constraint mechanism in Sketchpad is such that it can actually be used to display the strains of a
truss bridge under load, and the corresponding forces. However, Sketchpad was not able to show currents
or voltages in an electrical circuit when drawn. This illustrates the generality of the constraint mechanism
used, although it was only designed to aid drawing.

Constraints

Sketchpad will accept any constraint whose degree of dissatisfaction (called the error) can be measured
by an expression returning a real number. If the error is linear in the variables to be changed, Sketchpad
can satisfy the constraint (as far as possible, considering other constraints) in a single calculation. For
nonlinear constraints, the satisfaction process must iterate.

An example of a linear constraint is collinearity. Given three points, (zg,yo), (z1,y1) and (x2,y2), the
error is linear in each of the variables, and can be written as the area of the triangle formed by the three
points.

zo Yo 1
error = | z1 Y1 1
z2 Y2 1

On the other hand, the constraint that distances between pairs of points be equal is quadratic, not
linear. The error can be given as the difference of the squares of the distances.

!The difference equations for a line are
Ti = Ti—1 + Az Yi =Yi-1+ Ay

and those for a circle are
i = i1+ (Yi-1 —¥i)/R Yi = Yi-1 — (£i—1 —x5)/R
or, on a machine such as the TX-2, which can compute coordinates in parallel,

xi = i—2 + 2(yi-1 —yi)/R ¥i = Yi—2 — 2(xi—1 — z;)/R

%In a number of ways, Sketchpad is a precursor of the object-oriented approach, using complex objects and inheritance from
general to specific. Sutherland considers nested instances and genericity to be the most important contributions of Sketchpad.
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error = (z3 — 22)? + (y3 — y2)% — (z1 — 70)? — (y1 — ¥0)?

The user must define error functions for each constraint introduced. There must be one error function
for each degree of freedom removed by the constraint.

Linearization
Sketchpad uses the error function to produce a linear equation for each constraint. The set of equations

generated for a set of constraints can be solved in standard ways, discussed below. The linear equations
are derived from

Z B—wi(wi —zi0) = —Eq (1)

where z;,7 = 1...n are the variables (coordinates) to be changed to meet the constraints, ;o are the
corresponding initial values, and Ej is the error when the variables have their initial values.

The error function is used to estimate the partial derivatives, 0E/0x;, by averaging AE/Ax; as the x;
are each independently varied from z;g.

If the error function is linear, the linear equation produced is identical to the equation, error = 0. As
an example, we find the intersection of two lines, using two collinearity constraints. The lines are defined
by end points

(z0,0) = (0,0); (z1,91) = (1,1)
(z2,92) = (1,0); (z3,93) = (0,1)

and the variable point, constrained to be collinear with both lines, starts at

(z,y) = (0.5,0).
The errors are
0 0 1
error0l=|1 1 1|=y—zand
y 1
1 0 1
error23 =10 1 1|=1—-z—y.
z y 1

Now we vary x and y about their initial values, and compute Az, Ay and AFE

01 collinear 23 collinear
z y|Az Ay| E AE 22 22| E AE 22 25
bS5 0] — —|-b — — — | .5 — = —
0 0| -5 —1] 0 .5 -1 — 1 .5 -1 —
1 0 S — | -1 -5 -1 — | 0 -5 -1 —
S 5| — .5 0 5 — 1 0o -5 — -1
bS5 1] — 1] .5 1 — 1(-5 -1 — -1

We see that (%, ﬁ—f) is (-1, 1) for the 01 collinearity constraint, and (-1, -1) for the 23 collinearity

constraint. Using these values for (%—f, %—5) in equation 1, we get the equation y —x = 0 for 01 collinearity

and 1 — x —y = 0 for 23 collinearity: just the original error expressions set to zero. Solving these two
equations simultaneously gives (z,y) = (0.5, 0.5) as the intersection point, exactly the right answer.

For nonlinear error functions, we must put up with approximations. But the same procedure applies,
which is why I have illustrated it even in the linear case. Consider the example of making a parallelogram.
We have sides

(550,?/0) = (050) (wlayl) = (Oa 1)
(:L'Qay?) = (1,0) 9 (-'1»'3,?}3) = ('51 5)



and we want to constrain (z,y), initially equal to (z3,ys), so that line 23 is a) parallel to and b) the same
length as line 01.

The parallelism constraint is linear: we just require (z,y) to be collinear with line (z2,y2), (z4,v4),
where (z4,y4) is a new point arrived at by translating (z1,y1) the same way that would move (zg,yo) to
(z2,Y2),1.€.,x4 = 1 + T2 — xo, and y4 = Y1 + y2 — Yo

€ITor par = =z —1.

