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Abstract

Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other

imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve

design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This

paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to

compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine

registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of spatial normalization in brain imaging is

to remove, to the extent possible, the natural anatomical
variability in a population by warping each individual’s

anatomy into a standardized space. Meaningful com-

parisons of spatially varying data (structural or func-

tional) can then be made. The sensitivity of such

comparisons is reduced by anatomical variability re-

maining after standardization. We wish to quantify this

residual variability in order to choose the spatial nor-

malization method for which it is the lowest.
The standardized system in widespread use today is a

3D Cartesian coordinate system into which each indi-

vidual is mapped by an affine spatial transformation.

Such a mapping procedure corrects only for location,

orientation, and overall size of the input brain, leaving

much variability (Steinmetz et al., 1989).

A nonaffine transformation enables removal of ana-

tomical variability to a greater extent. Many algorithms
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for nonaffine mapping have been proposed (e.g., Ash-

burner and Friston, 1999; Bajcsy and Kova�ci�c, 1989;

Bookstein, 1989; Christensen et al., 1996; Collins and

Evans, 1997; Davatzikos, 1996; Thirion, 1998; Thomp-
son and Toga, 1996; Woods, 1998), these differ in the set

of transformations searched, transformation parame-

terization, how the search is conducted, and the image

feature used to drive the search. Such algorithms search

for a spatial mapping T from input image I to image J
by explicitly or implicitly minimizing some objective

function of the form

UðT Þ ¼ UDðI ; J � T Þ þ aUMðT Þ; ð1Þ
where UD represents the data (image similarity) term

and UM represents the model term, also known as the
regularizer as it embodies our ‘‘prior knowledge’’ of the

transformation expected. The mathematical form for a

data term has a theoretical basis in some instances

(Roche et al., 2000). However, there is no biological

theory to suggest a model term appropriate for trans-

formation of one individual to another, so the models in

use are either ad-hoc (Collins and Evans, 1997) or

borrowed from physics (e.g., elastic solids (Bajcsy and
Kova�ci�c, 1989), viscous fluids (Christensen et al., 1996),

or diffusion (Thirion, 1998)). These models include pa-

rameters corresponding to physical quantities such as

‘‘stiffness’’ or viscosity whose value is not determined by
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theory. The coefficient a in Eq. (1), balancing the con-

tribution of the data and model terms, is also undeter-

mined by theory.

While spatial normalization is typically carried out

using 3D transformations to match volumetric images,
recently there has been a lot of interest in normalizing

only the cerebral cortex treated as a 2D manifold (Van

Essen et al., 1998; Fischl et al., 1999; Vaillant and

Davatzikos, 1999; Thompson and Toga, 1996). As in the

3D image context, many parameter and design choices

are not specified by theoretical reasoning.

An empirical performance measure is therefore re-

quired to evaluate design choices such as data and
model terms, and to select parameter values. In the

context of spatial normalization, residual anatomical

variability is the natural choice for performance mea-

sure. In this paper we present such a measure of vari-

ability and demonstrate how it can be used to evaluate

design choices and tune parameters of two different

registration algorithms, dramatically improving the re-

sulting registrations.
2. Methods

2.1. Anatomical variability measure

Anatomical variability is often visualized qualita-

tively in the ‘‘sharpness’’ of the mean intensity image
after spatial normalization. The intensity values of a

structural magnetic resonance (MR) image, while obvi-

ously carrying anatomical information, are affected by

factors such as scanner settings, the partial volume ef-

fect, and the shading artifact. It is unclear how much

the raw MR intensity value tells us about biological

homology.

Instead, some anatomical ‘‘label’’ can be used which
identifies a specific anatomical feature, as a dimension-

less point landmark, a curve (1D), surface (2D) or vol-

ume (3D) label field. Anatomical variability can be

quantified using some measure of the spatial distribution

of corresponding points (Grachev, 1999), curves

(Woods, 1998; Steinmetz et al., 1989), surfaces (Hellier

et al., 2001), or volumes (Roland et al., 1997; Fischl

et al., 1999). These measures use a limited number of
features, e.g., 128 landmark points per hemisphere

(Grachev, 1999), leaving them insensitive to the value of

T at unlabelled points. We prefer a variability measure

that is sensitive to each voxel of the standardized space.

