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I. Prefatory Notes

1. Histograms.

2. Histogram arithmetic.

3. Distributions and densities.

4. Aggregates: the moments of distributions.

5. Quantum distributions: the density matrix.

6. The normal distribution.

7. Expectation, surprise and ignorance.

8. Does ignorance ever decrease?

9. Inside knowledge: the clients of Joe and Sue revisited.

10. Correlation and co-ignorance.

11. Conditional distributions and ignorance.

12. A gas simulation 1: the collisions The behaviour of gases is a perfect topic to study in
aggregate because a) it’s impossible for us to follow the collisions of some 1023 (0.1 yotta) gas
molecules and b) with so many molecules their aggregates can be measured as precisely as simple
physical properties.

The important aggregates are averages and totals: the temperature of a gas is the mean energy (per
unit time per unit volume), and its pressure is the total change of the momentum of its molecules
at the walls of the container. Other important “thermodynamic” properties are related to our
ignorance of the energy, a quantity with the special name of entropy.

We are best to start with much fewer than 1023 molecules and to write a computer simulation to
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study the behaviour of 100 or even 10 molecules.

An ideal gas is an abstraction whose molecules do not collide with each other but only with the
walls of the container. This is enough to produce the quantities of temperature and pressure, but
ignorance must always be constant. With “elastic” collisions at the walls (i.e., collisions in which
not only momentum is conserved, as it always must be, but also kinetic energy is conserved—it does
not convert to energies of disturbances within the wall) the molecules will just reverse the horizontal
components of their motion (at a vertical wall) or the vertical components (at a horiontal wall) and
each molecule will keep its original energy so that our ignorance of the energies does not change.
Indeed, if we know all the initial energies, our ignorance initially is, and remains, zero.

Here are the results of an elastic collision with a vertical wall.
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And we see that the kinetic energies before and after (the only kind of energy we are considering)
are the same.

(I’ve cheated here, of course: the wall should move when the molecule hits it, for conservation of
momentum (Newton’s third law). So I’ve pretended either that the wall has infinite mass or that
it is rigidly attached to an opposite wall which is struck simultaneously by a molecule with exactly
the opposite horizontal momentum.)

An ideal gas can be imagined as having molecules which are all points, so the probability of them
hitting each other is zero.

To mix the initial energies up we need a gas of finite-sized molecules which do hit each other. In
the ideal world of pre-quantum physics all these collisions can be tracked and the momenta and
energies calculated exactly before and after each collision. This will be exactly what we do in our
computer simulation of the gas.

But in practice we soon lose track, if only because we could not retain enough significant figures in
the calculation to recall every momentum and energy exactly. So our ignorance will increase.

These finite-radius molecules are what we will simulate. For a start, we do make other simplifying
assumptions. For instance, we will suppose that the molecules behave like hard billiard balls so
that their collisions with each other will be elastic. For example, a collision does not excite internal
vibrations in the molecules, which would siphon off some of the kinetic energy. In nature, this
assumption is most closely matched by monatomic molecules, such as occur in the chemically
relatively inert “noble gases”, e.g., helium, neon and argon.

We’ll need to know radii and masses of these “billiard balls”, so we look them up.

2



Noble gas He Ne Ar
radius, nm 0.049 0.051 0.088
mass, AMU 4 20 40

The Atomic Mass Unit effectively counts nucleons in the atom. So helium, with 2 protons and 2
neutrons, has an AMU of 4.

To get kinetic energies in meV (milli electron volts) from speeds of nm/psec (nanometers per
picosecond, i.e., kilometers per second) and masses in AMU, we multiply the mass by 10.36.

Here is the MATLAB code we can use for a) collisions with the walls of the container and b)
collisions between two molecules.

a) Wall collision code is self-evident: just reverse the appropriate momenta.

% function p = molCollWallCountBot(pb,1,1,abcd,r,c,0) THM 101025
% given vectors momentum pb, box boundaries abcd, position c; scalar radius r
% find new momentum p
function p = molCollWallCountBot(pb,tmult,bmult,abcd,r,c,cntB)
% tmult = 1; bmult = 1; cntB = 0; % for future refinement
abr = abcd - [-r,r,-r,r]; % extend wall to _centre_ of molecule
p = pb; % initialize: momentum out = momentum in
if c(1) < abr(1) | c(1) > abr(2) | c(2) < abr(3) | c(2) > abr(4)
display([’molCollWallCountBot: ’ num2str(c’) ’ out of box ’ num2str(abr)])

elseif (c(1)==abr(1) | c(1)==abr(2)) & (c(2)==abr(3) | c(2)==abr(4)), p = -pb;
% 4 corners: reverse momentum

elseif c(1)==abr(1) | c(1)==abr(2), p(1) = -pb(1);%side wall: reverse x-momentum
elseif c(2) == abr(4), p(2) = -pb(2); %top: reverse y-momentum
elseif c(2) == abr(3), p(2) = -pb(2); %bot: reverse y-momentum
else display(’molCollWallCountBot: no wall collision’)
end %if

I’ve represented the container as a rectangular box from x = abcd(1) to x = abcd(2) and from y
= abcd(3) to y = abcd(4).
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(It will turn out to be useful to allow this flexibility. The simulation program, however, will start
with only two numbers, ab(1) and ab(2) and will initialize

abcd(1) = −ab(1), abcd(2) = ab(1), abcd(3) = −ab(2), abcd(4) = ab(2)
thus starting symmetrically about the x- and y-axes.)

I will use a container initially 40×20 nm, specified as abcd = [−20,20,−10,10]
b) Intermolecular collisions just follow the physics of the Billiards Excursion of of Book 8c, Part IV

% function [p1,p2] = moleculeCollide(m1,m2,p1b,p2b,0,C12) THM 101025
% input masses (units don’t matter: only ratios used)
% initial momenta (typically opposite signs): column vectors
% C12 is column vector connecting centres at collision time = c2 - c1
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% output momentum column vectors
function [p1,p2] = moleculeCollide(m1,m2,p1b,p2b,mhf,C12)
mhf = 0; % for future refinement
pc = p1b + p2b; % momentum of CoM
a = m1/(m1+m2); % dimensionless ratio for conversion to CoM
p1bc = p1b - a*pc; % CoM momentum of first molecule
p2bc = p2b - (1-a)*pc; % CoM momentum of second molecule % p2bc = - p1bc
c12 = C12/sqrt(C12’*C12); % normalize centre-to-centre vector
dim=size(c12);
reflect = 2*c12*c12’ - eye(dim(1)); % reflection matrix: Week 7c Note 8
p1c = -reflect*p1bc; % CoM momentum after collision
p2c = -p1c; % CoM momentum after collision
p1 = p1c + a*pc; % convert back from CoM coordinates
p2 = p2c + (1-a)*pc; % ditto

But these routines are only two of many building blocks needed for the simulation. The centres
shown (c in molCollWallCountBot() and C12 in moleculeCollide()) are the positions of the
molecules at the moment of collision. We must get the molecules there. And we must figure out,
among the 10 or 100 molecules of the simulation, which collision will happen next, so that we can
move all the molecules up to that point in time and then execute that next collision, be it with a
wall (10 or 100 possibilities, respectively) or with another molecule (10!2 or 100!2 possibilities).

To find out when a given molecule at position ~c and with momentum ~p will hit some wall we must
find its distance from the wall and its velocity in the direction of the wall. We must do this for
each of the four walls and find the minimum time.

The code stores in record for each wall: the time to reach the wall and the x- and y-position of
the molecule when it does. Then it uses minrows to find the shortest of these four times.

% function [t,c] = molCollWallWhen(cb,p,M,r,abcd) THM 101025
% find
% time of collision, t
% centre after collision:
% [a-r;y] for right, [r-a;y] for left, [x;b-r] for top, [x,r-b] for bottom
% - could use sum of appropriate for corner, but let’s default to wall
% if a tie, then schedule an immediate hit on top or bottom
% given
% centre of molecule at time 0, column vector cb
% momentum, column vector p
% mass (amu), M
% vector abcd describing box (abcd(1),abcd(2))*(abcd(3),abcd(4))
% uses v = condif(cond,then,els);
% z = implies(x,y);
% found = nonnegrows(matrix);
% found = minrows(matrix);
function [t,c] = molCollWallWhen(cb,p,M,r,abcd)
m = M*10.36; % convert from amu to milli-eV (ps/nm)^2
v = p/m; % velocity

% distances from location cb to wall or middle horizontal diaphragm
dap = abcd(2) - r - cb(1); % positive distance to vertical wall
dav = abcd(1) + r - cb(1); % negative distance to vertical wall
dbp = abcd(4) - r - cb(2); % positive distance to horizontal wall
dbv = abcd(3) + r - cb(2); % negative distance to horizontal wall

% if distance==0 then depend on sign of v ; time is dist/v; new molecule pos, c
record(1,:) = condif(implies(dap==0,v(1)>0),[dap/v(1),abcd(2)-r,cb(2)+v(2)*dap/v(1)],[inf,0,0]);
record(2,:) = condif(implies(dav==0,v(1)<0),[dav/v(1),abcd(1)+r,cb(2)+v(2)*dav/v(1)],[inf,0,0]);
record(3,:) = condif(implies(dbp==0,v(2)>0),[dbp/v(2),cb(1)+v(1)*dbp/v(2),abcd(4)-r],[inf,0,0]);
record(4,:) = condif(implies(dbv==0,v(2)<0),[dbv/v(2),cb(1)+v(1)*dbv/v(2),abcd(3)+r],[inf,0,0]);
next = minrows(nonnegrows(record)); % 2 identical if corner, else 1
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sizeNext = size(next); % display test only
t = next(1,1); % time is smallest of the 5 times
c = [next(1,2);next(1,3)]; % new position of molecule 4 corresponding event

Since the molCollWallWhen() code also uses four other routines, they are, in order of invocation,

% function v = condif(cond,then,els) THM 101025
% conditional expression: getting around a MATLAB omission
function v = condif(cond,then,els)
if cond, v = then; else v = els; end % if

% function z = implies(x,y) THM 101025
% the Boolean expression x => y ("if x then y") is formally equivalent to
% ~x|y, which is the same as y|~x ("y or not x")
function z = implies(x,y)
z = ~x | y;

% function found = nonnegrows(matrix) THM 101025
% find rows of matrix whose first element is nonnegative
function found = nonnegrows(matrix)
sizeMatrix = size(matrix);
found = [];
for j = 1:sizeMatrix(1)
if matrix(j,1)>=0, found = [found; matrix(j,:)]; end % if

end % for j

% function found = minrows(matrix) THM 101025
% return all rows of a rectangular matrix with smallest first element
function found = minrows(matrix)
sizeMatrix = size(matrix);
found = matrix(1,:);
for j = 2:sizeMatrix(1)
if matrix(j,1) < found(1,1)
found = matrix(j,:);

elseif matrix(j,1) == found(1,1)
found = [found; matrix(j,:)];

end % if compare
end % for j

The tasks performed by these auxiliary functions should be self-evident from the commented code.
But I should say something about why they are used.

First, minrows() selects the closest wall by finding the least of the times to each wall. If the
molecule is going to hit a corner it will hit two walls simultaneously and minrows() notes that
outcome by returning two rows.

Second, a “time” might be negative because the distance to the wall might have a different sign
from the appropriate component of the molecular velocity. The molecule will never reach that wall
(on its present trajectory) and nonnegrows() discards the record for that wall.

Third, condif() allows us to write in one expression what in MATLAB would require two state-
ments. MATLAB supports conditionl statements but not the more elegant conditional expression.

Fourth, the tricky logic of implication addresses the possibility that the molecules may be already
at the wall: I used the sign of the velocity in the following way.
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IF molec. at wall vel. toward wall THEN
F F find the hit (time −ve)
F T find the hit (time +ve)
T F it’s already hit: set time = 0
T T find the hit (time 0)

This truth table is just that for implication (Week 10, Note 3) so I’ve called it that.

Finding out when two given molecules will collide with each other is easier if we transform the
positions and velocities so that one of the molecules is a) at the origin and b) made stationary.
That is, we shift the origin of our coordinate system and we make the coordinate system move
along with that molecule: relativity tells us that the physics is unaffected.

We also fatten the now stationary molecule so its radius is the sum of the two radii, and we
correspondingly shrink the other molecule to a point. The collision problem has become one of
finding the intersection of a line (the trajectory of the centre of the moving molecule) and a circle
(the r1 + r2 circle of the combined radii). There will be two intersection points in general, of which
we want the one reached first.

rr

c

vt

From the diagram, ~c + ~vt = ~r, so, in particular, the lengths of these two vector are the same

~r.~r = (~c + ~vt).(~c + ~vt)

= ~c.~c + 2~c.~vt + ~v.~vt2

so the quadratic equation we must solve, αt2 + βt + γ = 0, has

α = ~v.~v

β = 2~c.~v

γ = ~c.~c − ~r.~r

and we know ~c,~v and ~r.

This is solved using quadratic(a,b,c). What does it mean if the result has a nonzero imaginary
part?

Here is the MATLAB code. The final stage in it, of course, is to restore the coordinate axes to
their original position and motionless state.
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% function [t,c1,c2] = moleculeCollWhen(c1b,c2b,p1b,p2b,M1,M2,r1,r2) THM 101025
% find
% time of collision, t (if imag(t)~=0 then no collision)
% centres of each molecule at collision, column vectors c1, c2
% given
% centres of each molecule at time 0, column vectors c1b, c2b
% masses and momenta of each molecule, M1, M2, column vectors p1b, p2b
% radii of each molecule, r1, r2
% uses x = quadratic(a,b,c)
function [t,c1,c2] = moleculeCollWhen(c1b,c2b,p1b,p2b,M1,M2,r1,r2)
m1 = M1*10.36; % convert from amu to merts (meV(ps/nm)^2)
m2 = M2*10.36; % convert from amu to merts (meV(ps/nm)^2)

v1b = p1b/m1; % find velocity of first molecule (nm/ps)
v2b = p2b/m2; % find velocity of second molecule (nm/ps)
v = v1b - v2b; % make second molecule stationary
c = c1b - c2b; % centre second molecule at origin
r = r1 + r2; % expand 2nd molecule to radius r, shrink 1st to point
if v’*v==0, t = inf; c1 = c1b; c2 = c2b; return, end % if % parallel vels
t = min(quadratic(v’*v,2*c’*v,c’*c - r^2)); % display test only
c1 = c + v1b*t + c2b; % move 1st molecule, then transform 2nd away from origin
c2 = v2b*t + c2b; % transform 2nd away from origin
if t<-eps*10^3 | abs(imag(t))>eps % flag coincident or no collision
t = inf;

end % if t<0 |

The simulation must start with an initial set of molecules. I’ve done this with two random number
generators, based on the MATLAB rand(1), which returns a single (1) pseudorandom number
between 0 and 1.

The initial positions of the molecules are distributed normally on a line which lies at an angle, itself
distributed uniformly between some specified minimum angle posLo and maximum angle posHi.
The normal distribution has a specified standard deviation stdDev in nm.

The initial momenta are distributed with a direction given by a second angle distributed uniformly
between different specified minimum angle momLo and maximum angle momHi.

All these parameters are passed using the array
startRange = [posLo,posHi,stdDev,momLo,momHi]

for instance, with angles in degrees
startRange = [0,0,5,40,50]

Only the range of the uniform distribution of momenta is not specified as a parameter in startRange.
I have derived momentum from energy, E: p =

√
2EM and given energy the uniform distri-

bution centered on the specified temperature T (in degrees Kelvin1) with a variation within

±
√

2/10 = ±0.14 of this.

The result of the initialization is molData, with N rows (one for each molecule) and columns giving
centre coordinates, momentum components, molecular radius and mass, and the generated energy.

Here is the code.

% function molData = moleculeInit(N,T,startRange,r,M) THM 101026
% given number of molecules N, temperature T, molecular radius r (nm) and
% mass M (AMU);

1Kelvin degrees convert to milli-electron Volts, meV, by the Boltzmann factor kB = 0.0862 meV/degK. Unfortu-
nately, there is a circularity in this way of presenting gas thermostatics because I have anticipated the connection of
energy with temperature. I feel it best to be realistic, and so I have put in these numbers, just as I have used real
masses and radii for the noble gases. The numbers, however, are not central at this stage of the discussion and you
can pass them by for now.
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% NB 40 degC == 313.15 degK == 27 meV (26.9935 using k = .0862)
% startRange is array (posLo, posHi, stdev, momLo, momHi) for the
% initial positions of the molecules (angles in degrees, stdev in nm)
% find N*7 array molData, columns cx,cy,px,py,r,M,E
% uses genDirection(range) (uniformly distributed angular direction)
% genNormal(stdev) (Normally distributed position on line, given stdev)
function molData = moleculeInit(N,T,startRange,r,M)
startDirRange = [startRange(1),startRange(2)]*pi/180;
stdev = startRange(3);
startLoc = [startRange(4),startRange(5)];
momDirRange = [startRange(6),startRange(7)]*pi/180;
%for k = 1:N
k = 1;
% duplicates = []; % track duplicates: test only
while true % loop over N molecules, but pass over any duplicates
dirStart = genDirection(startDirRange);
c = genNormal(stdev)*[cos(dirStart),sin(dirStart)] + startLoc;
dirMom = genDirection(momDirRange); % changed 100317
% uniform momenta (changed 100602,100606):
E = (1 + (2*rand(1)-1)*sqrt(2)/10)*0.0862*T; % avg +/- (-1 -- 1)rt2/10
p = sqrt(2*10.36*M*E)*[cos(dirMom),sin(dirMom)];
moldata = [c(1),c(2),p(1),p(2),r,M,E];
duplicate = false;
for j = 1:k-1 % a very slow way of checking for duplicates
if min(moldata==molData(j,:)) % min = and for boolean array

% duplicates = [duplicates;[k,j,moldata]];% track duplicates: test only
duplicate = true;
break % full duplicate found
% NB it doesn’t matter if partial duplicate, e.g., positions coincide

end % if min()
end % for j
if ~duplicate | k==1

molData(k,:) = moldata; % record unique initial molecule
k = k + 1;

end % if ~duplicate
if k>N, break, end %if

end % while true (aka for k)

Backing it up are self-explanatory routines

% function a = genDirection(range) THM 100301
% generate random direction in range(1)--range(2)
function a = genDirection(range)
lowangle = range(1);
anglerange = range(2) - lowangle;
a = lowangle + anglerange*rand(1);

% function d = genNormal(stdev) THM 100301
% given standerd deviation stdev
% find a distance d from centre
% uses erfNormal(stdev,decpl) to give cumulative sum of Normal
function d = genNormal(stdev)
% Following [Ross] to generate random variable X from uniform u:
% generate uniform random u on [0,1];
% p = erfNormal^{-1}(u)
if stdev == 0, d = 0; else
u = rand(1); % uniform random
for d = 0:0.03*stdev:3*stdev
if erfNormal(d,2) > u, break, end %if

8



end % for d
s = rand(1);
if s<=0.5, signd = -1; else signd = 1; end
d = signd*d;

end % if stdev

(Well, genNormal may require a little work and background. And backing it up is erfNormal which
we discussed in Note 6.
The citation to [Ross] is [Ros02, p.263].)