1 0 1
1 1 1
z y 1

The equality constraint requires us to change the length of line 23 to make it equal to the length of
line 01. The equality error is quadratic, the length of line 01 subtracted from the square of the distance of

($ay) from ($2ay2)'
error eq = (z — 1)2 + 42— 1,

Here is the linearization.

parallel equal length
z y|Az Ay| E AE 3E 22| E AE 2L AE
b 5| — —]-5 - — — -5 — — —
1 .5 D — 0 ) 1 — -7 -25 -5 —
0 5|-5 —|-1 -5 1 —| 25 75 -15 —
S o1 — 5 |-5 0o — 0| .25 .75 — 15
b 0| — -51]-5 0o — 0-7% -25 — 5

This %ives us, as we expect, the exact equation for the linear constraint, z = 1. The average value for
(i—f, A_g) is (-1,1), giving, from equation 1, the equation —1(z — .5) + 1(y — .5) = .5, or —z +y = 1.5.

Solving the two equations gives (z,y) = (1,1.5), which we see is not the correct answer, (z,y) = (1,1).
So we do a second iteration, starting this time at (1,1.5), the previous answer.

parallel equal length
z y|Az Ay| E AE 22 221 B AR £ 2
1 15 — —| 0 — — — 125 _ =
b 15 -5 —|-5 -5 1 — ] 15 25 -5 —
15 15| &5 —| .5 .5 1 — ] 15 .25 b —
1 1 — -5 0 0 — 0 0 -1.25 — 25
1 2| — b5 0 0o — 0 3 17 — 35
The parallelism error is the same as before. The equality error becomes 3(y — 1.5) = —1.25. Solving these

together gives (z,y) = (1,13/12). This is better than (1, 1.5), but not all the way yet. We are getting
closer.

Thus we see the nature of the process for nonlinear constraints, and get a feel for the rate of convergence
in a simple case. Of course, we could have solved the parallel + equal length combination exactly since a
linear equation and a quadratic equation in two variables gives no problem. But such a solution would not
be general.

Underdetermined Equations

The two examples in the previous section have unique solutions (apart from signs on square roots in
quadratic equations). Some problems will be underdetermined, as in the case of constraining a point to be
collinear with a single line. In this case, Sketchpad minimizes the displacement of the point from its original
position. Sutherland does not say how he does this, so I will use the method of Lagrange multipliers [1].
This method finds the minimum of a function f(z,y,...) with respect to z,y,... subject to constraints
gi(z,y,...) =0,i=1...n by introducing new variables, \;,7 = 1...n and minimizing the new function

F(‘T,ya) =f(ac,y,) +ZAzgz($aya)
3 i=1



with respect to z,y,..., A1, ..., Ap.

For concreteness, let us make point (z,y), initially (1, 0), collinear with line 01, given (xg,yo) = (0,0)
and (z1,y1) = (1,1). The error function is y — z, which, after linearization, gives the equation z = y.
This equation is underdetermined, so we will use it as a constraint in minimizing (z — 1) + 2. Using the
Lagrange multiplier, A, we must minimize (z — 1)? + y? + A(y — z) with respect to z,y and . This gives

the matrix equation,
2 0 -1 x 2
0 2 1 y | =10
-1 1 0 A 0

This system solves to give (z,y,\) = (.5,.5,—1), and we see that (z,y) has moved perpendicular to the
line, minimizing its displacement.

It is worth noting the general case. If we wish to minimize the displacement of all the points in the
vector X, subject to the (matrix) constraints AX = C, we get the following matrix equation.

2 AT X\ [ 2X, @)
A 0 L)\ C
where L is the vector of As, X is the vector of original positions, and the superscript 7 is the transposition
operator.

Qverdetermined Equations

Instead of being underdetermined ( < m equations in n» unknowns) as in the previous section, or
just right (n equations in n unknowns), the constraints could be overdetermined ( > n equations in n
unknowns). In this situation, the extra equations might be redundant but are more likely to conflict, so
that no solution is possible. Sutherland uses a transformation of the matrix equation

AX =C
which minimizes the total squared difference, (AX — C)T(AX — C). The transformed equation is
ATAax = ATC (3)

Let us call this the reduction transformation, since AT A is an n by n matrix, while A is > n by n.
As an example, let us constrain (z,y), initially (.5,0), to be collinear with both line 01 and line 23,
where

(an yO) = (07 O) (xla yl) = (17 O)
(z2,y2) = (0,1) (z3,93) = (1,1)
The constraint equations are, with Lagrange multipliers,

§51)(3)-(0)
§31)(3)-(0)

Putting the two equations together gives a system of six equations in four unknowns, which becomes the
following 4 by 4 system under the reduction transformation.

N O —

—

8 0 00 T 4
0 10 2 2 y | |1
0 210 AL |10
0 2 01 A2 0
The result is the correct answer: (z,y) = (0.5,0.5), moving (z,y) the minimum distance to half-way

between the two lines. 4



(Actually, since we are not interested in the values of the As, and since their equations are symmetrical,
they can be merged into one, giving a 3 by 3 system.)