A segmentation of an image is an assignment of a

class label to each voxel. The labels can represent any

relevant information. In this paper, labels of tissue type

(gray matter, white matter, CSF, or background) are
used and also labels of sulcal branches. While such la-

bels represent structural anatomy, labels representing

functionally defined regions could equally well be used.
Labels assigned to an input image can be carried

along with a spatial transformation to induce a seg-

mentation of a grid in the standard space. Using a

‘‘ground truth’’ segmentation of the standard space,

Crivello et al. (2002) measure the label agreement be-
tween the ground truth and the induced segmentation

of each individual. Given a population of individuals,

mean label agreement is used as the measure of resid-

ual anatomical variability after spatial normalization.

We can avoid requiring ground truth, and the atten-

dant concerns about biasing the results if the ground

truth is incorrect, by instead looking for label consis-

tency across the population of at each location of
standard space.

In this work each input brain has an associated seg-

mentation. After spatial normalization is performed,

each individual also has a segmentation in standard

space. Each standard space voxel is thus associated with

a set of labels, one label per individual. If a set of images

were well-aligned after transforming each to the stan-

dard space, then any given location in the standard
space would be consistently matched to similar tissue in

each of the subjects. In the ideal (no variability) case, the

labels at a given location in standard space would all be

the same. In practice, this does not happen and we seek

to measure how far we are from the ideal; i.e., to mea-

sure the variability at each location in standard space.

To measure the variability of labels at each standard

space voxel v, we begin with the probability, plðvÞ, that
voxel v takes label l. This probability is estimated as the

fraction of inputs whose corresponding voxel is labelled

l. The set of probabilities, fplðvÞ : l 2 Lg, where L is

the set of possible labels (e.g., tissue labels) is the prob-

ability distribution at voxel v. A standard measure of

variability of this probability distribution is the infor-

mation entropy (Cover and Thomas, 1991), defined as

HðvÞ ¼ �
X

l

plðvÞ log2 plðvÞ; ð2Þ

where 0 � log2 0 is defined to be zero. This entropy is a

measure of the uncertainty in the label that should be
assigned to voxel v. For example, a spatial normaliza-

tion method that achieves its goal of matching homol-

ogous points of each input at voxel v will result in an

identical label (say k) across the subjects, i.e., pkðvÞ ¼ 1

and plðvÞ ¼ 0 for l 6¼ k, and thus have zero entropy. The

other extreme is a distribution where each label is

equally likely, i.e., plðvÞ ¼ 1=m, where m is the size of the

label set L; in this case, the entropy is log2 m. The en-
tropy of any other distribution falls between these two

extremes (Cover and Thomas, 1991). The experiments

presented later use either four classes or two classes,

so the entropy values fall in the range 0–2, or 0–1,

respectively.

The entropy HðvÞ measures the amount of uncer-

tainty (in bits, as we use base-2 logarithms) of the label
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at v. We follow Warfield et al. (2001) in regarding HðvÞ
as the anatomical variability at voxel v. The sum

H ¼
X

v

HðvÞ; ð3Þ

which we term total entropy, is used as an overall mea-

sure of variability remaining after spatial normalization

is applied. We wish to tune a registration algorithm so

that the total entropy is minimized.

2.2. ANIMAL: non-rigid registration of 3D images

To illustrate the utility of tuning using total entropy,
we use the ANIMAL algorithm (Collins and Evans,

1997) as a prototypical nonaffine registration method

for 3D images. This section briefly describes the algo-

rithm, with attention to the numerical parameters the

user must choose. The resulting transformation T is

applied after an initial affine transformation. For con-

venience, ANIMAL works with the displacements

DðxÞ � T ðxÞ � x rather than the transformation T itself.
The displacement function D estimated by ANIMAL is

parameterized as a freeform deformation, that is, the

displacement vectors are stored for vertices arranged on

a cubic 3D control mesh. At non-vertex points, the

displacement is obtained using a cubic Catmull-Rom

interpolating spline.

The transformation function is specified in a ‘‘world’’

coordinate system, which is defined independently of the
source and target image voxel grids. Each image is en-

dowed with the affine transformation function between

world coordinates and its own voxel grid. Lengths in the

world coordinate system, such as the control mesh ver-

tex spacing, are given in units of millimeters.

ANIMAL is structured as two nested loops. The

outer loop iterates over different control meshes in a

coarse-to-fine manner, while the inner loop optimizes D
on a fixed control mesh.