We now have five building blocks, moleculeInit(), mollCollWallWhen(), moleculeCollWhen(),
molCollWallCountBot() and moleculeCollide(). To incorporate these into the collision simula-
tor we must

• initialize with moleculeInit()

• incorporate the others in a loop sequencing through one collision after another, as follows

– for each molecule (label it v1)

∗ use mollCollWallWhen() to find when it next hits a wall

∗ for each other molecule (call it v2)
use moleculeCollWhen() to find when v1 next hits v2

– find the closest of all such times, the associated molecule(s) and position(s) and call this
data next

– execute the appropriate collision, using molCollWallCountBot() if v1==v2 (I duplicated
v1 in next if the next collision is with a wall) or moleculeCollide() otherwise.

– recalculate the positions of all noncolliding molecules to account for the time lapse
represented in next, so as to be ready with a complete set of positions and momenta for
another iteration of loop 2.

Here is the code for simulating collisions forever. Well, I’ve put in a lookaround after multiples of
100 intermolecular collisions to ask if we want to continue.

% function molData = collSim(N,T,r,M,ab) THM 101026
% N molecules each of radius r (nm), mass M (AMU) at temperature T (degK)
% Helium 0.049nm (1), 4AMU; Neon 0.051 m (1), 20AMU; Argon 0.088nm (1.8), 40AMU)
% find; molecules in box [-ab(1),ab(1)]x[-ab(2),ab(2)] nanometers
% (initially symmetrical, stored abcd [abcd(1),abcd(2)]x[abcd(3),abcd(4)])
% Return nothing (collision simulation only, no stats); molData is sop;see below
% uses molData = moleculeInit(N,T,startRange,r,M)
% [delTime,centre] = molCollWallWhen(cb,p,M,r,ab);
% [delTime,cntr1,cntr2] = moleculeCollWhen(c1b,c2b,p1b,p2b,M,M,r,r);
% p1= molCollWallCountBot(p1b,1,1,abcd,r1,c1,0);
% [p1,p2] = moleculeCollide(M,M,p1b,p2b,0,C12);
function molData = collSim(N,T,r,M,ab)
tic % elapsed time

% initialize
startRange = [0,0,5,0,0,40,50];
% l h s x y l h s is stdev in nm of spread along line of angle
% ang cntr from ang_l to ang_h centred at x,y
% ----pos--- mom mom_l to mom_h is angle of motion direction
% for box -20:20*-10:10 try exactly 45 degrees from exactly (0,0)
% generates molData[N * cx,cy,px,py,r,M,E]
% 1 2 3 4 5 6 7
% L: nm T: ps M: meV(ps/nm)^2 L/T: nm/ps ML/T: meV(ps/nm)
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molData = moleculeInit(N,T,startRange,r,M) % display test only
oldMolData = molData;
sizeMolData = size(molData);
noVals = sizeMolData(1);
abcd(1) = -ab(1); abcd(2) = ab(1); abcd(3) = -ab(2); abcd(4) = ab(2);
happIndx = 0; % keep track of number of steps
time = 0.0; % keep track of time
stepChunk = 100; % iterate this many steps then check if more wanted
firstChunk = true; % to detect first <stepChunk> collisions at resume time
%stepChunk = 1; % test only
chunkNo = 0;

% Loop starts here
while(true)
collision = false;
% find time of next collision
record = []; % record of collision times, results
for v1 = 1:noVals
c1b = [molData(v1,1); molData(v1,2)];
p1b = [molData(v1,3); molData(v1,4)];
M1 = molData(v1,6);
r1 = molData(v1,5);
[delTime,centre] = molCollWallWhen(c1b,p1b,M1,r1,abcd); % display test only
record = [record;[delTime,v1,v1,centre(1),centre(2),centre(1),centre(2)]];
for v2 = v1+1:noVals

c2b = [molData(v2,1); molData(v2,2)];
p2b = [molData(v2,3); molData(v2,4)];
M2 = molData(v2,6);
r2 = molData(v2,5);
[delTime,cntr1,cntr2] = moleculeCollWhen(c1b,c2b,p1b,p2b,M1,M2,r1,r2);
record = [record;[delTime,v1,v2,cntr1(1),cntr1(2),cntr2(1),cntr2(2)]];

end % for v2
end % for v1

%sqrt choose and execute next collision
next = minrows(record); % smallest delTime wins display test only
time = time + next(1);
v1 = next(2);
v2 = next(3);
c1 = [next(4);next(5)];
c2 = [next(6);next(7)];
deltaX1 = c1(1) - molData(v1,1);
deltaY1 = c1(2) - molData(v1,2);
deltaX2 = c2(1) - molData(v2,1);
deltaY2 = c2(2) - molData(v2,2);
r1 = molData(v1,5);
r2 = molData(v2,5);
M1 = molData(v1,6);
M2 = molData(v2,6);
p1b = [molData(v1,3); molData(v1,4)];
p2b = [molData(v2,3); molData(v2,4)];
if v1==v2 % collision is with wall
p1 = molCollWallCountBot(p1b,1,1,abcd,r1,c1,0);
deltaPx1 = p1(1) - p1b(1); % change of momentum at wall
deltaPy1 = p1(2) - p1b(2);
% molData for v1 is common to both these branches: done afterwards

else % v1~=v2
collision = true; % test only: used to update afterColl
C12 = c2 - c1;
[p1,p2] = moleculeCollide(M1,M2,p1b,p2b,0,C12); % display test only
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molData(v2,1) = c2(1);
molData(v2,2) = c2(2);
molData(v2,3) = p2(1);
molData(v2,4) = p2(2);
molData(v2,7) = (p2(1).^2 + p2(2).^2)/(2*M2*10.36); % energy

end % if v1==v2
molData(v1,1) = c1(1);
molData(v1,2) = c1(2);
molData(v1,3) = p1(1);
molData(v1,4) = p1(2);
molData(v1,7) = (p1(1).^2 + p1(2).^2)/(2*M1*10.36); % energy
for v = 1:noVals % update all other molecules’ positions
if v==v1 | v==v2, continue, end % if
deltaX = molData(v,3)/(molData(v,6)*10.36)*next(1);
deltaY = molData(v,4)/(molData(v,6)*10.36)*next(1);
molData(v,1) = molData(v,1) + deltaX; % update position
molData(v,2) = molData(v,2) + deltaY;

end % for v
if collision
happIndx = happIndx + 1;
if mod(happIndx,stepChunk)==0

elapsed = toc; % elapsed time
chunkNo = chunkNo + 1;
if firstChunk

firstChunk = false;
end % if firstChunk
beep
reply = input([num2str(elapsed) ’ elapsed, ’ num2str(time)...

’ ps.: another ’ num2str(stepChunk) ’ collisions? y/n ’],’s’);
if isempty(reply)

reply = ’y’;
end
if reply~=’y’ % not ’y’
break

else tic % elapsed time
end % if reply

end % if mod()
end % if collision

end % while(true)

13. A gas simulation 2: statistics. We wrote in the previous Note a simulation of molecules col-
liding in two dimensions but we did not do anything about looking inside to see what is happening.
We could animate the molecules and show them bouncing around, the way Blauch [Bla09] does.

But, for one thing, I have not written the simulator to make this easy because it does not step in
equal increments of time but rather looks ahead to the next collision(molecule-molecule or molecule-
wall) and abruptly advances the clock to that time.

And for another thing, such an animation is much less helpful in advising our thinking than looking
at the right statistics. The Excursion First simulation makes a start. Let’s now incorporate this
statistics-making and -plotting within the simulation.

First here is the function that gathers and prints the statistics.

% function molDatAverage = molDataHisto(molData,molDatAverage) THM 101028
% plot histogram of statistics from statSim()
% given
% molData, N*7 array of [cx,cy,px,py,4,M,E] to which we’ll add p
% molDatAverage, initially [], average of all these
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% find
% molDatAverage = [molDatAverage;molDatAvg]
function molDatAverage = molDataHisto(molData,molDatAverage)
molData(:,8) = sqrt(molData(:,3).^2 + molData(:,4).^2); % momentum magnitude
sizeMolData = size(molData);
% firstInvocation = size(molDatAverage)==[0,0];% initially [0,0] (or invokNo==1)
sizeMolDataAvg = size(molDatAverage);
invokNo = sizeMolDataAvg(1) + 1;
firstInvocation = invokNo==1; % initially
molDatAvg = sum(molData)/sizeMolData(1)
molDatAverage = [molDatAverage;molDatAvg];
%molDataStdev = sqrt(sum(molData.^2-molDatAverage.^2)/sizeMolData(1))
molDatBucket = zeros(10,5);
bw = 10; % bucket width
for k = 1:4 % momentum (1,2), energy (3), |p| (4)
k1 = condif(k<3,k+2,k+4); % 1->3 (px), 2->4 (py), 3->7 (E), 4->8
bs = condif(k<3,-5*bw,0); % bucket start
for j = 1: sizeMolData(1) % this could be coded better: now?
if molData(j,k1) < bs + bw, molDatBucket(1,k) = molDatBucket(1,k) + 1;
elseif molData(j,k1) < bs + 2*bw, molDatBucket(2,k) = molDatBucket(2,k) + 1;
elseif molData(j,k1) < bs + 3*bw, molDatBucket(3,k) = molDatBucket(3,k) + 1;
elseif molData(j,k1) < bs + 4*bw, molDatBucket(4,k) = molDatBucket(4,k) + 1;
elseif molData(j,k1) < bs + 5*bw, molDatBucket(5,k) = molDatBucket(5,k) + 1;
elseif molData(j,k1) < bs + 6*bw, molDatBucket(6,k) = molDatBucket(6,k) + 1;
elseif molData(j,k1) < bs + 7*bw, molDatBucket(7,k) = molDatBucket(7,k) + 1;
elseif molData(j,k1) < bs + 8*bw, molDatBucket(8,k) = molDatBucket(8,k) + 1;
elseif molData(j,k1) < bs + 9*bw, molDatBucket(9,k) = molDatBucket(9,k) + 1;
elseif molData(j,k1) < bs + 10*bw, molDatBucket(10,k) = molDatBucket(10,k) + 1;
else % ignore energentum over 100
end % if molData

end % for j
end % for k
colour = ’rbgkm’;
invokNo,clr = colour(mod(invokNo-1,5)+1); % display test only
j=1:10;
subplot(3,2,1)
if firstInvocation, hold off, end
plot(bw*(j-5),molDatBucket(:,1),clr)
title(’momentum x’)
hold on
subplot(3,2,2)
if firstInvocation, hold off, end
plot(bw*(j-5),molDatBucket(:,2),clr)
title(’momentum y’)
hold on
subplot(3,2,3)
if firstInvocation, hold off, end
plot(bw*j,molDatBucket(:,4),clr)
title(’momentum magn.’)
hold on
subplot(3,2,4)
if firstInvocation, hold off, end
plot(bw*j,molDatBucket(:,3),clr)
title(’energy’)
hold on
subplot(3,2,5)
if firstInvocation, hold off, end
scatter(molDatAvg(3),molDatAvg(4),clr)
xlabel(’p_x’)
ylabel(’p_y’)
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title(’average momentum’)
hold on
subplot(3,2,6)
if firstInvocation, hold off, end
scatter(molDatAvg(1),molDatAvg(2),clr)
xlabel(’c_x’)
ylabel(’c_y’)
title(’average position’)
hold on

To explain it, let’s look at the figure it generates.
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These plots are made in the last 37 lines of the code: the first time molDataHisto() is invoked, it
draws the red plots. The second time it draws blue, the third time green, then black then finally
magenta. (It will cycle through these colours repeatedly, but we don’t need that ability.)

The six plots it makes are (1, 2) the histogram of x- and y-momenta, (4) the histogram of energies,
and (5, 6) scatter plots of average momenta for all 10 molecules, x vs. y, and of average position
for all 10 molecules, x vs. y, respectively. And, because it might be more useful than the x-
and y-components of the momenta, I added (3) the histogram of the magnitudes of the momenta,
√

p2
x + p2

y.

Plots 1–4 are histograms, so really should be bar charts, but to show all the colours I made them
with plot().

The histograms are derived from molDatBucket, which in the 18 lines of the nested for loop is
filled in as follows. For the energy and the magnitude of the momentum, 10 buckets of width 10
from 0 to 100 count the numbers of molecules that fall in each bucket range. For the x and y
components of the momenta, 10 buckets of width 10 from −50 to 50 do the same.

The scatter plots are derived from molDatAvgwhich is the average of the input, molData. Only the x
and y components of the momenta and of the position are used, although molDatAvg finds the aver-
ages of all eight values in molData (augmented by the momenum magnitudes). Also molDatAverage
is assembled from molDatAvg in previous invocations of the molDatHisto() function: this is output
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but not otherwise used, except to find out which invocation molDatHisto() is at, from the number
of rows in molDatAverage.

To incorporate invocations of function molDatHisto() in the simulation is very straightforward. I
put it into the code in two places. First

molDatAverage = molDatHisto(molData,[])
appears right after the first molData is generated by moleculeInit(). Second

molDatAverage = molDatHisto(molData,molDatAverage)
appears in the main loop in the part I wrote to execute whenever the numbers of intermolecular
collisions is a multiple of 100.

Now let’s look more closely at the results of running statSim(10,300,0.05,4,[20;10]) where
the modified simulation statSim() has the same parameters as CollSim() of the previous Note.
First, all the red histograms are quite different from the rest. They show the initial squirt of 10
molecules at about 45 degrees “north-east”.

Second, the other colours (blue-green-black-magenta) in each histogram seem to resemble each
other somewhat. Apart from what seem to be echoes of the initial peaks, the x- and y-momenta
seem to be sort of uniformly distributed but there isn’t enough data to tell. But there may be
different patterns in the other colours for the momentum magnitude and for the energy.

There seem to be more energies near zero (to the left) than with higher values (green-black-
magenta). And there seem to be peaks at low momentum magnitude, but between zero and the
middle 50—maybe around 40—and below that tapers to no occurrences of momentum magnitude
(green-black-magenta). We’ll explore these patterns further next.

(The scatterplots don’t show much except for maybe a tendency towards (0,0) in both cases (ma-
genta for momenta, black for energies). But these are snapshots, taken every 100 collisions, so may
never tell us much.)

To refine these results we need more molecules. But moleculeCollWhen runs in time proportional
to the square of the number of molecules, so simulating 100 molecules may cost us up to 100 times
more than simulating just 10. So instead of changing N from 10 to more molecules, we rewrite
statSim() to cumuSim() which accumulates statistics on momentum magnitude and energy, thus
smoothing out the distributions and averages.

We need a new histogram- and average-making function
[momenCum,momenAvg] = momenCumHisto(molData,momenCum,momenAvg)

which accumulates columns 8 and 9 of molData into the histograms for momentum magnitude
and energy, respectively, in momenCum. It also records the averages of these two quantities in the
array momenAvg which increases steadily in size the same way molDatAverage grew with repeated
invocations of molDataHisto() (above, in this Note).

We must also modify molDataHisto() to molDataDistr() with two more inputs, momenCum and
momenAvg: this now plots (1 and 2) the same snapshots of momentum magnitude and energy,
plus (3 and 4) two new plots of distributions made from the new input momenCum. (I normalize the
histograms to distributions because the histograms increase in size—every 10 collisions in fact—and
I want to show them all the same size for comparison.)

Finally molDataDistr() provides (5 and 6) two more plots, from the new input momenAvg, of the
average momentum magnitude and energies as timeseries.

We’ll look at the results first, before saying how cumuSim() differs from statSim().
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(Note that there are no red lines: to let the gas settle down, I’ve let the simulation run through
100 intermolecular collisions before starting to accumulate statistics. This avoids distortion from
the initial momenta and energies. The snapshots look somewhat like those from statSim()—they
differ in detail because moleculeinit() has generated a whole new set of starting conditions due
to its use of rand(1). I’ll discuss the new plots shortly.)

I’ve modified statSim() to cumuSim() in the following ways. First, instead of the initial invocation
of molDataHisto() I just set molDatAverage = []. Elsewhere I replace molDataHisto() with
molDataDistr().

Second, just before the code that detects if each chunk (of 100 intermelecular collisions) is finished,
I use firstChunk to avoid collecting statistics for the first chunk.

Third, in this same place I write a test for smaller chunks, of size N (= 10), and invoke momenCumHisto()
to accumulate momentum and energy statistics every 10 intermolecular collisions. (Warning: N is
a factor of chunkSize (10 and 100 respectively) in this use of cumuSim(): it may not work well if
chunkSize is not a multiple of 10.)

In the last four plots in the results we notice the following things. First, the accumulted momentum
and energy distributions (3 and 4) clearly settle down to fixed shapes as more and more collisions
are accumuated (in the sequence blue-green-black-magenta).

The energies tend to a familiar distribution: it appears to decline exponentially with energy. So
the probabilities could possibly be written something like

pE =
e−Eβ

Z

as at the end of Note 8. This distribution is called the Boltzmann distribution.

The momenta settle into a different distribution, called the Maxwell distribution. It rises in the
middle and decreases at both ends. But it is not the normal distribution because it cannot be
symmetrical: only non-negative values are possible for the momentum magnitude.

Second, the timeseries plots (5 and 6) of average momentum and energy show two characteristic
features.

The average energy is completely constant in time, consistent with the law of conservation of energy.
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In the simulations, moleculeCollide() ensures that energy is conserved in each collision, so of
course the total energy of all the molecules, and hence the average energy of each, remains constant.

The average momentum magnitude, on the other hand, fluctuates: it varies about an apparently
fixed value. Since moleculeCollide() also conserves momenta at each intermolecular collision,
why is the average momentum not constant, like the averge energy?

There are two considerations. First, momenta are not conserved, but rather reversed, in collisions
with the walls. However we did discuss the averaging out of these reversals by collisions of different
molecules with opposite walls.

The second consideration is more significant: it is the individual components of momentum that are
conserved by moleculeCollide(), not the magnitude. So we have no reason to say that average
momentum magnitude is constant.

14. The Boltzmann and Maxwell distributions. If we suppose that energies do follow the
Boltzmann distribution

B(E) =
1

Z
e−βE

can we figure out the form of the Maxwell distribution for the momentum magnitudes?

As in Note 8, the partition factor, Z, is the normalizing factor so that B(E) sums to 1. Quantum
energy levels are discrete but their separations are so small (and zero in the pre-quantum approxi-
mation) that we can switch from sums to antislopes as a mathematically easier approximation.

We also need to work with momenta, because the possible kinetic energies are due to momenta

E =
p2

2m

where p is the momentum magnitude, p2 = p2
x + p2

y, and m is the molecular mass, fortunately the
same for every molecule in the present simulation.

So Z will be the sum of all possible e−βp2/(2m), i.e., the antislope of this with respect to px and py.

Z = antislopepx
antislopepy

e−βp2/(2m)

= antislopepx
antislopepy

e−β(p2
x+p2

y)/(2m)

= (antislopepx
e−βp2

x/(2m))(antislopepy
e−βp2

y/(2m))

= (antislopepq
e−βp2

q/(2m))2

= 2πm/β

where the last line is just I from Note 6 with the parameter a there being 2m/β here (and pq in
the line before is “pwhatever”, i.e., px or py).