Relazation and One-Pass Implementations
Consider a more complicated set of constraints.

1 oy 1
errorl(z1,y1) = | zo yo 1
0 1 1

error2(z1,y1) = y1 — T1
z2 Y2 1
errorl(zo,y2) = | 2o yo 1
0 1 1

error2(z2,y2) = Yo + T2
z y 1
errorl(z,y) = | z1 1 1
1 -1 1
z y 1
error2(z,y) = | z2 y2 1
-1 -1 1

(These represent the linkage in [3] that draws a conic section, consisting of a driving lever hanging from
point (0, 1) and terminating at (zo, o), and the fixed lines, y = z, from point (-1, -1), and y = —z, from
point (1, -1). (z1,y1) is the intersection of the lever with the first line, (z2,y2) is the intersection with the
second line, and (z,%) traces out the parabola, y = —z2.)

The relazation process consists of choosing one variable, say (z,y), and re-evaluating it to reduce the
total error introduced by all the constraints, choosing another variable, and repeating. This process may
iterate for some time, even with linear constraints, as in the above example. For example, suppose (z1,y1)
is initially (-1/2, -1/2) and (z2, y2) is initially (-1/4, 1/4), and the lever, (z¢,yo), is moved to (-1/2, -1). The
new position of (z,y) is given by errorl(z,y) and error2(z,y) as (-2/3, -4/9). From this, the new position
of (z1,y1) is given by errorl(zy,y1), error2(z1,y;) and errorl(z,y). These overdetermine the solution, so
we use equation 3 to obtain (-0.3945, -0.5347). Similarly, (z2,y2) becomes (-0.2029, 0.3043).

We then must do further iterations, because these are not the final solutions, as we see next.

The one-pass method, when it is applicable, finds an order on the above variables such that a single
pass is sufficient. For the linkage problem, it is applicable: evaluate (z1,y1) and (z2,y2) first, then (z,y).
With the placement of (zg, o) at (-1/2, -1), as above, solving the equations in this order gives immediately
the correct solution, (z1,y1) = (-1/3, -1/3), (z2,y2) = (-1/5, 1/5), and (z,vy) = (-1/2, -1/4)3.

For a linear problem such as the conic section linkage above, it may seem appropriate to solve all the
linear equations simultaneously. The one-pass method may improve the solution speed, but a clever linear
equation package might exploit the ordering automatically. However, even so, a nonlinear problem will
require several iterations for each point, and resolving them in order one by one will clearly be faster.

3In general, for this configuration of the conic section linkage,

a
=—(1,1
(z1,91) 1+a(, )

(22,92) = 77— (1,-1)
(z,y) = 2a(1, —2a)

where a is the slope of the right bisector of the lever.



The conic section “linkage” has all collinearity constraints, and would be hard to build physically. More
conventional linkages have constant length constraints, which are quadratic. Here is a Peaucellier linkage

61;3\‘/? toy = 61;3\\//5 = (.853. The constraints

(1864), which traces the straight line x = 3 from y = —
are
(zo—1)>+ys =1
2, .2

(@i — 20)* + (vi — y0)* = 1/2

(@ —z:)* + (y — y:)? = 1/2
where ¢ = 1, 2; the lever, (z¢,yo) moves in a circle of radius 1 about (0, 1); the points (z;,y;) move in a
circle of radius 1/13/2 about the origin; and (z,y) forms the fourth vertex of an equal-sided parallelogram
and traces the straight line?. The order of the points for the one-pass method is, as for the conic section
machine, (xg,yo), then (z;,y;) in either order, then (z,y).

For the hexagon problem, a single pass is not possible, and relaxation is needed. This is also a quadratic

constraint problem, and so requires iterations for each point, which can be incorporated into the iterations
for the relaxation process.

Constraints in the Sketchpad Library
A library of seventeen constraints is described in [3]. Here is a list of thirteen of them. The last one is
used to display forces in beams, and the change displayed is since a toggle switch was set.

Name Arguments Description
1 2 3 4

collinear point  point point all collinear (no order)

cocircular point point point 1 is centre, 2, 3 on circumference

erect text text is erect or on side

horiz/vert point  point 1 is directly above/below/left/right 2

align text point point 1 is “parallel” to line 2..3

equal length point point point point 1.2 =rx 3.4, r = %, %, 1,2,3

equal size text text sizes: 1 = rx 2

distance scalar point point value of 1 = inches from 2 to 3

size scalar text value of 1 = size of 2 in inches

midpoint point  point point 1 is midway from 2 to 3

parallel point point point point 1..2 is parallel to 3..4

near text point 1 is near 2, with space for 5 digits

A distance  scalar point point value of 1 = change(inches) from 2 to 3
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4This line is an inwversion of the circle traced by the lever with respect to the circle of radius v/6 about the origin. Finding
a linkage to trace a straight line was a famous and practical p(r,)oblem in mechanical engineering and mathematics [2].