2.2.1. Outer loop

The first iteration of the outer loop employs a control

mesh with a vertex spacing of 8 mm and is referred to as

the 8 mm grid. The feature used in the match is a

smoothed version of the input image, computed by

convolution with an isotropic filter. The filter kernel is a
Gaussian function whose full width at half maximum

value (FWHM) is 8 mm. The next two iterations use a

control mesh with a vertex spacing of 4 mm (4 mm grid)

and 2 mm (2 mm grid). The source and target images are

again smoothed with an isotropic Gaussian kernel:

FWHM¼ 8 mm for the 4 mm grid and FWHM¼ 4 mm

for the 2 mm grid. Finally, a fourth iteration with a

vertex spacing of 2 mm is done using smoothed
(FWHM¼ 4 mm) gradient magnitude images.

The initial iterate for the inner loop is interpolated

from the result of the previous iteration of the outer
loop, except the first iteration which starts with zero

displacements.
2.2.2. Inner loop

Using v to index the control mesh vertices, let Dv be
the current estimated displacement at vertex v and dv be
the correction to Dv estimated at each iteration of the

inner loop. We use jjdvjj to denote the magnitude of

vector dv. The inner loop of ANIMAL is displayed in

Algorithm 1.

Algorithm 1. Inner loop of ANIMAL.

(1) Optimize
UðfdvgÞ ¼

P
vða1/vðDv þ dvÞ þ ð1� a1ÞwðjjdvjjÞÞ.

(2) Let Dv ¼ Dv þ a2dv.
(3) Let Dv be mean displacement of 26-neighbours of v.

Set Dv ¼ a3Dv þ ð1� a3ÞDv.

(4) Loop over Steps 1–3 a fixed number of times.

The objective function of Line 1 is composed of two

terms for each control mesh vertex. The first term, /v, is
an image similarity measure (typically normalized cross

correlation) evaluated on a small neighbourhood (a

sphere of radius 1.5 times the control mesh vertex sepa-

ration) around vertex v. The second term, w, is an in-

creasing function that approaches 1 at a finite value of

jjdvjj, thus limiting the size of the correction vector. The

parameter a1 2 ½0; 1� balances these two terms, and is

known as the similarity cost ratio, or simply ‘‘similarity’’.
Each term of U is a function of exactly one correction

vector dv so the optimization can be performed inde-

pendently for each v, resulting in a large number of small

optimization problems: each dv has three variables to

optimize, namely the displacement in the x-, y- and z-
directions. However, the optimization at control vertex v
is not performed (and dv is set to zero) if the source image

value at that location falls below 10% of the maximum
source image value. Such locations are likely to be

background and are skipped since there is nothing to be

gained by fitting background regions that are dominated

by noise. This heuristic is termed node thinning.
The update step of Line 2 employs a weight parameter

a2. The displacements are under-corrected if a2 < 1 or

over-corrected if a2 > 1.

The displacement vector Dv is smoothed in Line 3 by
taking a weighted sum of the current displacement esti-

mate with the mean displacement of the 26 neighbours in

a 3� 3� 3 control mesh neighbourhood centered on v.
The stiffness parameter a3 2 ½0; 1� balances the two terms.
2.2.2.1. Parameters. The three parameters a1, a2 and a3
need to be specified in order to complete the description

of ANIMAL. Collins and Evans empirically chose val-
ues of 0.5, 0.6 and 0.5, respectively (Collins and Evans,

1997). These values were obtained by trial-and-error



314 S. Robbins et al. / Medical Image Analysis 8 (2004) 311–323
using visual inspection of the displacements and re-

sampled images to judge registration quality.

2.3. Non-rigid registration of 2D cortical surfaces

In order to demonstrate the general utility of using

entropy for tuning, the method is applied to a second

registration algorithm. We choose a non-rigid registra-

tion method recently developed (Robbins, 2003) for

matching 2D cortical surfaces. In a pre-processing step,

each surface is mapped to the unit sphere. The regis-

tration then searches for a mapping T that transforms

the unit sphere to itself. The transformation T is speci-
fied using a triangulation of the source sphere. The value

of the transformation is stored for each vertex of the

triangulation and linearly interpolated at any non-vertex

point.