In going from sums to antislopes we have gone from probability distribution to probability density.
So we must express the probability in terms of a small increment of momentum magnitude, ∆p.
Since we used 2-dimensional antislopes for Z, over px and py, to go to the 1-dimensional momentum
magnitude p we sum over all values of the other polar coordinate to get a factor 2πp (also as in
Note 6). So the probability density

M2D(p)∆p =
1

Z
e−βp2/(2m)2πp∆p

=
2π

2πm/β
pe−βp2/(2m)∆p

=
β

m
p∆pe−βp2/(2m)
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The factor of p in the result forces the probability to go to zero as p goes to zero, which is the
significant difference we observed in the results of the simulation.

This is the 2-dimensional variant of the Maxwell distribution of momentum magnitudes (or velocity
magnitudes). The true Maxwell distribution is 3-dimensional. You can find it in the Excursions.

Let’s see if the Boltzmann and Maxwell (2D) distributions match the distributions of simulated
energies and momenta, respectively. There is one parameter to determine: what is β?

We must explore a little further. We have two new distributions: what are their moments? (Don’t
confuse “moment” with “momentum”!) Their modes?

First, Boltzmann: its mean is its first moment.

µ1 = antislopeE

E

Z
e−βE |∞0

We’ll integrate by parts (Note 6) with

u = E slopeEu = 1

v = − 1
βZ e−βE slopeEv =

1

Z
e−βE

Since
slopeEuv = uslopeEv + vslopeEu

so
uv = antislopeE(u slopeEv) + antislopeE(v slopeEu)

and

µ1 = antislopeE

E

Z
e−βE |∞0

= antislopeE(u slopeEv) |∞0
= − E

βZ
e−βE |∞0 +antislopeE(

1

βZ
e−βE |∞0 )

= uv |∞0 −antislopeE(v slopeEu) |∞0
= 0 − 0 +

1

βZ
Z

=
1

β

since Z = antislopeEe−βE |∞0 by definition.

This tells us immediately that β is the reciprocal of the mean energy µ1, determined by the
Boltzmann energy distribution.

But let’s go on. The second moment

µ2 = antislopeE
E2

Z
e−βE |∞0

Integrating by parts with

u = E2 slopeEu = 2E

v = − 1
βZ e−βE slopeEv =

1

Z
e−βE
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µ2 = antislopeE(u slopeEv) |∞0
= uv |∞0 −antislopeE(v slopeEu) |∞0
= −E2

βZ
e−βE |∞0 +antislopeE(

2E

βZ
e−βE |∞0 )

= 0 − 0 +
2

β
µ1

=
2

β2

So the variance is

σ2 = µ2 − µ2
1 =

1

β2

and the standard deviation σ = 1/β = mµ1.

Second, Maxwell (2D). Integration by parts with

u = p slopepu = 1

v = −e−p2/a slopepv =
2p

a
e−p2/a

where a abbreviates 2m/β for simplicity, so

µ1 = antislopep

2

a
p2e−p2/a |∞0

= antislopep(u slopepv) |∞0
= uv |∞0 −antislopep(v slopepu) |∞0
= −pe−p2/a |∞0 +antislopepe

−p2/a |∞0

= 0 − 0 +

√
πa

2

=

√
πa

2

=

√

πm

2β

Where I have used the result I =
√

πa from Note 6 and cut it in half because that range was from
−∞ to ∞ while this range is from 0 to ∞.

Similarly, using

u = p2 slopepu = 2p

v = −e−p2/a slopepv =
2p

a
e−p2/a

we integrate by parts to get the second moment

µ2 = antislopep
2

a
p3e−p2/a |∞0

= antislopep(u slopepv) |∞0
= uv |∞0 −antislopep(v slopepu) |∞0
= −p2e−p2/a |∞0 +antislopep2pe−p2/a |∞0
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= 0 − 0 − ae−p2/a |∞0
= a

=
2m

β

because slope(−ae−p2/a) = 2pe−p2/a, and because e−p2/a is zero at p = ∞ and 1 at p = 0.

The variance is µ2 − µ2
1 = a(1 − π/4) and the standard deviation is the square root of this.

Finally, we can find the mode. This is where the Maxwell (2D) distribution goes horizontal at its
peak so its slope is zero.

0 = slopep
p

a
e−p2/a

=
1

a
e−p2/a − 2p

a2
e−p2/a

so

0 = 1 − 2p2

a

i.e.,

p =

√

a

2
=

√

m

β

is the mode—the most probable momentum.

Note that the mean is above the mode.

µ1 =

√
πa

2
=

√

π

2

√

a

2
>

√

a

2

These results are for the Maxwell distribution in two dimensions. The three-dimensional Maxwell
distribution, which applies to real gases (as opposed to billiard balls) is different and given in an
Excursion.

The mean of the Boltzmann distribution gave us the parameter β

β =
1

µ1

where µ1 is the mean energy. For our simulation we found µ1 = 25.0meV. So we can plug this into
the Boltzmann and Maxwell disteributions to get the actual curves

B(E) =
1

ZB
e−βE

and
M2D(p) =

p

ZM
e−βp/(2m)

where in a calculation we’ll just use ZB and ZM as the normalizing denominators, i.e., the sums of
all the unnormalized terms, to make B(E) and M2D(p) sets of probabilities which sum to 1.

We didn’t capture all the intermediate data in the simulation cumuSim(), so we rewrite it as
maxbSim() to give the following results.
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The red curves are the theoretical distributions we’ve just worked out. You can see that the
distributions of the simulated 2D gas get closer to the red curves as we accumulate the data (blue
to green to black to magenta).

The simulation maxbSim() differs from cumuSim() in its initialization and in its plot routine
molDataMaxBo().

The initializing function, molecuReInit(), replacing moleculeInit(), simply returns the molData
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array that moleculeInit() generated in our above invocation of cumuSim().

The plot routine molDataMaxBo() replaces molDataDistr() and plots only the cumulative energy
distribution and the cumulative momentum magnitude distribution. It plots them as separate
figures so we can see them better than the single figure with six subplots. And it adds the plots of
the distribution functions B(E) and M2D(p) we’ve just worked out.

We can also compare average momentum magnitudes between theory
√

πm
2β = 40.36 meV-ps/nm

and simulation. The Note 13 cumuSim() recorded a sequence of forty average momentum mag-
nitudes, one for every ten intermolecular collisions (these are what it plotted as the momentum
timeseries), so we can accumulate these and find overall averages corresponding to each of the
blue, green, black and magenta distributions. These are, respectively, 41.8, 40.7, 40.0 and 40.5
meV-ps/nm.

15. Fluctuations, variations and samples. We can learn more from the cumuSim() results of Note
13. The fifth plot showed fluctuations in the average momentum magnitude as time progressed.

Fluctuations are variations in a timeseries. Since they are also variations of the quantity plotted in
the timeseries, they have statistical properties such as means, standard decviations, and, of course,
histograms. We’ll talk about these later.

First, I’d like to focus on the sequence aspect of fluctuations. (The sequence need not be a sequence
in time, by the way, although this is the most common situation in which fluctuations are discussed,
but it must be a sequence as opposed to a simple set of values.)

When I searched the McGill library catalogue for a book on fluctuations, I came across the title
“Robertsonian Economcs: An Examination of the Work of Sir D. H. Robertson on Industrial
Fluctuations” (by John R Presley, 1979). This book considers fluctuations as cycles or even waves.
This suggests Fourier analyzing our timeseries to find what wave components it has.

So I used makeDFT(40) from Week 9 Note 5 to extract the frequency components from the 40
momentum magnitude averages sequenced by cumuSim().

The seven largest magnitudes of these (2-number) components were

component magnitude ÷
√

40
1 255.89 40.4598
2 6.42 1.0151
7 2.82 0.4459
4 2.28 0.3605
8 2.01 0.3178

17 1.74 0.2751
5 1.71 0.2704

I’ve put in a third column the second column divided by
√

40: the first component is just the overall
average of the momentum magnitudes, and the others are scaled commensurately.

Setting all but these seven to zero and Fourier-transforming back, the way we did with the leftBlack
image in Week 9 Note 5, we can capture most of the fluctuations.
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We can reduce the fluctuations by increasing the sample size. The averages shown so far were taken
after 10 intermolecular collisions, and cumuSim() generated 40 of them (blue in the figure below).
We can group these into 20 averages of 20 collisions (green), 10 averages of 40 collisions (black), 5
averages of 80 collisions (magenta).

0 5 10 15 20 25 30 35 40
34

36

38

40

42

44

46
momentum magnitude averages fluctuate

time (# collisions/10)

av
er

ag
e 

m
om

en
tu

m
 m

ag
ni

tu
de

(The program is straightforward which takes the 40 averages as produced by cumuSim() and groups
them into 2s, 4s and 8s, and builds up the cumulative plots above.)

We see that increasing the sample size reduces the variability. We can see this from a statistical
point of view with histograms and moments, too.

If we turn those 40 momentum magnitude averages into a histogram we can get a distribution of
averages (blue in the figure below). Moreover we can aggregate in 2s and get another histogram
(green). And we can skip to groups of 8 and get a third histogram (magenta).

22



34 36 38 40 42 44 46
0

1

2

3

4

5

6

7

8

9
Histogram of momentum magnitude averages

momentum, meV−ps/nm

# 
oc

cu
rr

en
ce

s

Notice that the histograms get narrower as we aggregate more. We can confirm this by reporting
the standard deviations.

grouped by averge variance std.dev.
1s 40.4590 4.0 2.0
2s 40.4590 2.9 1.7
8s 40.4590 1.7 1.3

The Fourier analysis gives almost exactly the same numbers for variability as the standard deviation,
using the following reasoning.

The first Fourier component, corresponding to zero frequency, is always the mean (or a multiple
of it if we must still divide by

√
n for n samples). The remaining Fourier components must give

the variability about the mean. How do we add them up? Well, each component corresponds to a
vector in an n-dimensional space, as we saw in Week 9 Note 1. So to find the length of the vector
(of variability) they make up, we must find the sum of the squares of their magnitudes then take
the square root.

When we do this with another straightforward program (not forgetting to divide lengths by
√

n)
we get the following, which I compare with more precise numbers for the standard deviation above.

grouped by Fourier variability std.dev.
1s 1.9934 1.9937
2s 1.6927 1.6929
4s 1.5713
8s 1.2989 1.2989

Finally, we can do the same statistics (but not Fourier transforms) for the average energies, which
can hardly be said to fluctuate since energy conservation forces the average energy to plot as a
straight horizontal line in Note 13.

Although the energy is fixed during one simulation, it will change under different initializations. A
third simple program can invoke moleculeInit() forty times to generate 40 energy averages.

We can modify the previous program which generated histograms for momentum magnitude aver-
ages to do the same for these energy averages. (In fact we could have written it to accept the set
of averages as a parameter, and so not have to modify it at all.)
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The colours mean the same as before (blue: 40 groups of 1; green: 20 groups of 2; magenta: 5
groups of 8) and we see the same narrowing of the histograms. Standard deviations again confirm
this trend.

grouped by averge variance std.dev.
1s 25.9490 0.40 0.63
2s 25.9490 0.17 0.41
8s 25.9490 0.04 0.21

I have made this treatment of energy averages along the same lines as the momentum magnitude
averages earlier because the first fluctuates and the second does not, but both can be analyzed sta-
tistically as sets although only the timeseries can be Fourier-transformed as a fluctuating sequence.

Note that β would take on different values for each of these 40 initial conditions, because the mean
energy is different in each case. We have ahead of us the problem of finding a single value for β for
all such initial conditions.

The narrowing of the histograms as the sample size increases is generally true. Let’s work with
samples of size 2 from the distribution

values 1 2 3
frequencies 1/4 2/4 1/4

which has mean m = (1 + 4 + 3)/4 = 2 and variance σ2 = (1 + 8 + 9)/4 − m2 = 1/2.

There are nine possible samples of two values each, with total values
+ 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6

or

(mij) =
1

2





2 3 4
3 4 5
4 5 6





because the sample means are half these numbers. (Note that I’m distinguishing, say, 1 + 2 from
2 + 1, so the answers are symmetrical about the diagonal

The frequencies of these samples are the products of the frequencies of the two values making up
the sample.
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× 1/4 2/4 1/4
1/4 1/16 2/16 1/16
2/4 2/16 4/16 2/16
1/4 1/16 2/16 1/16

or

(pipj) =
1

16





1 2 1
2 4 2
1 2 1





So the average mean over all the samples is the sum of the means weighted by the frequencies

< m > =
∑

ij

(mij)(pipj)

=
1

2

1

16

∑





2 3 4
3 4 5
4 5 6



 . ×




1 2 1
2 4 2
1 2 1





=
1

32
(2 + 12 + 24 + 20 + 6)

= 2

= m

And the average of the sample means is just the mean of the distribution they are drawn from.

But the variance of the sample means is half the variance of the original distribution. The second
moments come from the sums of squares

+ 12 22 32

12 2 5 10
22 5 8 13
32 10 13 18

or

(µ2ij) =
1

2





2 5 10
5 8 13
10 13 18





To find the variances, subtract the squares of the means

(σ2
ij) =

1

2





2 5 10
5 8 13
10 13 18



 − 1

4





22 32 42

32 42 52

42 52 62





=
1

4





0 1 4
1 0 1
4 1 0





The average of all of these again needs the frequencies

< σ2 > =
∑

ij

(σ2
ij)(pipj)

=
1

4

1

16

∑





0 1 4
1 0 1
4 1 0



 . ×




1 2 1
2 4 2
1 2 1





=
1

4

1

16
(4 + 8 + 4)

=
1

4

=
σ2

2

Sticking with sample size 2 we can generalize this argument to any distribution, pi, summed over
numerical values i. The average of the sample means

< m > =
∑

ij

pipj
i + j

2
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=
1

2
(
∑

ij

ipipj +
∑

ij

pijpj)

=
1

2
(
∑

i

ipi +
∑

j

jpj)

=
∑

i

ipi

= m

where
∑

ij ipipj =∼i ipi
∑

j pj =
∑

i ipi to get the third line and
∑

j jpj =
∑

i ipi to get the fourth.

The average of the sample variances

< σ2 > =
∑

ij

pipj(
i2 + j2

2
− (

i + j

2
)2)

=
∑

ij

pipj(
i2 + j2

4
− ij

2
)

=
1

2

∑

i

i2pi −
1

2

∑

ij

ijpipj

=
1

2

∑

i

i2pi −
1

2

∑

i

ipi

∑

j

jpj

=
1

2
µ2

2 −
1

2
m2

=
1

2
σ2

In general, for the means of a sample of size N from any distribution,

< m > = m

< σ2 > = σ2/N

so the standard deviation of the sample means is 1/
√

N times the standard deviation of the distri-
bution the samples are taken from.

This is called the
√

N law for distributions of sample means.

The term “fluctuation” is often used, confusingly, to mean variability. We have seen in this Note
that fluctuations give rise to variance, but we will restrict “fluctuations” to apply to sequences of
values, often timeseries. Variability, and “variance” in particular, have more general meanings.

16. Entropy. It is significant that the distribution of molecular energies of Note 13 settles down
into the distribution of Mom’s maximized ignorance of Note 8. We saw this in Notes 13 and 14,
where we named it the Boltzmann distribution.

Let’s explore the development of the energy ignorance from the initial jet of molecules from the
centre of the box.
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The ignorance, −∑

j pj ln pj, starts at 0 because all the molecules have the same energy (so one
pj = 1 and the rest are 0). Within a dozen collisions it has reached its maximum, and thereafter
fluctuates below this max. The first 15 values are, starting before any collisions and recording after
every intermolecular collision,

0 0 0 0.64 0.64 1.09 1.36 1.56 1.61 1.61 1.50 1.70 1.47 1.61 1.61

The red line is the maximum ignorance, calculated using the same step size of 10 as used by the
statistics gathering.

(This calculation is dicey because, as we saw in the Excursion Ignorance and continuuous distribu-
tions, the ignorance calculated will grow without limit as the step size decreases. In fact, the max
is 4.2 for a step size of 1. Here’s the math, the first part of which underlies the above calculation.

pj = e−βEj/Z

− ln pj = βEj + ln Z

−
∑

j

pj ln pj =
∑

βEjpj − ln Z
∑

j

pj

= βE + ln Z

= 1 + lnZ

where E = 1/β is the mean energy.

To get a number for this,

Z =
∑

j

e−βEj

≈ 1

∆E
antislopeEe−βE |∞0

= − 1

β∆E
e−βE |∞0

=
1

β∆E

=
E

∆E
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where I replaced the sum by the corresponding area (the antislope) divided by the distribution step
size, ∆E = 10, say.

So the ignorance of the final state, which should be the maximum, is

1 + ln Z = 1 + ln
E

∆E

= 1 + ln
25.0221

10
= 1.92

All these ignorance numbers are rough, but they seem to be about the same size.)

The program is a modification of cumuSim() from Note 14 in which the plotting routine is replaced
by one which calculates and draws the entropy. It is invoked right at the beginning and after every
intermolecular collision.

The fluctuations in the energy ignorance are large for this simulation of 10 molecules. To reduce
the fluctuations and show that the increase of ignorance from 0 is real, here is a simulation of 100
molecules.
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After starting at 0, nothing much happens until most of the 100 molecules have collided at least
once, then the ignorance climbs steadily towards the theoretical maximum of 1.92.

At this point of equilibrium, the energy distribution has become Boltzmann and the momentum
magnitude distribution has become Maxwell.

I have enttled this Note “entropy” but have so far discussed only energy ignorance. The latter is
a “dimensionless” quantity, a function only of probabilities. What physics calls entropy has the
physical dimensions of energy divided by temperature, say meV per degree Kelvin. So there must
be some constant we can find, kB , with these physical dimensions, which we can multiply by to get
entropy

S = kB(βE + ln Z)

where S is the conventional symbol in thermodynamics for entropy.

Finding this special constant is still ahead of us.

So we define entropy to be kB times the energy ignorance. Until we find out more about kB however
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we’ll leave it out and work with energy ignorance alone.

The word “entropy” is from the Greek word ǫντρωπη for “evolution”: a system naturally increases
its entropy until a maximum is reached, defining a state of equilibrium.

17. Temperature. At last we can understand what temperature is.

You may with some justification accuse me here of circularity. Right from the beginning of this
Part, from Note 12, I have used temperature (in absolute or Kelvin degrees) as a parameter to the
gas simulations. I need not have done this. All along I could have used mean energy instead. But
we are all much more familiar with the idea of temperature (at least in degrees Celcius or possibly
Fahrenheit) than with mean energy (in milli-electron-Volts). So I used temperature for familiarity
even though we do not understand what it is.

Temperature is a property of two or more systems in equilibrium. That is, systems which have
settled down with each other and are no longer making macroscopically observable adjustments.
When they are in the kind of equilibrium I am thinking of, they have the same temperature.

For example, two objects at two different temperatures when placed in contact with each other will
eventually come to have the same temperature—when they are in equilibrium.

We’ll use the adjective “thermal” to pin this down a little more because it is still ambiguous: a wet
cloth placed on top of a dry cloth will equilibrate to the same degree of dampness (in the absence
of evaporation or runoff) but dampness is not what we mean by temperature.