The registration is structured as two nested loops, in a

manner similar to ANIMAL. The outer loop iterates

over different control meshes in a coarse-to-fine manner,

while the inner loop optimizes T on a fixed control mesh.

2.3.1. Outer loop

The control mesh is obtained by repeated quadrisec-

tion 1 of an icosahedron. The first iteration of the outer

loop employs the mesh obtained by threefold quadri-

section of the regular icosahedron and thus has

43 � 20 ¼ 1280 faces. There are three more iterations of

the outer loop with control meshes containing 44 � 20,
45 � 20 and 46 � 20 faces, respectively.

The initial iterate for the inner loop is interpolated

from the result of the previous iteration of the outer

loop, except the first iteration which starts with the

identity transformation.

2.3.2. Inner loop

The inner loop for surface registration first performs
an optimization, starting at the current estimate T , for a
transformation U that optimally matches the two sur-

faces. Then U is smoothed to produce the subsequent

estimate of transformation T . In Algorithm 2, v is used

to index the control mesh vertices.

Algorithm 2. Inner loop of Surface Registration.

(1) Minimize
UðUÞ ¼

P
vð/vðUðvÞÞ þ awðjjUðvÞ � T ðvÞjjÞÞ.

(2) Let CðvÞ be centroid of fUðuÞ : u is neighbour of vg.
Set T ðvÞ ¼ UðvÞ þ wCðvÞ, projected to unit sphere.

(3) Loop over Steps 1–2 a fixed number of times.

The objective function in Line 1 is composed of two

terms for each control mesh vertex. The feature used in
1 Quadrisection is the operation that replaces each triangular face by

four triangles obtained by joining the midpoints of each edge of the

initial triangle.
the match is the geodesic distance transform from gyral

crown vertices, denoted the crown distance transform.

The first term, /v, measures the similarity of this feature

using correlation coefficient evaluated on a small

neighbourhood about vertex v. The size of this neigh-
bourhood is controlled by a parameter denoted the

neighbourhood search radius, rn. The second term, w, is
an increasing function of the change in the transfor-

mation at vertex v, jjUðvÞ � T ðvÞjj. This term is designed

to limit the search for UðvÞ to the hemisphere centred at

T ðvÞ in order to use a Euclidean 2D parameterization of

the search space. Therefore w is designed to approach

value 1 when UðvÞ moves a finite distance from T ðvÞ. A
parameter known as the search radius (rs) specifies the

size of the search region, which must be smaller than a

hemisphere. The penalty ratio parameter, a, balances

these two terms.

The smoothing operation in Line 2, which is carried

out in R3, is a simple weighted average of UðvÞ and the

centroid of its neighbourhood, where w is a user-speci-

fied smoothing weight.
Parameters. The user of this algorithm has four major

parameters to specify: the search radius rs, the neigh-

bourhood radius rn, the penalty ratio a, and the

smoothing weight w. The search radius and neighbour-

hood radius are dimensionless quantities that multiply a

length set by the coarseness of the control mesh. These

radii can therefore be set to a fixed value for all itera-

tions of the outer loop, as can the parameters a and w.
3. Results

Our approach is to spatially normalize a set of brains

(either 3D images or 2D surfaces) and compute the total

entropy of the result. We perform this measurement

with varying design choices of the registration algorithm
and choose the design that produces the lowest total

entropy. It might seem more straightforward to simply

register the brains using entropy itself, but this would be

computationally costly as discussed in Section 4.

3.1. Animal

To investigate design choices of ANIMAL, 40 T1-
weighted images are selected arbitrarily from the ICBM

data base (Mazziotta et al., 1995). An arbitrary image is

selected to be the template and the other 39 images are

segmented into white matter, gray matter, cerebral

spinal fluid, and background classes (Kollokian, 1996)

with non-brain voxels removed (Smith, 2002). Using the

first 10 images of the 39, the total entropy is computed

after registration using various choices for weight, stiff-
ness, and similarity. The total entropy allows us to

compare the impact of various design choices. Consider

first the outer loop.
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Fig. 1. Residual anatomical variability as measured by total entropy,

H , on a sample of 10 individuals after registration with ANIMAL. Plot

shows results after each of the four iterations of the outer loop

(weight¼ 1.0, stiffness¼ 0.9) along with the value for 9-parameter af-

fine normalization, for reference. Note that the variability is reduced

for each of the first three iterations of the outer loop, but increases on

the fourth iteration.
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3.1.1. Outer loop

The expectation is that each iteration of the outer
loop matches anatomy better than the previous itera-

tion, and so the total entropy should decrease after each

iteration. However, the results after the fourth iteration

(matching using image gradient data) show an increase

in total entropy. Fig. 1 shows representative results for

weight¼ 1, stiffness¼ 0.9 and using a range of similarity

values between 0.1 and 1. It is clear that the increase in

entropy in the fourth level of the hierarchy occurs for a
wide range of parameter values.

Close examination of the algorithm reveals that the

node thinning strategy is the culprit. For the three iter-

ations of the outer loop that use intensity data, this

heuristic retains nearly all the control mesh vertices lying

in brain tissue, while skipping control mesh vertices lo-

cated outside of the head. In the gradient data iteration,
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Fig. 2. A comparison of performance with two data similarity terms. Left: ent

term (using weight¼ 0.8, stiffness¼ 0.98) and the correlation coefficient dat

rameter affine normalization for reference. Right: entropy as a function of

weight¼ 1) and the correlation coefficient data term (using similarity¼ 0.3, w

of ANIMAL outer loop. Note that the variability is much less sensitive to t
however, only values on the scalp, ventricle, and su-

perficial cortex edges are above the threshold. Dis-

placements are therefore estimated on very few control

mesh vertices (about 1=3 of the number of vertices in the

previous outer iteration, which uses the same control
mesh), while all vertices participate in the smoothing of

the displacement vectors, Step 3 of Algorithm 1. The

effect is to smooth out the warp, degrading the data fit.

Omitting the node thinning heuristic for the 2 mm

grid gradient data fit brings the total entropy down

below the value obtained using the 2 mm grid intensity

fit. Omitting the heuristic for the intensity fits does not

change the results appreciably, so no node thinning is
done for any of the following.
3.1.2. Data term

In this section, we investigate changing the data

similarity term from normalized cross-correlation to

correlation coefficient.

The result of a number of tests using cross correlation

with different parameter values is that the lowest en-
tropy score is obtained using similarity¼ 0.98,

weight¼ 0.8, stiffness¼ 0.98. Similar testing using cor-

relation coefficient yields similarity¼ 0.3, weight¼ 1.0,

stiffness¼ 1.0 as optimum. The entropy score in each

case is approximately equal to 1.37� 106 bits. However,

the sensitivity to parameter variation about the optimal

set is markedly different. The two plots in Fig. 2 com-

pare the entropy scores as a function of similarity and of
stiffness. Both plots show a much shallower curve with

good performance (i.e., low entropy) over a broad range

of parameter values, when using correlation coefficient.

The performance of ANIMAL using correlation co-

efficient is less sensitive to the parameter values than

when cross correlation is used. This is desirable behav-

iour, so correlation coefficient is used for subsequent

experiments.
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eight¼ 1). For both plots, the data is taken at the 2 mm (intensity) level

he parameter value when using the correlation coefficient data term.
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3.1.3. Numerical parameters

Consider now the effect of the similarity cost ratio

parameter (a1) that controls the relative contributions of
the data term, /v, and the displacement update penalty

term, w, to the objective function. Fig. 2 shows that
when using correlation coefficient, a value in the range

0.2-0.6 provides good performance.

Fig. 2 also shows that the entropy becomes large for

similarity values near 1, even larger than obtained using

the initial affine transformation. This phenomenon is

observed using either of the two data terms. When the

similarity parameter is set to 1, the registration is driven

only by the data term /v with no control on the size of
the correction vector, jjdvjj. The transformations ob-

tained contain much larger displacements, are much less

smooth, and have more instances of folding (non-in-

vertibility) than those obtained with similarity cost ratio

<1. This confirms the importance of incorporating the

regularization into the algorithm.

The right plot of Fig. 2 indicates that very high values

of stiffness parameter (a3Þ are best, so stiffness¼ 1 is
used. The final numerical parameter of ANIMAL is the

weight value (a2), used in Line 2 of Algorithm 1. Values

in the range 0.8–1.4 (using similarity¼ 0.3, stiffness¼ 1)

show little change in entropy values. The weight is

therefore generally set to 1.