Let’s use our gas simulation to show precisely what we mean. Because temperature compares
two systems in equilibrium, we’ll need two gases. I’m going to let these mix together because we
have routines to track their distributions and their energy ignorances. This is the extreme case
of putting them in contact through some heat-conducting barrier but not letting them mix—and
there are subtle differences which I’m going to gloss over. Simulating the mixture is much easier
than simulating a “heat-conducting barrier”.

The new simulation makes changes right down to the routines that anticipate and execute collisions
with the walls (molCollWallWhen() and molCollWallCountBot()). These now include means of
recognizing when a molecule crosses the x-axis because this will be the initial separator between
the two gases, one in the lower half of the box and one in the upper half. The executing routine,
molCollWallCountBot(), has an extra parameter, mix, which allows us to keep the two gases
separate (mix = 0: the molecules bounce off the x-axis from above and below) or to mix them (mix
= 1: the molecules cross the x-axis as they did in our earlier simulations of a single gas.

(I have also incuded in molCollWallCountBot() three additional parameters which were hitherto
frozen to value 1: tmult, bmult and cntB will be used later as mechanisms for heating and
expanding the gases. But we don’t use them yet.)

The main simulation, now called tmptureSim(), differs in two major ways from previous simula-
tions. First, the parameters describing the gas, M (mass of molecule in AMU), r (radius of molecule
in nm), N (number of molecules in the gas) and T (temperature: yes, here it is again—see the
second paragraph of this Note) must now describe two gases, so they are now column arrays of two
elements each.

Second, there is now a third possible response to the interactive question, do we want to continue
after some multiple of 100 intermolecular collisions. This allows us to switch on gas mixing during
the simulation. (It’s written as a toggle, so we can switch it off again later, but there is no present
need for this.)

The new simulation, tmptureSim(), gathers statistics on the energy ignorance (combined for both
gases) as a function of time, and on the distribution of momentum magnitudes as a sequence of
snapshots after every collision.

I ran it for 1000 collisions, keeping the gases separate for the first 500 then allowing them to mix
for the next 500. I made the two gases equal in number (50), mass and radius (4 AMU, 0.05 nm:
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i.e., helium) but at temperatures 100 and 500.

Here is the snapshot of the distribution of momentum magnitudes after the first 500 intermolecular
collisions, just before switching on the mixing.
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In red are the two corresponding Maxwell distributions, one for the 100◦K gas and one for the
500◦K gas. The snapshot (blue) is reasonably close to the sum of these.

After 500 intermolecular collisions the two gases (He at 100◦K and He at 500◦K) seem to have
settled into individual equilibria—although it is hard to tell from the statistics on so few molecules
(50 each)—and it seemed a good time to switch on the mixing.

Here is the snapshot after 1000 intermolecular collisions i.e., 500 after allowing the gases to start
mixing (blue)
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and the Maxwell distribution for momentum magnitudes at 300◦K (red).

And finally, here is the time dependency of the energy ignorance.
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start mix

It was this plot that I watched to decide when to turn on the mixing. It seemed to have levelled
out to a maximum at the point (5000 intermolecular collisions) when I decided to allow mixing.
But it was hard to tell if it wasn’t still climbing.

You can see a new climb start just after 500 collisions—although it might be a large fluctuation.
This in turn seems to level off to a maximum after another 500.

To try to see the trends of this time-plot of information ignorance I smoothed the data in a simpler
way than lossy Fourier transform (which does not permit extrapolation at the ends).

Here is the result for a smoothing with a running average over every 50 points in the timeseries
(see the code for smooth2enerIgn(runlength) in MATLABpak).
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Because I knew where I switched the mixing on, and so broke the smoothing across that point, this
plot begs the question somewhat. But perhaps it helps to justify, after the fact, 500 collisions as a
good moment to turn on the gas mixing.

Without mentioning temperature, then, the upshot of all this is that the two separate gases, at
first, had the two separate mean energies of 8.54 meV and 43.61 meV respectively. The average of
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this is 26.07 meV and this is the mean energy of the combined gases.

The simulation tmptureSim() records all the energies in the array molData and reports molData
for each of the two gases after initialization and for both at the end of the simulation.

It is inevitable that the final mean energy is the average of the two initial mean energies, given that
the two initial gases are the same quantities of the same type of gas (helium). (If the quantities
had been different, N1 and N2, the mean energies E1, E2 and E of initial gases 1 and 2 and the
final gas, respectively, are related as follows.

E1 =
1

2m1

N1
∑

j=1

p2
1j

N1

E2 =
1

2m2

N2
∑

j=1

p2
2j

N2

E = (N1E1 + N2E2)/(N1 + N2).)

So what is more interesting is the two mean energies of the separate gases after they have thoroughly
mixed. This would be what we observe of two gases in thermal contact but not mixed.

The simulation does not change the locations, as they are recorded in molData, of the molecules
so we must just compare the first half with the second half of molData. The mean energies we get
are 22.99 meV and 29.15 meV respectively for the initially cooler and initially warmer gases.

The two gases are converging to the same mean energy. This makes mean energy a candidate for
what we mean by temperature. You can run the simulation now for different gases, say helium (M
= 4 AMU, r = 0.049 nm) and neon (M = 20 AMU, r = 0.051 nm) or argon (M = 40 AMU, r
= 0.088 nm) and show that these also converge to the same mean energy after mixing, So mean
energy is a property independent of the type of gas. This is also true of temperature.

We could just identify temperature with mean energy and measure it in meV. But we are used
to measuring temperature in degrees and so we need a conversion constant. This is called the
Boltzmann constant, kB , which, to convert from meV to degrees Kelvin, is

kB = 0.0862meV/K◦

So we get, by dividing by kB ,

meV ◦K
8.54 99.1

43.61 506
26.07 302

These are close to, but not exactly, the temperatures I set as parameters, namely 100◦K and 500◦K,
averaging to 300◦K. This is because the 50 molecules of each gas in the simulation are samples drawn
from these temperatures. So they will be a little off, especially as they are small samples—not like
the 1023 molecules of macroscopic amounts of gas.

This motivates a change in the meaning of the parameter β. We have so far considered β to be the
reciprocal of the mean energy of the sample. To be more universal, we will from now on define β
in therms of temperature, T :

β =
1

kBT

Let’s look at this from the point of view of maximizing the combined information ignorance as the
system proceeds to equilibrium from the moment when we started to allow the gases to mix.

First, the energy ignorance,

I = −
∑

j

pi ln pj
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= −
∑

j

pi ln
eβEj

Z

= β
∑

j

pjEj +
∑

j

pj ln Z

= βE + ln Z

because
∑

j pjEj = E and
∑

j pj = 1 (and I have not gone on to say β = 1/E) where E is the mean

energy and Z =
∑

j e−βEj .

If we want to maximize this, we’ll need to set a small change, ∆I, to zero.

I depends on β,E and ej so we can write ∆I formally in terms of ∆β,∆E, all the ∆Ej and the
appropriate slopes.

∆I = ∆(βE + ln Z)

= slopeE(βE)∆E + slopeβ(βE)∆β +
1

Z
(slopeβZ∆β +

∑

slopeEj
e−βEj∆Ej)

= β∆E + E∆β +
1

Z
(
∑

j

(−Ej)e
−βEj )∆β − β

Z

∑

j

e−βEj∆Ej

= β∆E + E∆β − E∆β − β

Z

∑

j

e−βEj∆Ej

= β∆E − β

Z

∑

j

e−βEj∆Ej

The second two terms describe changes to the energy levels, Ej, permitted to the gas. If we view
the gas quantum-mechanically, these levels are affected by geometry and numbers of molecules, for
instance, which, in the experiment of two containers of gas in termal contact, will not change. So
∆Ej = 0.

Second, consider the two gases. As we saw in Note 8, the combined ignorance of two independent
systems is the sum of the individual ignorances

I = I1 + I2

We are going to be interested in the total energy ignorance for all the gas, not just per molecule,
so we can use this additivity to see

IG = NIM = N1I
M + N2I

M

where IM is the ignorance per gas molecule and IG is the total for N = N1 + N2 molecules.

Third, for the two systems, the total energy is the sum of the two energies. We’ll write U for the
total energy: it relates to the mean energy per molecule by U = NE. Thus

U = U1 + U2 = N1E1 + N2E2

Fourth we maximize the total energy ignorance for equilibrium by setting ∆IG = 0.

0 = ∆IG = N1∆IM
1 + N2∆IM

2

= N1β1∆E1 + N2β2∆E2

= β1∆U1 + β2∆U2
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Notice that we have two different values of β, in general, for the two gas systems.

Since the total energy, U , is constant by conservation of energy, while the component energies U1

and U2 are adjusting
0 = ∆U = ∆U! + ∆U2

so ∆U2 = −∆U1 and

0 = ∆IG = β1∆U1 − β2∆U2

= (β1 − β2)∆U1

This is true for any ∆U1 which we can suppose is not zero itself, so

β1 = β2

is the condition for equilibrium. This corresponds to our idea about temperature: temperature
must be some function of β so that two equal values of β give equal temperatures.

To figure out what this function is, suppose the two gases are not quite at equilibrium so ∆IG > 0.
We know that β > 0 because e−βE decreases as E increases (and anyway, β < 0 would make e−βE

increase without limit as E increases).

So think about a positive ∆U1, i.e., energy flowing into gas 1:

0 < ∆IG = (β1 − β2)∆U1

means β1 > β2. But experience tells us that for the second gas to be heating the first gas, its
temperature must be higher: β1 > β2 corresponds to T1 < T2.

So the simplest function must be

β =
1

kT

where k is some constant. This k could be 1, but we’ve already noted that the Boltzmann constant
kB connects temperature to mean energy, and so we take k = kB :

β =
1

kBT

We now have both simulation and theory pointing to the same definition of temperature.

One more thing. We can relate temperature to the slope of entropy. This will justify our use of kB

in the definition of entropy in the previous Note.

We had

∆I = β∆E − β

Z

∑

j

e−βEj∆Ej

so
slopeEI = β

Now increase the energy ignorance I (= IM, per molecule) to the whole gas, IG = NIM, and
convert it to entropy for the whole gas

∆SG = kBN∆IM

= kBNβ∆E + terms not in ∆E

= kB
1

kBT
∆(NE) + terms not in ∆(NE)

=
1

T
∆U + terms not in ∆U
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so

slopeUSG =
1

T

This could also be taken as a definition of temperature if we wanted to start abstractly. We’ll find
that thermodynamics is based on such abstractions.

The quantities that increase by a factor N in going from individual molecules to the whole gas are
called extensive.

SG = NSM

V G = NV M

N = N × 1

The complementary quantities, P, T and µ, do not behave this way, and are called intensive.

From now on I will stop writing the superscripts M for individual molecules and G for the whole
gas: extensive variables will always refer to the whole gas (G is implicit) unless I explicitly say
otherwise.

18. Pressure. The energies of the molecules have given us a statistic, the mean energy, which is
an observable and measurable quantity, the temperature. What about their momenta?

The mean momentum is, of course, zero, or the whole box would be moving. (The mean momentum
magnitude is not zero because all the minus signs disappear when we take the magnitudes.) What
is interesting about the momenta of a stationary box of gas?

Every time a molecule hits a side of the box its component of momentum normal to the side is
reversed. Ths gives rise to a pressure on the sides due to the gas. To ensure that this pressure does
not depend on the size of the side (length in 2D, area in 3D) we divide the change of momentum
by that. To ensure that the pressure does not depend on how long we keep the gas in the box, we
divide again by the length of time.

So pressure is a rate of change of momentum per unit side. We’ll use capital P for pressure because
we have used small ~p for momentum. Here are possible units

~p meV-ps/nm

P meV-ps/nm (/mn/ps in 2D; /nm2/ps in 3D)

i.e., pressure is meV/nm2 in 2D and meV/nm3 in 3D.

For comparison in 3D, 1 atmosphere is 101325 J/m3 and a milli-eV is 1.6 × 10−22 J. “Standard
pressure” is defined to be 105 J/m3 because it is close enough to 1 atm, so we will use that. The
conversion is to multiply meV/nm3 by 1.6 × 10−5 to get J/m3 and simply by 1.6 (or divide by
0.624) to get standard pressure.

The simulation presSim(N,T,r,M,ab) is a modification of statSim() which no longer tracks or
plots (mean) energies or (mean) momentum magnitudes but instead sums up the momentum rever-
sals for each of the four sides, then, every 100 intermolecular collisions (and this should correspond
to a lot more collisions with the walls), divided by the simulated time that has elapsed and by the
respective lengths of the sides.

For 1100 intermolecular collisions of 10 molecules at 300◦K the 11 averages are
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We see that the pressures are the same on all four sides (to plot them more clearly I’ve kept the
minus signs for momentum reversals off the top and right sides).

If we do the theory, we can relate pressure to temperature. Here is Feynman’s argument [FLS64,
§39-2; pp. 39-2–6] using ~p = m~v.

For molecules hitting the top (leaving off the minus sign) the change of momentum is 2mvy and
the rate of change in time is 2mvy/t.

How many molecues travelling with vertical speed vy will hit the top in time t? They must be
within a distance vyt of the top, or, if the top has area A, within a volume vytA. And if there are
n = N/V molecules per unit volume, this is a count of nvytA molecules.

(The area A would be the length L in 2D, but it’s going to cancel out, so the discussion will be
valid for both 3D and 2D, up to a point.)

So the rate of change of momentum of molecules moving upwards at speed vy is 2mvynvytA and
per unit time and per unit area it is the pressure

P = 2nmv2
y

But of course molecules do not all move at the same speed vy so we must use the average of v2
y

which we’ll write < v2
y >. Then

P = nm < v2
y >

Why, Feynman asks, did we drop the 2? Because the average of v2
y includes the half of the molecules

moving away from the top.

Now physics has observed that pressures are the same in all directions, so

< v2
x >=< v2

y >

This is handy because we’d like to use < v2 >=< v2
x > + < v2

y > instead of < v2
y >:

< v2 >=< v2
x > + < v2

y >= 2 < v2
y >

Thus

P = n
1

2
m < v2 >= nE = nkBT
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(In 3D, < v2 >=< v2
x > + < v2

y > + < v2
z >= 3 < v2

y >, so P = 2
3n1

2m < v2 >= 2
3nE = nkBT )

Finally we defined n = N/V so
PV = NkBT

This is the “ideal gas law”. An ideal gas is a gas of monatomic molecules which don’t even collide
with each other. Although pressSim() kept the intermolecular collisions of statSim() and all
the other gas simulators, it gathered data only at the walls and it should be obvious that the
intermolecular collisions will not affect them. Indeed, pressure depends only on mean energy E
and density n, and collisions do not change this.

Remarkably, the ideal gas law is the same (for monatomic gases) in 3D as in the 2D gas for which
we derived it. This is because of equipartition of energy: the mean energies of each direction of
motion are the same (as are the total energies in each direction).

We can check this in the simulation, since we have the final snapshot of molData (or any other
snapshot will do). If we average

p2
x/(2m) and p2

y/(2m)
for all molecules, we get (for the simulation I made in Note 17 with tmptureSim(): but it could
have been done in any of our simulations)

Ex = 12.33meV

Ey = 13.74meV

These are close enough for a snapshot of only 100 molecules.

Here is the theory. The mean energy in the x direction is

antislope p2
xe

−p2
x/a/(βa) |∞

−∞

antislope e−p2
x/a |∞

−∞

=

√
πa/(2β)√

πa
=

1

2β
=

1

2
kBT

(We did the numerator as µ2 of Maxwell in Note 14 and the denominator as I in Note 6.)

The mean energy in the y direction is the same. So is the mean energy in the z direction if there
is one.

So each direction has a mean energy of kBT/2.

Thus

2D 3D
E kBT 2

3kBT
PV NE = NkBT 3

2NE = NkBT

Of course, volums V in 3D is measured in length3. “Volume” in 2D is really area and measured in
length2.

The equipartition of energy happens to hold for other kinds of energy, such as rotation or vibration
of polyatomic molecules. Each “degree of freedom” adds another kBT/2 to the mean energy E.
For instance, a diatomic molecule in 3D has six degrees of freedom (x, y and z for each atom: these
can be looked at as x, y or z for the centre of mass, plus two axes of rotation plus a third one of
vibration) and so mean energy of 3kBT .

Thus for a general gas we can write
PV = (γ − 1)U

where γ = 5/3 for monatomic gases in 3D since U = NE = (3/2)NkBT , i.e., PV = (2/3)U .

For monatomic gases in 2D, we can see that γ = 2.

Feynman [FLS64, §39-2] and Note 22 show that this means

PV γ = constant
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for any process, such as our simulations so far, in which no energy is lost through the walls—
although it might be lost through work done by the gas such as expanding the container, causing
volume V to change. We’ll come to the subtle discussion of heat and work in Note 22.

What happens to the pressures of two gas samples as they reach equilibrium? We can simulate.
Once again we can avoid the difficulties of inventing a mechanism to keep the gases separate and at
the same time transmit temperature and pressure, because the simulation can track the molecules
and distinguish each gas.

Here is the convergence of pressures of helium (50 molecules) at 100◦K (“upper”) and helium (50
molecules) at 500◦K (“lower”) after mixing starts after 500 intermolecular collisions.
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The theory for pressure equalization extends the theory in Note 17 for temperature equalization
and is a little more abstract.

In Note 17 we showed that the change in energy ignorance (per molecule)

∆IM = β∆E − β

Z

∑

j

e−βEj∆Ej

and I said that the energy levels Ej depend on geometry (and other things). Inasfar as Ej depends
on, say, volume per molecule, V M

∆Ej = slopeV MEj∆V M + other terms

So whatever

− β

Z

∑

j

e−βEj∆Ej = − β

Z
(
∑

e−βEjslopeV MEj)∆V M

is, we can invent a name, say P for everything but the β∆V .

So we get
∆IM = β∆E + βP∆V M + other terms not in ∆E,∆V

I didn’t yet claim that P is a pressure, but it does have the physical dimensions of pressure:
PV is energy, because β is 1/energy and I is dimensionless, so the physical dimensions of P is
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energy/volume, just like pressure, above.

Furthermore, for equilibrium we have maxium ignorance and, switching to the whole gas, IG =
NIM, U = NE and V = NV M, therefore

0 = ∆IG = β∆U + βP∆V

= ∆IG
1 + ∆IG

2

= (β1 − β2)∆U1 + (β1P1 − β2P2)∆V1

where, again, the total energy U1 + U2 is constant and so is the total volume V1 + V2, but ∆U1 6= 0
and ∆V1 6= 0, so, as before

β1 = β2

and now, also
P1 = P2

Furthermore, at thermal equilibrium (β1 = β2) but with the pressures not matched, and for a
positive ∆IG and a positive ∆V1

0 < ∆IG = β1(P1 − P2)δV1

means that P1 > P2 which we would expect if P were pressure: the gas at the greater pressure
expands into the other (think of blowing up a balloon).

So P a) has the physical dimension of pressure, b) equalizes at equilibrium, and c) causes expansion
from the gas with greater P . Let’s conclude that P = pressure.

Notice that this discussion also tells us that

slopeV SG =
P

T

for SG = kBIG.

19. State function for monatomic gases. In the last two Notes we have found both temperature
and pressure as slopes of the entropy S, with respect to total energy U and total volume V ,
respectively.

This suggests that we might be able to write S(U, V, ...), i.e., entropy as a function of U, V and
other variables. In general we cannot, but for monatomic gases whose molecules do not interact
beyond colliding with each other, and which do not lose energy to or gain energy from the outside,
we can.

We must work with probabilities in a different way. Instead of the probability that a molecule, say
the jth, has energy Ej , we’ll consider the probability that the whole gas, in state j, has energy Uj ,
and we’ll call this probability pj. For equilibrium we maximize the whole-gas energy ignorance

IG = −
∑

pj ln pj

subject to

1 =
∑

pj

and
< U >=

∑

pjUj

But, given our specification that no energy leaves or enters, all the Uj are the same, so the second
constraint is equivalent to the first.

Maximizing IG makes all the probabilities the same

pj =
1

Ω
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where Ω is the total number of possible states of the gas with energy Uj =< U > which we’ll just
call U .

Thus
IG = ln Ω

and
S = kB ln Ω

and we must just figure out what Ω is.

The states with kinetic energy U are given by quantum mechanics. In Week 7a Note 3 we used
e−i(ωt−kx) to describe a one-dimensional particle, where k is the wavenumber (not the Boltzmann
constant), related to momentum by p = h̄k.

In two or three dimensions, k becomes a vector ~k = (kx, ky) or ~k = (kx, ky , kz) and kx becomes the

dot product ~k.~x = xkx + yky + ...

Now we want to put the particle (a molecule) in a box of sides a, b, ..: the space part of e−i(ωt−~k.~x),

namely ei~k.~x, must have nodes at the sides of the box. This means that xkx, yky, etc. must each
be an integer multiple of π at x = a, y = b, etc.:

akx = qπ

bky = rπ

So the particle energy, ~p2/(2m)

~p2

2m
=

h̄~k2

2m

=
h̄2~k2

2m
(
q2

a2
+

r2

b2
+ ..)

=
h2

8m
(
q2

a2
+

r2

b2
+ ..)

and the total energy is the sum over all particles

U =
h2

8m

N
∑

j=1

(
q2
j

a2
+

r2
j

b2
+ ..).

This describes an ellipse in 2N (or 3N) dimensions—a hyperellipse. We explored higher-dimensional
spheres in Part I, where we found the volume to be

Vol2Ndim =
πNR2N

N !

and

Vol3dimN =
πNR

3N
2

(3N
2 )!

(provided we insist in the 3Ndim case that N is an even number of particles—but it won’t be too
wrong if N is odd).

So let’s make the box square, or cubic, with every side of length a. This gives a hypersphere

N
∑

j=1

(q2
j + r2

j + ..) =
8ma2U

h2
= R2
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(rearranged to bring out the radius R).

The allowed states, of energy U , will be points on the surface of this hypersphere with integer
values of qj, rj , ... But in the Hypersphere Excursion of Week9cII we saw that the entire volume of
a d-dimensional hypersphere equals the volume of a shell of thickness R/d at the surface and so
for large d (such as d = 2N or d = 3N) the states at the surface effectively equal the states in the
whole hypersphere.

So we’ll use Vol2Ndim or Vol3Ndim, above, to count the states. This count is
Ω = Vol2Ndim/(22NN !) or Vol3Ndim/(23NN !)

where we divided a) by 22N (23N ) to restrict the qj, rj , .. to positive integers, and b) by N ! because
this is the number of ways we can arrange N molecules in all the states, but quantum mechanics
says we cannot distinguish these arrangements from each other.

Focussing now on 2D

Ω =
πN

22N (N !)2
R2N

=
πN

22N (N !)2
(
8ma2U

h2
)N

(the extra N ! is from the hypersphere volume).

To find the logarithm of this we’ll need another way to write N !. Stirling’s approximation

N ! = NNe−N
√

2πN

can be derived with much the same math as the hypersphere volume calculations, but we don’t do
it here. It is plausible that N ! should be somewhat less than NN and the e−N does the reduction.
When we come to take logarithms,

√
2πN will be negligible compared with NN and e−N .

So

S = kB ln Ω

= kB ln((
8πma2U

4h2
)N

e2N

2πNN2N
)

= 2NkB + NkB ln(
2πmV

h2

U

N2
) − kB ln 2πN

(a2 = V , the “volume”, and we neglect the third term.

Let’s see if the slopes we found in Notes 17 and 18 give the results we had then.

1

T
= slopeUS = NkBslopeU ln(CUU) =

NkB

CUU
CU =

NkB

U

where I’ve stuck everything that does not contain U into the constant CU .

Thus
U = NkBT

and in Note 18 we had the same thing, in the form E = kBT . Next

P

T
= slopeV S = NkBslopeV ln(CV V ) =

NkBCV

CV V
=

NkB

V

This is the ideal gas law of Note 18:
PV = NkBT
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Thus we have the function of state
S(U, V,N)

depending on U and V as we wished, and also on N .

This is the two-dimensional variant of the Sackur-Tetrode equation. See the Excursions for Sackur-
Tetrode itself.

(In Note 26 of Part III we’ll extend this to include electric charge, and other extensions are also
interesting and important.)

This suggests that we should wonder about the significance of

slopeNS = kB ln(
2πm

h2

UV

N2
)

= kB ln(
UV

N2

N2
0

U0V0
)

Where I’ve invented N2
0 /(U0V0) = 2πm/h2 to simplify the coming calculations, and where you

should confirm that the 2kB term is cancelled by a −2kB term.

By analogy with P/T = slopeV S we’ll define a new quantity µ

µ

T
= −slopeNS = −kB ln(

UV

N2

N2
0

U0V0
) = kB ln(

N2

UV

U0V0

N2
0

)

where the minus sign will make sense soon.

Whatever the quantity µ means, for equilibrium of two samples of the same gas, by the same
argument that established P1 = P2 in Note 18, we get, with both temperatures and pressures
matched

µ1 = µ2

and, just before equilibrium, positive ∆S makes matter flow from larger µ to smaller µ:

0 < ∆S =
1

T
∆U +

P

T
∆V − µ

T
∆N

=
∆U1

T1
+

∆U2

T2
+

P1∆V1

T1
+

P2∆V2

T2
− µ1∆N1

T1
− µ2∆N2

T2

With T1 = T2 and for constant U, V and N , ∆U2 = −∆U1, ∆V2 = −∆V1, ∆N2 = −∆N1, then

0 < S = (µ2 − µ1)
∆N1

T

so for a flow of (positive) ∆N1 particles from gas sample 2 to gas sample 1,

µ2 > µ1

Here is a simulation. I’ve tracked the y component of the centre of mass of two gas samples. Before
mixing, these settle down to ycm1 = 5 nm for the upper gas (confined to 0 ≤ y ≤ 10) and ycm1 = −5
nm for the lower gas (confined to −10 ≤ y ≤ 0). On opening the barrier the gases start mixing: the
upper centre of mass moves downwards to ycm1 = 0 and the lower centre of mass moves upwards
to ycm2 = 0.
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This process is diffusion but alternatively we can think of something attracting the centres of mass
in each case.

It is important that we do not think of the upper and lower centres of mass attracting each other,
although the plot suggests that they do. If one of the halves of the container were initially empty,
the gas in the other half would diffuse into the empty half on opening the barrier, thus moving its
centre of mass in the same way as here, but all by itself.

The formalism we used to describe the attraction of a planet to the sun (Excursion Kepler I in
Part III of Book 8c in Symmetry) was a potential. This was elaborated in Note 16, Part IV, Book
8c. (We called it “potential energy” then; now I’m shortening it to one word.) So we’ll say that
this attraction of the gas (i.e., of its centre of mass) is also due to a potential.

We’ll call it the chemical potential since it is different for different kinds of molecule. Here is the
result of simulating helium in the upper compartment and argon in the lower compartment.

0 2 4 6 8 10 12
−10

−8

−6

−4

−2

0

2

4

6

8

10
centres of mass of upper and lower gases

chunks of 100 intermol coll

ce
nt

re
s 

of
 m

as
s 

(n
m

)

 

 
upper y (He)
lower y (Ar)

start mixing

The difference with the helium-helium simulation is perhaps not convincing. We will come to a
further understanding of the chemical potential, µ, only in Note 26 of Part III, when we deal with
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diffusion, and in the Excursion Chemistry in the language of physics in Part III.

We can relate the complicated expression defining the chemical potential to the pressure of the gas
as follows. For an ideal gas (in 2D)
1) V = NkBT/P
2) U = NkBT
So N2/(UV ) = P/(k2

BT 2)
and U0V0/N

2
0 = k2

BT 2
0 /P0

So

µ

T
= kB ln(

P

P0

T0

T
)

= kB ln(
P

P0
)

if we say T is fixed, T = T0.

It makes sense that diffusion, described by chemical potential, should depend on pressure.

Much of the time we will be interested in small changes, ∆S,∆U,∆V, etc., of the respective quan-
tities. This, plus our discovery that the complementary quantities, T, P, etc., are simply related to
the slopes of S, say, with respect to U, V, etc., enables us to work with “equations of state” which,
unlike Sackur-Tetrode for the ideal gas, are too complicated to know exactly.

20. Thermostatic equations of state. With a monatomic gas we could write the entropy,
S(U, V,N), explcitly as a function of the state (in 3D, the Sackur-Tetrode function, from the
Excursion of that name).

This is hard to do for gases of molecules that rotate, vibrate, or have other forms of internal
energy, or for gases whose molecules interact with each other in ways more complicated than
simply bouncing off each other elastically—e.g., through electric fields.

But if we content ourselves with changes of values of S,U, V,N and the other quantities we derived
in the last two Notes—especially very small changes—we need only know that S is a function of
U, V, and N . Without knowing the form of S(U, V,N) we can still write

∆S =
1

T
∆U +

P

T
∆V − µ

T
∆N

because

slopeUS =
1

T

slopeV S =
P

T

slopeNS = −µ

T

Slopes permit linear approximations to functions, whatever the functions are, and since we know
the slopes of S, we can get results even without knowing what S is in general.

First, we can “invert” S(U, V,N), or at least turn it “inside-out”, to find U(S, V,N)—i.e., that U
is a function of S, V and N , even though we do not know it completely.

∆U = T∆S − P∆V + µ∆N

The Sackur-Tetrode equation, and its two-dimensional analogue, is a monotonic relationship be-
tween entropy S and energy U . While the relationship is not always monotonic, when it is—as for
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ideal gases—it guarantees gobal, not just local, inverses, S(U, ..) and U(S, ..).

A monotonic function either never decreases or never increases as its argument increases. S is a
monotonically increasing function of U for ideal gases.

Whenever this is the case we can also see that maximizing S for a fixed U corresponds to minimizing
U for a fixed S. Here is why.

max S

1

S

U

S(U)

S min U
1

U

Equilibrium is given by the curve S(U). Since equlibrium corresponds to maximum S, systems not
in equilibrium all correspond to (U,S) points below the curve. Maximizing S for a given U , say
U1, brings the system up to the curve at S1 = S(U). But clearly this is the same point reached by
fixing S and S1 and minimizing U to try to bring it to U1 = S−1(S1), the same point (U1, S1) on
the curve.

Second, we can replace variables by their complements to get a suite of other functions related to
U(S, V,N) by sharing slopes.

The complement of a variable x with respect to a function F is the slope of the function with
respect to the variable, y = slopexf , which we then treat as a variable in its own right.

We can get new functions, depending on different variables, but sharing slopes with U(S, V,N) by
Legendre transformations. For example, the enthalpy

H = U + PV

uses the complement of V in U , P = −slopeV U (see ∆U above), and is a function H(S,P,N)
which we can now show (locally).

∆H = ∆U + ∆(PV )

= T∆S − P∆V + P∆V + V ∆P + µ∆N

= T∆S + V ∆P + µ∆N

so H is H(S,P,N).

But H and U share the slopes with respect to their common variables.

slopeSH = T = slopeSU

slopeNH = µ = slopeNU

Besides the enthalpy we can define six other related functions. Here are the common three, plus
the two we alredy know.

internal energy U(S, V,N)
enthalpy H(S,P,N) = U + PV
(Helmholtz) free energy A(T, V,N) = U − TS
Gibbs free energy G(T, P,N) = U − TS + PV
grand potential Φ(T, V, µ) = U − TS − µN
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Here are all eight functions (columns), all three pairs of complements (rows) and all the slopes.

sloperc c = U A H X G Φ Y Z
r = S T T T T

T −S −S −S −S
V −P −P −P −P
P V V V V
N µ µ µ µ
µ −N −N −N −N

What is the use of all these functions? They are not the same as each other—“energy” and
“potential” appear in the names of most of the named ones because they all have the physical
dimensions of energy—but they do share slopes, as the table shows.

In general thermostatics where we know only the slopes and not the functions themselves, these
variants give useful different perspectives on the system.

For example, we can use enthalpy to express the chemical potential as a function of pressure in
equilibrium (∆S = 0):

µ = slopeNH

Since

∆H = T∆S + V ∆P + µ∆N

= V ∆P + µ∆N

= V ∆P

if we also conserve the number of particles N so ∆N = 0.

Now choose an ideal gas, slopeP H = V = NkBT/P

H = antislopeP
NkBT

P
|PP0

= NkBT (ln P − ln P0)

= NkBT ln
P

P0

supposing we take the antislope over range P0 to P .

This is a much simpler derivation of the result we got at the end of Note 19.

While none of these state functions is the energy U , small differences in them are identical to small
differences in energy because they share slopes. This is the basis for their practical value.

If pressure is fixed, for example, as in open chemical reactions (most chemical reactions in basic
labs take place at fixed pressures of about one atmosphere) then the four functions that depend
explicitly on P simplify because ∆P = 0, and we could write them, for fixed P , without the P :

H(S,N)

G(T,N)

X(S, µ)

Z(T, µ)

Furthermore, for equilibrium (which may nearly be the case for a chemical reaction in progress)
∆S = 0 and we can also drop S from two of these

H(N)

X(µ)
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Of these two, the enthalpy, H, is commonly used (X doesn’t even have a name), and this is why
college chemistry texts talk about the enthalpy when they want to calculate changes in energy and
heat.

On the other hand, if ∆S 6= 0 but ∆T = 0, we would have the other two, G(N) or Z(µ). Changes
of phase occur at constant pressure and temperature and the Gibbs function is used to calculate
their properties.

In our simulations so far (except for the mixing experiments) volume has been fixed, so we can use
similar considerations to select

U(S,N)

A(T,N)

Φ(T, µ)

Y (S, µ)

Then we could further stipulate equilibrium, ∆S = 0, to pinpoint U or Y , or we might stipulate
fixed temperature, ∆T = 0, focussing on A and Φ.

We might consider U to be the basic quantity for fixed volume and H to be basic for fixed pressure.
Note the relationship between these and the respective “free energies” (so-called because they tell
us about energy available for work and not dissipated as heat)

A = U − TS

G = H − TS

Some adjectives (ισos same)

isobaric P = const. βαρos weight
isochoric V = const. χωρos space

or isovolumetric, isometric
isothermal T = const. θǫρµos hot
isentropic S = const. or adiabatic: a (not) dia (through) βατos passable
equilibrium S = const. (because S = max)

Note that each of these functions is stationary (i.e., conserved) under different conditions. For ex-
ample G(T, P,N) does not change for isothermal, isobaric processes on a fixed number of molecules.

The discussion in this Note of local inverses of functions (or “turning them inside-out” in the case
of multivariate functions) and of using complementary variables to generate related functions with
different local dependences, are generally applicable to any function, although we have applied
them here to the thermostatic energy-like functions that depend on variables S and T , P and V ,
and N and µ.

The next Note will investigate further general ideas, then I’ll add what we know about ideal gases
and can suppose about non-ideal gases to explore general thermodynamics.

This Note has “thermostatics”, not “thermodynamics”, in the title just because of the term “local”:
the math applies only to the physics of small changes from equilibrium. (Processes that involve
only insignificant departures from equilibrium are called reversible.) Although we can arrive at
remarkably general results this way, the math does not apply to the process of arriving at equilib-
rium, for which we have the much more difficult task of knowing the functions themselves, not just
their slopes.

As a final note, for future reference, only two of the named thermostatic functions in this Note
depend explicitly on entropy, namely U(S, V,N) and H(S,P,N): we will have special uses for the
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internal energy and the enthalpy.

21. More on multivariate slopes. Useful but not obvious transformations on slopes can be derived
from the local invertibility of multivariate functions.

Let’s work these out with four variables (since gas laws such as the ideal gas law depend on four
variables T, V, P and N). Here are w, x, y and z as (local) functions of each other.

z(w, x, y) w(x, y, z) x(w, y, z) y(w, x, z)

From the first
∆z = Wz∆w + Xz∆x + Yz∆y

where I’ve written W,X, Y and Z for the complementary variables, i.e., the slopes, and since we
have four functions, I’ve used a subscript z to distinguish which function we are taking the slope
of. Thus

Wz = slopewz

etc.

From the second function
∆w = Zw∆z + Xw∆x + Yw∆y

which we can also write in terms of Wz,Xz , Yz because of the first function

∆w =
1

Wz
(∆z − Xz∆x − Yz∆y)

So we have essentially two results from this

Zw =
1

Wz

and

Xw = −Xz

Wz

Yw = − Yz

Wz

The first says

slopezw =
1

slopewz

and this encourages the use of conventional notation for slopes

dw

dz
=

1

dz/dw

(or, since w and z depend on other variables besides each other, this is conventionally written using
“partial derivatives”

∂w

∂z
=

1

∂z/∂w
.)

The second pair of results are both of the general form

Ab = −Ac

Bc

i.e.,

slopeab = −slopeac

slopebc

48



Conventional notation is a source of confusion here:

∂b

∂a
= −∂c/∂a

∂c/∂b

would tempt us to cancel the ∂c numerators to get the contradiction

∂b

∂a
= −∂b

∂a

For this reason, conventional notation is forced to add a tag to say what does not vary when the
different slopes are being taken.

(

∂w

∂x

)

y,z
= − (∂z/∂x)w,y

(∂z/∂w)x,y

The tags have the effect of making ∂z/∂x, etc., an inviolable unit, not just a fraction. (Or, we
could write

slopex@y,zw = −
slopex@w,yz

slopew@x,yz

but this is so far not necessary for the slopeab notation.)

Because of this possible notational confusion, let’s work an example. And since gas laws have
motivated this discussion, let’s use the ideal gas law PV = NkBT .

Consider V = NkBT/P , and translate it V → w,P → x,N → y and T → z:
w = ykBz/x z = xw/(zkB)

Now
slopezw = ykB/x slopewz = x/(ykB)

slopexw = −ykBz/(x2) slopexz = w/(ykB)
So

slopezw =
ykB

x
=

1
x

ykB

=
1

slopewz

and

slopexw = −ykBz

x2
= −w

x
= − slopexz

slopewz

as required.