3.1.4. Other experiments

The experiments presented all use the same set of 10
test subjects, which raises the question as to whether the

parameters obtained are specific to the set of subjects

used, or are generally applicable. To answer this, a

second set of 10 subjects is registered using various

similarity values with weight¼ 1 and stiffness¼ 1. The

results (Fig. 3, left) show the same shallow curves, in-

dicating that the same similarity¼ 0.3 value can be used

for the new set.
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Fig. 3. Left: a second set of 10 subjects shows good performance in the sam

exhibited in Fig. 2. The parameter values are thus not specific to the particular

labels). Plot shows results after each of the four iterations of the outer loop

normalization, for reference. Note that similarity values in the range 0.2–0

labelling.
While total entropy of the tissue classification gives a

good measure of overall matching, it is also of interest to

know how well the spatial normalization succeeds in

aligning specific structures, such as a particular sulcus.

To quantify this, a human anatomical expert manually
identified 46 sulcal segments in the frontal lobes of the

40 ICBM images under study.

The total entropy of this set of labels (Fig. 3, right)

shows the same slowly changing behaviour as a function

of similarity cost ratio as obtained using the tissue labels

(Fig. 2). However, the fourth outer loop iteration, which

uses a gradient fit, produces a larger total entropy than

that of the third iteration (the 2 mm grid intensity fit).

3.1.5. Tuned results

Fig. 4 provides a visual illustration of the reduced

anatomical variability in the full set of 39 individuals,

obtained using the tuned version of ANIMAL (only the

first three steps of the outer loop are used). The vari-

ability in the depth of many sulci is reduced, indicating

that the sulci are better aligned.
The improved alignment is most readily apparent in

the large regions of homogeneous tissue such as the

white matter and ventricles. The coronal view (second

row in Fig. 4) clearly shows that the tuning is instru-

mental in aligning the white matter of many gyri. The

gray matter is also often well-matched and shows up

with low variability, such as in the circled regions of

Fig. 4.
Boundaries between tissue types show high variabil-

ity, some of which is due to misalignment and some of

which is due to limitations of the classifier used to

generate the segmentation. At a boundary, even a mis-

alignment on the order of the voxel size is enough to

change the labelling from an input image and hence the

entropy value. On the other hand, some of the apparent

variability is the result of imperfections in the tissue
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Fig. 4. Entropy maps of 39 individuals after spatial normalization using 9-parameter affine registration, ANIMAL with the default parameters (and

cross correlation data term), and ANIMAL using correlation coefficient data term and optimal parameter values (similarity¼ 0.3, weight¼ 1,

stiffness¼ 1). Voxels with more variability are brighter. Edges remain the most variable, both the white/gray interface and gray/CSF interface,

producing an ‘‘outline’’ effect where the gray matter shows as less variable, bounded between two interfaces of high variability (examples are circled

in the middle image of the third column). The third column shows a clear reduction in variability compared with the other two columns.
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classification. Voxels in boundary regions frequent

contain two (or more) tissue types, resulting in a signal

intensity between the intensities of the two tissue types.

Such partial volume voxels are more frequently mis-

classified. For example, the CSF is frequently misclas-

sified as gray matter, leading to high entropy values in
the CSF spaces of sulci.

Fig. 5 shows intensity-averaged images which become

sharper with tuning, a qualitative display of the im-

provement in aligning fine detail.

3.2. Surface registration

The design choices of the surface registration algo-
rithm can also be investigated using total entropy of a

segmentation, as was done for ANIMAL. In this case,

the label probabilities plðvÞ are computed at every vertex
v of a standard-space mesh. Eqs. (2) and (3) are used to

compute the entropy, with the sums taken over all ver-

tices rather than all voxels. The same template and ten

test subjects that are used for the 3D work are used

again to probe the choice of data term and to locate

optimal parameter values.
In order to generate the segmentation of each test

subject’s surface, an automated vertex classification is

required analogous to the tissue classification of voxels

used in 3D. The cortical surface mesh is presumed to lie

entirely on the boundary of two tissue types, specifically

the interface between white matter and gray matter for

the experiments presented here. Thus classification into

tissue types is not an option. Instead, each vertex is
classified as either gyral (lying on a gyral crown) or non-

gyral. The classification is achieved by simply thres-

holding the crown distance transform values at distance



Fig. 5. Intensity-averaged images of 39 individuals after spatial normalization using 9-parameter affine registration, ANIMAL with the default

parameters (and cross correlation data term), and ANIMAL using correlation coefficient data term and optimal parameter values (similarity¼ 0.3,

weight¼ 1, stiffness¼ 1). The fourth column shows the template image. Note the sharpness of the third column compared to the first two columns,

and the excellent matching of the third column with the template.
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10 mm. In other words, all vertices lying with 10 mm

(measured geodesically) of a gyral crown vertex are
classified as ‘‘gyral’’.