The use of such transformations becomes apparent with a more sophisticated gas law. The van der
Waals gas law (normally written for a fixed N = NA) is

(P +
a

V 2
)(V − b) = RT

or

P = − a

V 2
+

RT

V − b

where a and b are constants which depend on the kind of gas, and R = NAkB .

Translated, it is hard to write the function w(x, z) but we can write

x = − a
w2 + Rz

w−b z = 1
R(x + a

w2 )(w − b)

For this, slopewz and slopexw cannot be found directly, but

slopezw =
1

slopewz
=

1
1
R (x − a

w3 (w − 2b))
=

R
w−b

Rz
(w−b)2 − 2a

w3

slopexw = − slopexz

slopewz
= − (w − b)/R

(x − a
w3 (w − 2b))/R

=
1

a
w3 − Rz

(w−b)2
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(Note the replacement of x in both of the above.)

Alternatively we could use x

slopezw = − slopezx

slopewx
= −

R
w−b

2a
w3 − Rz

(w−b)2

slopexw =
1

slopewx
=

1
a

w3 − Rz
(w−b)2

A second set of transformations involves complementary variables and slopes of slopes.

In general, for a function z(x, y, ..),

slopex(slopeyz) = slopey(slopexz)

so, if X and Y are the complementary variables of x and y, respectively

∆z = X∆x + Y ∆y

then this implies
slopexY = slopeyX

Before we apply this to the thermostatic functions of state we can look at an example to convince
ourselves of this first. It is probably a good idea also to visualize slopes and slopes of slopes for
multivariate functions while we are thinking about this concrete example.

Here is a function with nontrivial slopes and slopes of slopes, all different.

z = x3 + y3 − (x − y)2

slopexz = 3x2 − 2(x − y)

slopeyz = 3y2 + 2(x − y)

slopex(slopexz) = 6x − 2

slopey(slopexz) = 2

slopex(slopeyz) = 2

slopey(slopeyz) = 6y − 2

We see the equality of slopex(slopexz) with slopey(slopexz).

Here are plots of all six different functions, showing them in 3D against both x and y
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Now consider the eight state functions, U(S, V,N),H(S,P,N), A(T, V,N), G(T, P,N),Φ(T, V, µ) as
well as X(S,P, µ), Y (S, V, µ) and Z(T, P, µ). Recall from Note 20 that the complementary variables
are

var S T V P N µ
compl T −S −P V µ −N

so we must keep track of the minus signs for S, P and N .

Looking at
∆U = T∆S − P∆V + µ∆N

we get

slopeSP = −slopeV T

slopeSµ = −slopeNT

slopeV µ = −slopeNP

Looking at
∆H = T∆S + V ∆P + µ∆N

we get

slopeSV = −slopeP T

slopeSµ = −slopeNT

slopeP µ = −slopeNV

which has one overlap with what we found from ∆U .

There is a general rule. Break variables S, T, V, P,N, µ into complementary pairs X and XC , Y
and Y C with X and Y drawn from different sets of complements. Then

slopeXY = ±slopeY C XC
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where the sign is positive if both XC and Y have the same sign. (T, V, µ are positive; S,P,N are
negative.)

What is more, the variables that are fixed for these slopes are either Z or ZC , where Z is drawn
from the third set of complements, other than X or Y ; and, of course, Y C is fixed on the left-hand
side and X on the right-hand side. Thus the above expands to

slopeX@Y C ,ZY = ±slopeY @X,ZY

slopeX@Y C ,ZCY = ±slopeY @X,ZCY

But this explicit fixing is not needed in the slopeab notation.

So, for example, we can construct from this

slopeSP = −slopeV T

which we already worked out above, or

slopeT N = −slopeµT

a new relationship (which can be obtained from either Φ or Z).

Four of these relationships, derived from U,H,A and G with N fixed, are called the Maxwell
relations.

slopeSP = −slopeV T

slopeSV = −slopeP T

slopeT P = −slopeV S

slopeT V = −slopeP S

are frequently used.

22. Work and heat. We can extract some useful work from our gas by letting it expand. By
pushing on a piston the expanding gas can move it and this motion could drive wheels to pump
water or grind grain or move a steam locomotive.

We’ll define work as useful energy. (Or maybe, better, as used energy.) This definition depends
on what we consider to be useful and so is certainly not a state function of the gas the way the
internal energy and all its variants in Note 20 do.

The internal energy of our gases is (a little bit generalized from the ideal, monatomic gas, but not
much)

U(S, V,N)

Of these variables we’ll focus on the volume V as our hope for providing useful work. (We’ll keep
N , the number of molecules, fixed, so the only other variable is S and we’ll come to that.)

If it happens that S is also constant, then when our gas expands by ∆V the change in internal
energy is

∆U = slopeV U∆V = −P∆V

from Note 20. This change is an energy too, and we can identify it with the work done on the gas.
(If the gas expands, ∆V is positive and ∆U is negative: positive work is actually done by the gas.)

To get more work out of the gas, we’ll have to compress it back again (do work on the gas) and
then cycle ’round again. Can we do this in such a way that the work doesn’t all cancel, but that
we get a net benefit?

This depends on the temperature at which we do the expansion and compression: if the tempera-
tures for the two processes are different we actually can get net work.

Here is a picture of such a cycle
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The work we get per cycle is the area of the rectangle

(T1 − T2)(S2 − S1)

(This is at least plausible since
TS = TkB × ignorance

is also an energy. We’ll now show that this area is indeed the extracted work.)

Firat let’s derive the relationship mentioned in Note 18

PV γ = const.

for a gas that does not lose energy except by doing work by volume change. We know two things.

First, above
∆U = slopeV U∆V

with
slopeV U = −P

The second thing we know, from Note 18, is that

PV = (γ − 1)U

where γ − 1 is just a way of writing the factor, which differs for different gases. For a monatomic
ideal gas we had

2D 3D
γ − 1 1 2/3

γ 2 5/3

and other values arise from the equipartition of energy for polyatomic gases.

From this

(γ − 1)∆U = P∆V + V ∆P

Putting the two equations for ∆U together we get

(1 − γ)P∆V = P∆V + V ∆P

or
0 = γP∆V + V ∆P
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Let’s compare this with

slopePV γ = γP slopeV γ + V γslopeP

= γPV γ−1slopeV + V γslopeP

(I’ve used slope for slopex, the slope with respect to any variable—we don’t care which.)

If PV γ is constant, its slope is zero, and so, too,

0 = γP slopeV + V slopeP

But what we know is the same thing

0 = γP∆V + V ∆P

= γP slopexV ∆x + V slopexP∆x

i.e.,
0 = γP slopeV + V slopeP

So, for many gases, and certainly ideal monatomic gases

PV γ = constant.

For the 2D monatomic gas, γ = 2.

Now specialize to ideal gases for which, in addition,

PV = NkBT

and we have two relationships to work with.

The French engineer, Nicolas Léonard Sadi Carnot, in 1824 figured out how to get the most work
possible out of a cycle such as the one we drew earlier. We’ll work with the above two equations,
although Carnot had available neither ideal gases nor conservation of energy.

We can show that the following “P–V ” diagram is equivalent to our earlier “T–S” diagram.
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where ab and cd are segments of two different isotherms corresponding to temperatures T1 and T2

respectively, and bc and da are segments of two different isentropes corresponding to entropies S1

and S2 respectively.

(We will see soon that the entropies are indeed fixed along bc and da.)

The isotherms give P vs. V as

P = NkBT1/V and P = NkBT2/V

and the isentropes give P vs. V as

P = const1/V
γ and P = const2/V

γ

At the corners we have the following values

a P1 V1 T1 S1

b P2 V2 T1 S2

c P3 V3 T2 S2

d P4 V4 T2 S1

where we must show that there are only the two values for S.

Given the connections between isotherms and isentropes at the four corners we can see (using γ = 2
for 2D ideal monatomic gas)

(NkBT1)
2

P1
= const1 =

(NkBT2)
2

P4

and
(NkBT1)

2

P2
= const2 =

(NkBT2)
2

P3

We also have
V 2

4

V 2
1

=
P1

P4
=

T 2
1

T 2
2

=
P2

P3
=

V 2
3

V 2
2

where I’ve worked out from the middle: the relationships between T 2 and P come from const1
above (going to the left) and from const2 above (going to the right); the relationships between P
and V 2 come from PV 2 = const1 (going to the left) and from PV 2 = const2 (going to the right).

Thus
T2V4 = T1V1

and
T2V3 = T1V2

Now let’s calculate the entropies at the four corners using the 2D Sackur-Tetrode equation of Note
19

S = 2NkB + NkB ln CTV

where V replaces U since U = NkBT for a 2D ideal gas (Note 19) and where C absorbs all the
constant terms

C =
2πmkB

h2N

Then, labelling the entropies by the four corners,

Sa

NkB
− 2 = ln CT1V1

Sb

NkB
− 2 = ln CT1V2 > ln CT1V1
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Sc

NkB
− 2 = ln CT2V3 = ln CT1V2

Sd

NkB
− 2 = ln CT2V4 = ln CT1V1

So
Sa = Sd < Sb = Sc

and we may call them S1 and S2 as we did.

This also establishes that PV γ = constant gives isentropes, at least for this case: unchanging
entropy is equivalent to loss or gain of internal energy only through doing or receiving work.

Now let’s show that the work done is the negative of the area drawn in the P–V diagram and that
this area equals (T1 − T2)(S2 − S1), the area of the rectangle in the T–S diagram.

For a small change in volume, ∆V , we had that the work done on the gas is −P∆V . So the total
work is

−antislopeV P

with P (V ) a function of V . In the P–V diagram the (positive) antislope comes in four parts

antislopeV

NkBT

V
|ba

+ antislopeV

const1
V 2

|cb

+ antislopeV

NkBT

V
|dc

+ antislopeV

const1
V 2

|ad

Each of these represents the area below the corresponding curve, and since V decreases from c to
a, the latter two are negative and so subtracted, leaving the area bounded by the curves, as I said.

The isotherm antislopes are

antislopeV
NkBT1

V
|ba= NkBT1 ln

V2

V1

and

antislopeV
NkBT2

V
|dc= NkBT2 ln

V4

V3
= NkBT2 ln

V1

V2

using the V 2
4 /V 2

1 = V 2
3 /V 2

2 relationship above.

The isentrope antislopes are

antislopeV
const2

V 2
|cb= −const2

V
|cb=

(NkV T2)
2

P3V C3
− (NkV T1)

2

P2V C2

and

antislopeV

const1
V 2

|ad= −const1
V

|ad=
(NkV T1)

2

P1V C1
− (NkV T2)

2

P4V C4

Since P1V1 = NkBT1 = P2V2 and P3V3 = NkBT2 = P4V4, these two cancel and their sum is zero.

The isotherm antislopes sum to

NkB(T1 − T2) ln
V2

V1
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and this is exactly equal to (T1 − T2)(S2 − S1), from the 2D Sackur-Tetrode equation for S.

So the work performed is the negative of the enclosed area in either diagram. (Or the result of
doing the antislopes counterclockwise, instead of clockwise as we did them.)

Now Carnot was interested in building a machine, even if a theoretical one, and he did not do this
particular math. How does it all turn into a machine?

Let’s imagine two large “thermal baths” at temperatures T1 (higher) and T2 (lower), respectively:
a thermal bath (or “heat reservoir”) is just an object large enough that what we are about to do
won’t noticeably change its temperature.

Let’s also imagine a cylinder full of gas with a moveable piston to allow the gas to expand or to
compress it. The cylinder is itself moveable so that we can take it back and forth between the
two reservoirs. When it is in contact with the reservoir, the cylinder allows the gas to remain in
thermal equilibrium at the temperature of the reservoir (isothermal). When it is in transit between
the reservoirs, the cylinder allows no energy to enter or leave the gas save through the work of
moving the piston (isentropic).

The work cycle corresponds to the following sequence of operations (Feynman [FLS64, §44-3] shows
pictures).

ab Cylinder sits on T1 reservoir and pressure on the piston is relaxed from P1 to P2, allowing the
gas to expand from V1 to V2, all at T1.

bc Cylinder is in transit from T1 to T2 and at the same time the piston pressure is dropped from
P2 to P3 allowing the gas to expand from V2 to V3 and thus (since the internal energy must
drop) to drop temperature from T1 to T2.

cd Cylinder sits on T2 reservoir and pressure on the piston is increased from P3 to P4, compressing
the gas from V3 to V4, all at T2.

da Cylinder is in transit from T2 to T1 and at the same time the piston pressure is increased from
P4 to P1 compressing the gas from V4 to V1, thus increasing the temperature from T2 to T1,
just as the cylinder arrives at bath T1.

At this point, Carnot did his really inspired thing. He let the machine be reversible. This means
that none of the work done was dissipated by friction (a practically unavoidable way of turning
work back into heat). And it means that heat could flow either way at any point in the operation.

Reversible heat flow gets around Carnot’s true stroke of genius, the Second Law of thermodynamics.
(He didn’t call it that because the first law, which is essentially energy conservation, was not yet
formulated.)

The second law says Heat cannot of itself pass from one body to a hotter body [FS64, First and
Second Law], which we can agree from experience to be true. What is remarkable is what can be
inferred from it.

For example, it implies that “heat cannot be taken in at a certain temperature and converted into
work with no other change in the system or its surroundings” [FLS64, §44-2].
Here is the deduction. If we could extract work from a heat reservoir at temperature T2, say, then
we could convert that work into heat at a higher temperature, T1, say, by friction at T1 (e.g., by
rubbing the T1 reservoir). But that would contradict the second law.

This means that Carnot’s machine needs at least two heat reservoirs at different temperatures
T1and T2.

It also means that Carnot’s machine might not be reversible because the work extracted from the
reservoir T1 (in Carnot’s machine we extract work from the higher temperature, not as in the above
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deduction) may lower the gas temperature and so, if reconverted to heat in the gas, will not flow
back to the reservoir at the higher temperature T1.

Carnot gets around the last by taking things so slowly that the temperature differences are miniscule
and the argument does not apply. (Think of fluctuations.) Moreover, the slowness also keeps friction
negligible.

With this caveat of sufficient slowness, Carnot’s machine is reversible.

So what? Reversibility means we can run the whole cycle backwards (using work to extract heat
from T2 to put it into T1—a “heat pump”: this does not violate the second law because it requires
work from the surroundings). That means nothing is lost, which in turn means the process is as
efficient as possible.

But the efficiency of converting heat to work is not 100% even in this best possible scenario. To
see this, we will finally have to define “heat”.

First, like work, heat is not a state function. We cannot assign a total quantity of heat to a body.
This was a stumbling block for the now obsolete caloric theory of heat in which heat was taken to
be a “fluid” contained in bodies, which can flow between them and which moreover was thought
to be conserved.

We cannot deal with absolute heat levels but only with heat transferred in a given process.

In Carnot’s reversible heat engine, no heat is transferred in the isentropic operations, and all the
work produced or consumed by the isothermal operations is due to heat received from or given to
the reservoirs.

We saw that the total work was

NkBT1 ln
V2

V1
− NkBT2 ln

V2

V1

And we can break this into the heat transferred from the T1 reservoir

Q1 = NkBT1 ln
V2

V1

and the heat transferred to the T2 reservoir

Q2 = NkBT2 ln
V2

V1

Then the work is
W = Q1 − Q2

and the efficiency of the conversion is defined in terms of the heat transferred from the hotter
reservoir. (That is, we draw heat Q1 from the T1 reservoir in order to do work W . But we cannot
use it all and must give up heat Q2 to reservoir T2.)

efficiency =
W

Q1
=

Q1 − Q2

Q1
=

T1 − T2

T1

Note that this depends only on the temperatures.

So if T1 = 400◦K and T2 = 300◦K, the efficiency is 25%. Remember, this is for the best possible
engine, the reversible Carnot engine. (Feynman [FLS64, §44-4] shows that our results, based on
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ideal monatomic gas—in 2D, even—are valid for any reversible engine of any design using any kind
of gas. This is the power of Carnot’s idea.)

Thus (T1 − T2)/T1 is the highest efficiency that can in principle be achieved by any heat engine: a
steam locomotive, your car, or any engine that extracts work from the difference of two tempera-
tures.

We can identify heat with entropy change. For example in the isothermal operations the change in
the internal energy of the gas is zero. With internal energy U(S, V )—remember we’re keeping N
fixed so it can be ignored as a variable

0 = ∆V = slopeSU∆S + slopeV U∆V

= T∆S − P∆V

So, since −P∆V is work, the heat transferred can be taken to be ∆Q = T∆S.

If the temperature is not constant but is a function T (S) then the heat transferred by a change
from S1 to S2 is the

antislopeST |S2

S1

But we often do not know T (S) whereas the gas laws do give us P (V ), which we can use if applicable.

We can identify entropy with the unavailability of energy in the following sense. In the T–S diagram

T

T1 1

T

S

T

SS1 2

2

1

if we lower the upper temperature by 1◦K, energy S2 − S1 has become unavailable to do work.

That is the meaning of the rearrangement of ∆Q = T∆S,

∆S =
∆Q

T

When you sit by a campfire or a warm radiator you feel heat. We can relate this colloquial
meaning of “heat” to entropy by imagining two gas containers side by side but initially at different
temperatures. If they are ideal gases we can show explicitly that the entropy increases.

S1 = N1kB(2 + lnC
T1V1

N1
)

S2 = N2kB(2 + lnC
T2V2

N2
)

S3 = (N1 + N2)kB(2 + ln C
T3(V1 + V2)

N1 + N2
)

where, from conservation of (kinetic) energy

T3 =
N1T1 + N2T2

N1 + N2

59



and I’ve written the 2D Sackur-Tetrode equation with

C =
2πmkB

h2

To simplify the math, let’s suppose N1 = N2 = N . Then

∆S = S3 − (S1 + S2)

= 2NkB ln C
(T1 + T2)(V1 + V2)

4N

−NkB ln C
T1V1

N

−NkB ln C
T2V2

N

= NkB(ln
(T1 + T2)

2

4T1T2
+ ln

(V1 + V2)
2

4V1V2
)

after all the simplifying.

You can show that (a+b)2

4ab is never less than 1 (and equals 1 when a = b) so the logarithms are never
negative. Thus ∆S > 0 and the entropy increases unless T1 = T2 and V1 = V2, i.e., the gases were
already in equilibrium.

We cannot work out the amount of heat using ∆Q = T∆S because the transfer takes place at
different temperatures, ranging from T2 to T3 and from T1 to T3. But we can calculate the heat
transferred directly using PV = (γ − 1)U and reasoning that, since no work is done, ∆Q from the
hotter gas equals ∆U for that reservoir. We’ll use γ = 2 again, and an ideal gas PV = NkBT .

(That is the heat given off by gas at T1. For conservation of energy, this equals the heat absorbed
by gas at T2 and the total change in U is zero.)

For the gas initially at T1 and finally at T3

∆Q = ∆U = N1kBT1 − N1kBT3

=
N1N2

N1 + N2
kB(T1 − T2)

and this is the heat that’s transferred.

This relationship between heat and temperature

∆Q =
NkB

γ − 1
∆T

(putting back the general γ) enters the province of specific heats. Feynman [FLS64, §§40-5,40-6]
tells how the disagreement between theory and experiment led Maxwell as early as 1859 to the
failure of pre-quantum physics that was finally fixed by quantum physics.

The specific heat is the rate of increase of energy with temperature and so it can be written as

slopeT U

except that U(S, V ) does not explicitly depend on temperature T .

So we can use the Legendre transformation of Note 20 to swap T for S and get the Helmholtz free
energy A(T, V ) = U − TS and

slopeT U = slopeT A = CV
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But we can also use the Gibbs free energy, which swaps P for V , G(T, P ) = A + PV so

slopeT U = slopeT G = CP

The difference between these two is made clear if we explicitly write the fixed variables, respectively
volume V and pressure P :

CV = slopeT@V U = slopeT@V A

CP = slopeT@P U = slopeT@P G

Furthermore

CP = slopeT G

= slopeT (A + PV )

= slopeT (A + NkBT )

= slopeT A + NkB

= CV + NkB

where this switch from PV to NkBT assumes an ideal gas, and where we don’t need to specify @
when finding slopeT of A or G because the respective other variables are V and P and these are
fixed implicitly. We do need the @ for slopeT U because it’s not clear what the fixed variable is to
be since U is not an explicit function of T .

The Carnot relationship between work and heat can be written

∆A = ∆Q
∆T

T

and if these quantities are small enough the Carnot cycle has the shape of a trapezoid in P–V
space, whose area is the same as that of the rectangle

∆W = ∆P∆V

This relationship can now be written variously and the limits taken:

∆Q = T
∆P

∆T
∆V → T slopeT P∆V

or

∆Q = T
∆V

∆T
∆P → T slopeT V ∆P

These are useful if we are working with state functions in which V or P , respectively, are variables.

Emergence. The ideal gas law relates quantities which are removed from the underlying mechanics
of bouncing molecules conserving energy and momentum. P and T are only averages of these
quantities—in the end, averages of kinetic energy, which is why they are related.

It could be said that P and T are emergent quantities, resulting only from aggregates of the bouncing
molecules. A single molecule does not have a pressure or a temperature (or even a volume, in some
sense). Furthermore, because there are so many molecules in a visible-sized sample of gas, the√

N law (Part I Excursion Root N law) says PV = NkBT is a very precise relationship even for
arbitrary samples of gas: these averages take on the role of precise quantities in their own right.

The idea is that there are two levels of discourse, each with quite different laws. The “lower” level
is the billiard-ball physics of bouncing molecules. The “upper” level is the ideal gas and its law.

The argument so far, in terms of P, T , etc., may not yet persuade us that the upper level can
show behaviour which is utterly new. We can imagine a single molecule having a pressure or a
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temperature (or a volume or a density) because, after all, we came up with these quantities by
averaging over many molecules. So for true emergence we must look further.

Entropy is a truly emergent quantity. It is inherent in a multiplicity of bouncing molecules and has
no meaning at all for a single molecule.

Without violating the “lower” law of energy conservation, entropy introduces a major new concept—
the dissipation or unavailability of energy. This is a truly emergent law, making the “upper” level
more than the sum of its “lower”-level parts. It leads to a new mode of thinking based not on the
(conserved) internal energy U but on the never-increasing and often diminishing free energies, A
(for fixed volue) and, most used, G (for fixed pressure).

The most vexing property of entropy is its irreversible increase (apart from fluctuations) in isolated
systems. This appears to contradict the reversibility of the laws of the molecular level below it. It
is liberating, though, to think of the irreversibility as emergent rather than as contradiction.

The possibility of emergent quantities and laws completely undoes any deterministic extrapolation
of science, and even the possibility of a “theory of everything”. As far as we know, for example,
courage, responsibility or free will are emergent at the level of “moral person” and go above and
beyond any deterministic entanglement of molecules.

Part of the copnceptual difficulty of thermodynamics is surely its flat contradiction of the philoso-
phies of determinism and the reducibility of higher levels to lower. Being free of such philosophy is
liberating, too.

It is appropriate to conclude this Note with the First Law of thermodynamics, since it was formu-
lated, as the law of conservation of energy, after the second law. Many statements of the First Law
(the simplest being Heat is work and work is heat [FS64, First and Second Law]) must be hedged.

Work can indeed be converted entirely to heat. Both are energy and the work-energy that dissipates
equals in magnitude the heat-energy that results.

The second law, however, tells us that not all heat can be converted to work—unless we consider
“heat” to be only and exactly that disordered energy that can be extracted as work, but this is not
consistent with our above reasoning in which work was the difference between the heat in, at the
higher temperature, and the heat out, at the lower temperature.

23. Correlation.

24. Collision theory.

25. Mobility, diffusivity and Brownian motion.

26. Three potentials and dissipation.

27. Active transport and biochemistry.

28. Combined transport.

29. Phase transitions.

30. Phase transitions in random graphs.

31. Point-to-point resistance in a network.

32. Van der Waals.

33. Sublimation.

34. Ferromagnets.

35. Particle individuality and Bose-Einstein condensation.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!
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1. On keeping with advice to have at least three different books open on any difficult topic, I can
say that my principal sources for the next three Parts have been Robertson [Rob93], Wan-
nier [Wan87] and Feynman [FLS64, Ch.39–46]. All three are disorderly, however. Feynman is,
as usual, accessible, and after you have mastered the present Book you should find Robertson
and Wannier accessible in places. I hope I have saved you much of the work of ordering the
subject into a narrative, but I am unable to save you assimilating for yourself the strange con-
nections between ignorance and entropy (Part II on equilibrium and thermostatics), between
autocorrelation and transport (Part III on linear thermodynamics)

2. a) Show that a 27 meV helium molecule is moving at 1.14 nm/ps, i.e., 1.14 km/sec.
b) What is the momentum in meV-ps/nm for a 1 km/sec helium molecule?

3. Explore the invocations (Note 12)

molCollWallCountBot([1;1],1,1,[-20,20,-10,10],0.05,[19.95,9.95],0)
molCollWallCountBot([1;1],1,1,[-20,20,-10,10],0.05,[18.00,9.95],0)
molCollWallCountBot([1;1],1,1,[-20,20,-10,10],0.05,[19.95,8.00],0)

a) Draw the configurations these inputs describe and guess what the output will be.
b) Execute molCollWallCountBot() by hand and see if you get the same results.
c) Run molCollWallCountBot() in MATLAB with these inputs and compare with (a) and
(b)

4. Explore the invocations (Note 12)

[p1,p2] = moleculeCollide(4,4,[1;1],[0;0],0,[0.1;0]
[p1,p2] = moleculeCollide(4,4,[1/2;1],[-1/2;0],0,[0.1;0]

a) Draw the configurations these inputs describe and guess what the output will be.
b) Execute moleculeCollide() by hand and see if you get the same results.
c) Run moleculeCollide() in MATLAB with these inputs and compare with (a) and (b)

5. Explore the invocations (Note 12)

[t,c] = molCollWallWhen([−0.05;−0.05],41.44*[1;1],4,0.05,[−20,20,−10,10])
[t,c] = molCollWallWhen([−14.95;−0.05],41.44*[1;1],4,0.05,[−20,20,−10,10])

a) Draw the configurations these inputs describe and guess what the output will be.
b) Execute molCollWallWhen() by hand and see if you get the same results.
c) Run molCollWallWhen() in MATLAB with these inputs and compare with (a) and (b)

6. Explore the invocations (Note 12)

[t,c1,c2] = moleculeCollWhen([−10.1;0],[0;0],41.44*[1;1],4,4,0.05,0.05)
[t,c1,c2] = moleculeCollWhen([−10;0.1],[0;0],41.44*[1;1],4,4,0.05,0.05)

a) Draw the configurations these inputs describe and guess what the output will be.
b) Execute moleculeCollWhen() by hand and see if you get the same results.
c) Run moleculeCollWhen() in MATLAB with these inputs and compare with (a) and (b)

7. Why does the running time of moleculeCollWhen() in Note 12 depend on the square of the
number N of molecules? What is the exact dependence, theoretically? Can you observe it
by running moleculeCollWhen() for different values of N?

8. Show that a molecule at 40◦C can be expected to have energy 27 meV.
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9. In Note 12, how can you set startRange to make moleculeInit launch a set of molecules
with strictly deterministic initial positions and momenta? What would the consequence of
this be?

10. Explore the invocation (Note 12) moleculeInit(10,300,[0,0,5,0,0,40,50],0.05,4)
a) How many rows will there be in the resulting molData? What values will the 2nd, 5th and
6th columns have? What can you say about the range of values in the 1st and 2th columns?
How should the values in the 3rd and 4th compare with each other?
b) Run this invocation in MATLAB and check your answers to (a).

11. First simulation. Explore the invocation molData = collSim(10,300,0.05,4,[20;10])
(Note 12) How long does it take to simulate 100 collisions of 10 molecules a) simulation time?
b) elapsed time? How do the columns of the resulting molData compare with the initial
molData, especially c) cols 1, 2? d) cols 3, 4?
e) Write a function molDataHisto(molData)which plots histograms of the resulting momenta
(molData(:,3), molData(:,4)) and energies (molData(:,7)) in buckets of width 10. Run
it on molData from collSim() above. Discuss the plots you get.

f) Modify molDataHisto() to add molData(:,8) initially holding the magnitudes
√

p2
x + p2

y

of the momenta.

12. Doves and hawks. (A kinetic theory of conflict, 1.) A simulation by J M Smith and
G R Price [SP73] of conflicts among five different types within a population can be simpli-
fied [HL11] to two different types with the following characteristics in disputes over a resource
worth 10 arbitrary units.
A dove will always give in and so will share the resource with another dove (score: 5 each) or
yield it to a hawk (score: 0).
A hawk will always fight and so will take the resource from a dove (score 10) and either will
take it from another hawk (score 10), or, if hey loses the fight with that hawk, will suffer
damage costing, say, 30 of those units.
a) Write a simulation [doves,hawks] = doveHawk(D,H,G,L) which, given the number of
doves D and the number of hawks H in the population, and scores G for gain (say, 10) and L
for loss (say 30), returns the minimum, average and maximum scores for all the doves and
for all the hawks.
Note that deciding “conflicts”, i.e., who encounters whom over a resource, is no longer deter-
ministic as it is for molecules but requires rand() to select each of the two parties from the
population. How do you ensure that an individual does not conflict with hemself?
Before you write the rest of the simulation, ensure, by accumulating and displaying a matrix
of encounters, that your randomizing works and omits self-conflicts. Use a small population
for this test because the matrix will be popSize × popSize.
Deciding who wins the fight, if there is one, also requires rand(): I made the chances 50-50.
My simulations showed that doves generally come out ahead, unless there are very few hawks.
Here’s what happened in 161051 iterations.

[doves,hawks] = doveHawk(1000,1000,10,30)
doves = 1.9211 2.4975 3.1046
hawks = -3.9535 0.0065 4.0940
[doves,hawks] = doveHawk(1000,500,10,30)
doves = 2.8333 3.3273 3.8265
hawks = 0.1075 3.3410 6.3793
[doves,hawks] = doveHawk(1000,200,10,30)
doves = 3.7549 4.1657 4.5217
hawks = 4.8548 6.6204 8.2671
[doves,hawks] = doveHawk(1000,100,10,30)
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doves = 4.2553 4.5370 4.7810
hawks = 6.7213 8.1673 9.2908

(Here, doves and hawks return the minimum, average and maximum statistics of counts made
on the individual scores of doves and hawks, respectively, taken after the individual counts
are divided by the number of encounters that individual has had. These are the values that
can be compared with the theory coming up.)
Obviously a single hawk will always win. Speculate on strongmen and tyrants, or on corpo-
rations, or on the government, or the law, as the single hawk.
What happens when the populations are all reduced 100-fold?
What happens when the relative loss is changed from 30/10?
b) Show that the expected scores for large populations where the probability of being a dove is
p and the probability of being a hawk is q are, for the three ratios of doves to hawks simulated
above,

p q dovesAvg hawksAvg
1/2 1/2 2.5 0
2/3 1/3 3.3 3.3
5/6 1/6 4.16 6.6
10/11 1/11 4.5455 8.1818

Hint. Here are the scores that you would get if you were dove or hawk (rows) up against dove
or hawk (columns). Multiply by p and q respectively and sum.

doves(p) hawks(q)
dove 5 0
hawk 10 −10

Note that hawks do not do better than if they constitute a third or less of the population.
c) Re-do this theory for small populations, say 10:10, 10:5, 10:2. What is the effect of excluding
self-conflicts?

p q dovesAvg hawksAvg
10/20 10/20 2.25 0.5
10/15 5/15 3 4
10/12 2/12 3.75 7.5

d) What happens when there are no hawks? Compare the population mean scores.
e) Consider that each iteration adds 10 to the total resources of the society, less any “dissipa-
tion” caused by fighting, and for large populations (such as the first simulations above with
1000 doves) calculate what the society should gain (or lose) in the simulation (D*doves(2)
+ H*hawks(2)).
f) Modify your program to display the distributions of scores per encounter. Here are some
results. Can you reproduce them?
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Relate these distributions to the ranges reported in (a). What will happen if there are 1000
doves and no hawks?
g) Show, for the gains of 10 and possible losses of 30 used above, and for proportion p of doves
in the population (and hence q = 1−p hawks), that the higher moments of the distributions of
scores for doves and hawks respectively, after centralizing them on the means 5p and 10(p−q)
respectively are

moment doves hawks
2 25pq 100
4 625p(1 − 4p + 6p2 − 3p3) 10000

with all odd moments zero. What happens for p = 0, 1/2, 1?
Use Note 6 of Part I to show that neither distribution is normal.
h) The simulation so far has imagined unlimited resources, since every iteration adds a score
of 10 to the population. What is the average score after N iterations? What is a simple way
to report on fixed resources? What is realistic and what unrealistic about this fix?

13. Dominance. (A kinetic theory of conflict, 2.) The previous Excursion, Doves and hawks,
assumes static characteristics for the members of a population. How do such characteristics
develop? Let’s take the zoological concept of dominance and define it for each individual as
the proportion of fights that individual wins. Then we can assign a probability of fighting,
as opposed to yielding, equal to the individual’s dominance, and, if both decide to fight, the
chance of winning is determined by the dominances of the two combatants.
(We can think of dominance as a generalization of the previous Excursion, giving a spectrum
between doves and hawks, with doves having dominance 0 and hawks having dominance 1.)
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If it comes to a fight between left, with dominance ℓ, and right, with dominance r, the chances
are the following.

both win left wins left loses both lose
ℓr ℓ(1 − r) (1 − ℓ)r (1 − ℓ)(1 − r)

(check that these sum to 1) but we exclude the possibility of both winning or losing, so the
chances I’ve used are (you can simplify the denominators)

left wins left loses
ℓ(1 − r)/(ℓ(1 − r) + (1 − ℓ)r) (1 − ℓ)r/(ℓ(1 − r) + (1 − ℓ)r)

We can also keep scores as in dovesHawks() but these will have no effect on the outcome,
initially.
To start the simulation, give everybody the same initial dominance (greater than zero: what
will happen if every individual starts with dominance 0?).
a) Before running the simulation, what do you think will happen?
b) Write and run the simulation.
Here are sample results for a population of 1000.
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The figures on the left are the resulting (i) distribution of dominance, (ii) distribution of scores,
and (iii) the evolution of the average score.
Note that time is variable along the axis: my simulation plotted each iteration up to 11, then
each 11th iteration up to 121, then each 121st up to 1331, and so on. So points 1 to 11 are
separated by 1 iteration (and show no result because the score for each individual is divided
by the number of encounters, and these are initially zero); points 12 to 21 are separated by
11 iterations, and so on. This shows in detail the early evolution of the simulation.
The figures on the right show the evolution of (i) the distribution of dominance, from an ini-
tial dominance of 1 for everybody, evolving to a very small dominance for a large proportion
of the population; (ii) the distribution of scores.
c) Compare your results here with those from the Doves and hawks Excursion. How far can
the theory we developed there be applied?
Show that at least one dove (dominance zero) and at most popSize − 1 doves will result per-
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manently from the initial conflicts. Typically, will the number of doves be about popSize/2?
What is the expectation?
Show that if more than one hawk (dominance one) remains in the population it is because
they have not encountered each other. Is it possible to have no hawks? What is the expec-
tation?
d) Note the very large number of iterations (1771561) I ran. The (very few) individual(s) of
high dominance lasted a long time. What would the effects of mortality be on the results?
(Say, replace individuals after a certain amount of time—or after a certain amount of damage
in fights—by new individuals with randomly chosen dominance.) Can you think of examples
of (effectively) immortal individuals in society?
e) A way of doing this would be to allow the scores to affect the dominance. Setting an
individual’s dominance to zero when heir score drops below, say, −100, will save hem from
continual fights and the risk of greater losses. It will also reduce cost to society. What will
this do to the cycles (see Excursion Cycles below)?
Note that this adds two parameters to the theory of dominance, where there were none before:
the ratio of losses to gains (which was hitherto used only to establish scores, not to affect
dominance), and the ratio of this new value to gains. By tweaking the parameters, such a
“phenomenological” theory might be made to “fit” a variety of empirical observations on herd
or flock animals.
So far, individuals fight based on their own dominance but do not take into account the
dominance of their opponent. How would you insert a “display” mechanism (raising hackles,
pounding one’s chest, flashing one’s Porsche) to dissuade the opponent before an actual fight
begins? Or some other mechanism to avoid fights based on reputation?

14. Hierarchies. Without altering the initial postulates of the previous Excursion (dominance is
the proportion of the fights you win, probability of fighting equals dominance, and probability
of winning when you do fight is proportional to dominance), find out what sort of hierarchies
develop.
A hierarchy can be represented as a matrix, in this case with one element for each pair of
individuals in the population, and with that element counting the number of fights won (or
the scores): element (j, k) counts the fights j has won over k.
How do we detect hierarchy in this matrix? Let’s start with a tree. The tree

9

10

2 3

8

1

6 7 54

could be represented as
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1 2 3 4 5 6 7 8 9 10
1 1 1 1 3
2
3
4
5
6 1 1
7 1 1
8 1 1
9 1 1

10 1 1 2
1 1 1 1 1 1 1 1 1 9

or, after rearrangement to reveal the structure a little more clearly,

8 10 1 4 9 5 6 7 2 3
8 1 1

10 1 1 2
1 1 1 1 3
4
9 1 1
5
6 1 1
7 1 1
2
3

1 1 1 1 1 1 1 1 1 9

In the drawing, I double-circled the root node of the tree, and showed the leaf nodes as squares.
In the matrices, I included a column and a row at left and on top to give the node labels, and
I added a column and a row at right and on the bottom giving, respectively, the row sums
and the column sums. From these sums you can identify the root, whose column sum is 0
(blank for clarity), and the leaves, whose row sums are 0.
(The convention is that lines are “directed” from above to below in the drawing, and that
these directions are given in the matrices by considering rows are directed towards columns,
in the sense of j → k if (j, k) 6= 0. So 8→10, etc.)
Thus, with a tree, we can identify the root by its zero column sum. We can represent a node
as a row vector of zeros except for a 1 in the position corresponding to the node. We can pick
up the hierarchy from this by matrix multiplication. For example, node 8 leads to node 10

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0)
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= (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

and similarly, node 10 leads to nodes 1 and 9, etc.
We can write a loop which picks up each of these levels and accumulates the following hierarchy
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for this case
(

8 10 1 9 4 5 6 7 2 3
0 1 2 2 3 3 3 3 4 4

)

where the upper row labels the nodes in ascending order of level in the tree (trees in computer
science are drawn upside-down, so the root on top ascends to the leaves on the bottom: sorry!)
and the lower row gives those levels.
a) Write a function [newGraph,hier] = toposort(graph) which inputs the 1–10 matrix
I gave first above and outputs the 8-10-1-9-4-5-6-7-2-3 matrix I gave next above, and the
hierarchy represented by hier. How would you stop the loop that multiplies the node vector
by the graph matrix to get the next node vector? How would you permute the matrix graph
to get newGraph?
Now, if we added a link, say from node 7 to node 5, the level of node 5 would have to increase
to 4 because it now depends on a node (7) of level 3. The loop that would implement the
level-finding for a tree, above, would continue on to find this new candidate for the level of
node 5

(

8 10 1 9 4 5 6 7 2 3 5
0 1 2 2 3 3 3 3 4 4 4

)

and you’ll have to work backwards along this hier array to eliminate the

(

5
2

)

claimant.
b) Modify your toposort() to handle such extra links. The example I’ve given is no longer a
“tree” but a “directed acyclic graph (DAG)”. If there are no cycles, we still have a hierarchy,
just a little more complicated than a tree. But we might also introduce cycles. What will a
cycle do to your loop? How can you stop it?
c) Modify the dominance simulation of the previous Excursion to tally the victories of j over
k. The resulting matrix will have entries that are 0, 1 or greater: make sure your toposort()
still behaves.
d) When you run this modified simulation (which you should do for small populations initially,
or your program will be reporting on popSize2-size arrays) do you discover hierarchies?
Cycles? Discuss the implications for zoology of your results.
e) The simplest kind of cycle involves only two nodes, j → k and k → j. These can easily
be eliminated by, say, diminishing the larger of j, k and k, j by the smaller, and making the
smaller 0: it’s plausible that the individual of a pair who wins more fights is dominant. Try
getting your toposort() to do this within your simulation, but use the resulting hierarchy
to rearrange the entire original matrix.
(Your toposort() is executing a “topological sort”. Note that the order assigned to nodes
at the same level is arbitrary. What will happen if the graph is a chain of n nodes including
all levels 0 to n − 1? The algorithm I have pointed you to will require O(n3) work: find
the part of the implementation that costs this many multiplications. (“Big-O” is computer
science notation meaning, in this case, that the work as a function of n, w(n) ≤ kn3 for some
constant k once n is big enough that the n3 is the most important n-dependence in finding
the value of the function.) Topological sort can be written with O(n log n) complexity. If
n = 1000 and the logarithm is to base 10, compare n3 and n log n.)

15. Cycles. Find all the cycles in the matrix recording fights won pairwise by individuals in the
previous Excursion.
Here is a five-node graph with two cycles and its matrix representation.
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5

1

2

3 4
G =

0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 1 0 0 1
0 0 0 0 0

a) Show that you can identify cycles of length ℓ by looking at the diagonal of Gℓ.
Unfortunately the diagonal of Gℓ does not tell us the intermediate nodes in the cyclic path,
because matrix multiplication throws away this information. We need a more fundamen-
tal operation than matrix multiplication, which can keep the intermediate steps. The most
straightforward way to create such an operation is to change from matrices to relations.
Let’s walk through the thinking, and a MATLAB (matrix) implementation of relations and
the join, a central operation of the “relational algebra”.
The relational form of the above graph is the “binary relation”

1 2
2 3
2 4
3 4
3 5
4 2
4 5

b) See how each of the seven “tuples” of this binary relation represents one of the edges of
the graph (or one of the nonzero entries of the matrix). Write a MATLAB function rel =
mat2rel(matrix) which will create a tuple of rel from each of the nonzero entries of matrix.
The relational operation underlying matrix multiplication is the join. For a start, here is G
joined with itself.

G G G2 = join(G,G)
1 2 1 2 1 2 3
4 2 2 3 1 2 4
2 3 2 4 4 2 3
2 4 3 4 4 2 4
3 4 3 5 2 3 4
3 5 4 2 2 3 5
4 5 4 5 2 4 2

2 4 5
3 4 2
3 4 5

I’ve rearranged the tuples in G the first time it appears. This does not change the meaning
of the relation: it still would give the same matrix and the same graph. But it facilitates
understanding the join.
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The join combines tuples from its two arguments (in this case, both G) by looking for matches
between the second column of the first argument and the first column of the second argument.
The join combines all matching tuples from one side with all matching tuples from the other.
Thus, since G has two tuples ending in 2 and two tuples beginning in 2, join(G,G) will have
four tuples with 2 in the middle. How about matches on 3? on 4?
Note that join(G,G) is also a relation, but not a binary one: it is a “ternary relation” because
it has three columns.
c) Show how this join gives the same result as multiplying the matrix version of G with itself,
with the additional information about the intermediate step. Basically G×G and join(G,G)
give the paths of length 2 in the graph: the matrix multiplication without, and the join with,
the intermediate node.
d) Write a MATLAB function R3 = join(R1,R2) to join the two relations R1 and R2. Beware
that the relations need not be binary and need not have the same number of columns as each
other: make your implementation robust against this. The easiest way is to write a double
loop, circulating through each tuple of each relation. But note that the cost is O(e× f) if R1
has e tuples and R2 has f tuples. Note also that these quantities are the numbers of edges in
the graphs if the two relations represent graphs (e.g., they are binary): what is this cost in
terms of the number of nodes of each graph (what is the worst case)?
The tuples of G2 corresponding to the diagonal elements of G2 are the two that begin and
end on the same node: 4 2 4 and 2 4 2. These both correspond to the (24) cycle (2→4 and
4→2). So they can be detected by looking for repeats within the tuple, specifically repeats of
the same node at the beginning and at the end of the tuple.
We are going to want to remove such cycles from the result and report them separately. Let’s
suppose we have done this with a MATLAB function [cyc,rest] = nextCycles(G2) where
cyc contains the cycles and rest is the remaining tuples of G2. But we won’t try to build
this function yet, because we are going to encounter some more subtleties.
We’ll explore the join operation some more first.
e) Show that the third and fourth steps, if (changing the definition of G2 and ignoring
cyc in the following for the time being) [cyc,G2] = nextCycles(join(G,G)), [cyc,G3] =
nextCycles(join(G2,G)), (or [cyc,G3] = nextCycles(join(G,G2)): show it’s the same)
and [cyc,G4] = nextCycles(join(G3,G)) are

G3 G4
1 2 3 4 1 2 3 4 2
1 2 3 5 1 2 3 4 5
4 2 3 5
1 2 4 5
2 3 4 5

where nextCycles() has removed tuples with any duplicate node.
(Show that 3 4 2 4 and 1 2 4 2 arise in the join leading to G3: these just describe the
beginning of an infinite loop around the cycle (24), which is why they must be discarded.)
And show that the next join, join(G4,G), will produce an empty relation: there is no path
of length 5+1 in the graph.
f) Now that you know that nextCycles() must eliminate all tuples with repeated nodes
from rest, putting only those with repeats only in the first and last positions into cyc, write
function [cyc,rest] = nextCycles(rel).
You should probably write some auxiliary functions first:
rept = repeats(tuple) constructs a ternary relation on (value,1st,2nd) where value is
the repeating value, 1st is the position where it is first found, and 2nd is the position where
it is found again—rept may have several such tuples if there are several repeating values or
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if they repeat in more than one place;
cyc = addunique(cyc,cycle) adds a cycle to the output relation cyc only if it is not
already in cyc; and
cycle = canonCycl(tuple(1,1:q-1)) rearranges the cycle of values so that the same cycle
is not described in different ways, e.g., 3 4 3 2, 2 3 4 2 and 4 2 3 4 all give the same cycle
2 3 4.
g) Finally, write function cycles = findCycles(matrix)which puts all these pieces together
to find all the cycles in the graph described by matrix. It must loop to find cycles of length 2,
of length 3, and so on. Use findCycles() in the simulation of Excursion Dominance above
to report on cycles as they develop in the matrix of fights won.
h) Look up [Mer08] for accounts of a full relational programming language. Implement it and
rewrite all of Excursions in Computing Science in Aldat instead of in MATLAB.

16. Look up Ludwig Eduard Boltzmann (1844–1916). How does the Boltzmann constant appear
in the simulations of these Notes? What is a Boltzmann brain?

17. Wannier [Wan87, p.476] gives Perrin’s calculation of Boltzmann’s constant from data on
Brownian motion: rework it into the units (nm, meV) used in these Notes. (This requires
perhaps more physics than I’ve covered.)

18. Look up James Clerk Maxwell (1831–79). What did he have to say about the rings of Saturn?

19. A second puzzling connection between energies, which follow a Boltzmann distribution, and
momentum magnitudes, which have a Maxwell distribution, is that the energy is just the
square of the momentum magnitude (divided by twice the mass, which is the same for all
molecules in the simulation so far). Because of this simple relationship shouldn’t they have
the same distribution? (Note 13)
a) Suppose a quantity has each value from 1 to 10 occurring once, so that it has the following
five-bucket histogram.

values 1–2 3–4 5–6 7–8 9–10
# occurrences 2 2 2 2 2

What does the five-bucket histogram look like for the square of the quantity?
b) How does this argument depend on dimensionality? Note 14 and the Excursion Maxwell
distribution show differences between momentum magnitude distributions in 2 and 3 dimen-
sions. Why?

20. Maxwell distribution. (Note 14) Recalculate the partition function and the distribution
of momentum magnitudes in 3 dimensions to show

Z =

(

√

π(2m/β)

)3

M(p)∆p ≈ p2∆p
√

π/2(m/β)3/2
e−βp2/(2m)

=

√

2

π
(
β

m
)

3

2 p2∆pe−βp2/(2m)

with the approximation getting better as ∆p gets smaller.

21. Why is Ee−βE zero at E = 0 and E = ∞ in Note 14? How about E2e−βE?

22. Why did I not try to find the mode of the Boltzmann distribution in Note 14?
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23. Show that for Maxwell (3D)

µ1 = 2

√

a

π
= 2

√

2m

πβ

µ2 =
3a

2
=

3m

β

σ2 = (3 − 8

π
)
a

2

mode =
√

a =

√

2m

β

For µ1 you can take direct advantage of results in Note 14. For µ2 you’ll have to find a new
u in order to integrate by parts.
Look up Maxwell’s distribution to check these results.

24. a) Generalize to three-samples the results of Note 15 that

∑

ij

pipj
i + j

2
= m

∑

ij

pipj(
i2 + j2

2
− (

i + j

2
)2) =

σ2

2

b) Generalize this to N -samples (i1, i2, ...iN , and corresponding frequencies).

25. Look up Feynman’s discussion of temperatures via thermal equilibrium of two mixed gases [FLS64,
§39-4] and the same with the gases separated. (Feynman requires a prior discussion of pres-
sure.) Compare the treatment in Note 17.

26. Why are the two Maxwell distributions for the combined statistics from Helium at 100◦K
and 500◦K in Note 17 both twice too high? Rerun the simulation and correct the theoretical
plots.

27. Make discrete Fourier transforms in 501 and 500 dimensions and use these to reduce the vari-
ance of the energy ignorance before and after gas mixing starts in Note 17. Note the behaviour
at the ends of these intervals when you retain only the largest four or five amplitudes.

28. From what height must we drop a body so that on impact with the ground its temperature
rises by 1K◦, assuming all its acquired energy converts to a temperature rise?

29. The discussion in Note 19 of the state function S(U, V,N) is based on Robertson [Rob93,
pp.111,113–5]. The N ! dividing the volume of the hypersphere is discussed on p.114. Look
up the further discussion of the “Gibbs Paradox” on pp.154–6, 540–1.

30. Sackur-Tetrode equation. Complete the derivation in Note 19 to show that the number
of states in 3D for a monatomic gas isolated from outside is

Ω = (
2πm

h2
)

3N
2

V NU
3N
2

3N
2 N !(3N

2 − 1)!

and so

S =
5kBN

2
+ kBN ln((

4πm

3h2
)

3

2

V U
3

2

N
5

2

)
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Thus show

U =
3

2
NkBT

and
PV = NkBT.

31. Using the Sackur-Tetrode equation in either 2D or 3D and the work of either Note 19 or
the previous Excursion, find explicit functions S(P, V,N), S(T, V,N) and S(T, µ,N). How do
these contrast with the (energy) functions of state discussed in Note 20?

32. In 3D, using Sackur-Tetrode, show that

µ

T
= −slopeNS = −kB ln(

V U
3

2

N
5

2

N
5

2

0

V0U
3

2

0

) = kB ln(
N

5

2

V U
3

2

V0U
3

2

0

N
5

2

0

)

and so, for ideal gases with V = NkBT/P and U = (3/2)NkBT and, with T = T0

µ = kBT ln(P/P0)

33. Local inverses of functions.2 A function is defined in mathematics to be a many-to-one
mapping from the possible values of its argument to the possible values of the result. Thus,
f(x) = x2 gives 9 if x is either 3 or −3: 2-to-1. One-to-one mappings are also functions, in
the special case that “many” becomes “one”, e.g. the cubing function.
The inverse of a function is the function which reverses this mapping. So the inverse of
cubing, y = x3, takes the cube root, x = 3

√
y.

But f(x) = x2 has no inverse, because ±√
y (where y = x2) has two possible values (except

when y = 0) not just the one value required for it to be a function.

y

y = x

x =    y

2

+

x

y

x

a) Find a function which is ∞ : 1 and so, of course, has no inverse.
However, locally any function has an inverse. In the case of squaring, “locally” means either
non-negative x or non-positve x. In other cases, “locally” might be more restricted.
b) What does “locally” mean for the function you found in (a)?
Certainly, “locally” is satisfied by a range ∆x where ∆x is made arbitrarily small.
But we can extract this from any function for which we know the slope

∆f = slopexf∆x

Thus, for f(x) = x2 in particular
∆y = 2x∆x

2This Excursion is intended to help with Note 20.
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y

y = ∆x∆ y = ∆x1x = ∆ y = ∆x2x =2 4 x = 21

x

y

x

y

x

∆

And of course

∆x =
1

2x
∆y

is the local inverse. Slopes permit linear approximations for any function, and these can
always be inverted.
c) When does ∆x = ∆y/(2x) fail?
d) Rewrite the 2x in terms of y, so that no x appears on the right-hand side of the equation
in (c). What additional conditions must be stated?
All this works also for functions of more than one variable. Try

z = f(x, y) = x2 + y2

So

∆z = slopexf∆x + slopeyf∆y

= 2x∆x + 2y∆y

Turning this inside-out (it is unsatisfactory to talk about an “inverse”—why?)

∆x =
1

2x
∆z − y

x
∆y

e) Using the local “inverse”

x = g(y, z) = +
√

z − y2

find the slopeyg and slopezg and confirm the above result for ∆x. (You’ll have to convert
√

z − y2 back to x to make the direct comparison.)

34. Complementary variables.3 Using a function of one variable, f(x) = x2, explore the
replacement of x by y = slopexf in g(y) = f − yx.
a) Show that, for small ∆x,∆f,∆g

∆f = y∆x

∆g = y∆x − y∆x − x∆y − slopeyf∆y

= −x∆y

Does this justify our saying above that g is a function of y but not of x?
b) Plot g(x, y) = x2 − yx as a function of both x and y

3This Excursion is intended to help with Note 20.
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i) parametrically as g versus x for y = 0, y = 1, y = 2
ii) parametrically as g versus x for x = 0, x = 1, x = 2
iii) fully in 3D

c) In(b)(i) above, with y fixed, what are the values of x at which slopexg = 0?
d) Discuss the difference between y as an independent variable and y as slopexg
e) Revisit the relationship between Lagrangian and Hamiltonian in Note 39 of Book 8c Part
IV and discuss it in the light of complementary variables as examined in Note 20 and this
Excursion.

35. Verify the dependences of F,G and Φ along the lines of the treatment of H(S,P,N) in Note
20.

36. What are the functions X(S,P, µ), Y (S, V, µ) and Z(T, P, µ) in terms of U , TS, PV and µN
in Note 20?

37. What other function besides enthalpy can be used in Note 20 to find µ(P )?

38. Which four functions of state would be candidates to describe isothermal processes (Note
20)?

39. Which function of state in Note 20 is conserved under adiabatic, isochoric processes on a fixed
number of molecules? Isothermal, isochoric processes on a fixed number of molecules?

40. In Note 22 we are using generalizations of what we learned in our computer simulations of
a monatomic gas. Further simulations are bulky to describe and I am not sure they are
instructive. But you might like to rewrite the routines to allow the bottom wall of the
container to be heated and the top wall to move like a piston, and thereby confirm the ideal
gas lawPV = NkBT .

41. Redo the calculations of Note 22 for 3D gases.

42. Because Carnot engine efficiency depends only on temperatures, this gives another (but equiv-
alent) way of defining temperature. Look up “thermodynamic temperature”,

43. What is the maximum possible efficiency of your car? Look up the operating temperature of
its motor.

44. When we calculated ∆S from the Sackur-Tetrode equation in Note 22 we got a dependence on

ln (V1+V2)2

4V1V2
which is zero only when V1 = V2. Why should the entropy increase if the volumes

are different even if the two gases were initially at the same temperature?

45. Using ∆V ∆P = ∆Q∆T/T from Note 22 and the ideal gas law, come as close as you can to
the Sackur-Tetrode equation a) for volume V compared with V0 b) for pressure P compared
with P0.

46. Causality. One of the hangups of some aspects of science is the philosophical obligation to
trace the causes of every phenomenon. This is appropriate for engineering (which is parodied
by Rube Goldberg and Heath Robinson with their machines of ultimate causal chains) and
evidently attractive for biology with its biochemical cycles and ecological food chains.
But causality is a diminishing philosophy in physics where conservation laws and laws of
stationary quantities are more useful than force calculations, for instance.
a) Review all the physics in these Notes to see how many references you can find to causality.
Can you find any way to fit, say, conservation of energy and momentum into a causal frame-
work?
b) Here’s some more physics. Tidal forces between the Earth and the Moon have stopped
the Moon’s rotation relative to the earth, so that the same side of the Moon always faces us.
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Conservation of angular momentum requires that the lost angular momentum of the Moon’s
rotation not disappear. So the Moon has moved further away from the Earth than it was
when it was rotating. Find a mechanical explanation of this.
c) Re-calculate the billiard-ball collisions of Excursion Billiards in Book 8c Part IV using
Newtonian forces. Was it easier than using the conservation laws of the Excursion?
d) What does the word “cause” mean? Where must “first cause” come in? What does the
light cone of special relativity require?

47. “Emergence” is discussed at the end of Note 22. Which of the following qualities could be
described as emergent: addiction, asymmetry of time, earworm, eros (romantic love), free
will, ideaworm (ideology), individuality, me-you-ness (consciousness, sentience, ..), political
power?

48. Any part of the Preliminary Notes that needs working through.
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