3.2.1. Outer loop

The test data is normalized using several choices for

the numerical parameters and the total entropy after

each of the four iterations of the outer loop is computed.

The left plot of Fig. 6 shows representative results using
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3.2.2. Numerical parameters

The trade-off between the data match and the amount

of displacement allowed during one step of the inner

loop is controlled by the penalty ratio, a. Fig. 6 shows

that the optimal value is a ¼ 0:05. Setting the value of a
 15000

 15500

 16000

 16500

 17000

 0  1  2  3  4  5  6  7  8  9  10

T
ot

al
 E

nt
ro

py
 (

bi
ts

)

Smoothing Weight)

tration, along with the initial (unregistered) value for comparison. The

e coarsest control mesh. Note the reduction of total entropy value with

moothing weight.



 15000

 15500

 16000

 16500

 17000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
ot

al
 E

nt
ro

py
 (

bi
ts

)

Search Radius

 15000

 15500

 16000

 16500

 17000

 1  2  3  4  5  6  7

T
ot

al
 E

nt
ro

py
 (

bi
ts

)

Neighbourhood Radius(a) (b)
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to zero eliminates the regularization and so, as is the

case in 3D image matching, the warping is found to be

less smooth.

The smoothing step of Algorithm 2 is controlled by
the weight parameter, w. Fig. 6 (right) plots the entropy

as a function of smoothing weight, showing weights near

w ¼ 1 provide the best performance. Note that large

values for w will asymptotically set the smoothed mesh

equal to the centroid value, CðvÞ=jjCðvÞjj, and the per-

formance does indeed level off in Fig. 6. For low values

of smoothing weight, the plot shows a sharp increase in

entropy. This happens because the lack of smoothing
allows more folding of the mesh, which produces poor

performance.

The other two major parameters for the algorithm are

the search radius and the neighbourhood radius. Fig. 7

illustrates the optimal values rs ¼ 0:5 and rn ¼ 2:8, re-
spectively. The behaviour obtained using too large or

too small radius can be explained by looking at the

details of the algorithm. For example, using a small
search radius prevents the optimization from finding a

good data match and results in a warping that is near

the initial transformation and thus produces high total
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Fig. 8. A second set of 10 subjects show similar behaviour with respect

to penalty ratio. Note that the optimal value of 0.05 is the same as in

Fig. 6 (left).
entropy. The poor performance produced by a large

search radius, on the other hand, is because triangles are

too easily able to reverse orientation. The range of ra-

dius values that give acceptable results, however, is not
obtained from such considerations, so the performance

measure is invaluable.

The experiments presented so far all use the same set

of 10 test subjects. The variability as a function of

penalty ratio is computed for a second set of 10 sub-

jects. The results in Fig. 8 show the same qualitative

behaviour and the same optimal value for the penalty

ratio.
3.2.3. Tuned results

Fig. 9 provides a visual illustration of the reduced

anatomical variability using a set of 151 ICBM subjects

registered using optimal parameter values rs ¼ 0:5,
rn ¼ 2:8, a ¼ 0:05 and w ¼ 1. The variability is reduced

in all areas of the cortex, indicating that the gyral pat-

terns are better aligned. The variability that remains is
concentrated on the edges of the gyral regions. As was

the case in 3D, some of this variability is the result of

imperfections in the vertex classification while some is

due to misalignment. At a boundary, even a misalign-

ment on the order of the spacing between control mesh

vertices is enough to change the labelling from an input

surface and hence the entropy value.

Fig. 10 shows images of the average crown distance
transform feature value (analogous to the average in-

tensity images of Fig. 5) which become sharper with

tuning, a qualitative display of the improvement in

aligning fine detail.
4. Discussion

Our use of entropy of the tissue labels raised a number

of questions when this work appeared in an earlier form

(Robbins et al., 2003). For example, why not work more

directly with image intensity values rather than the



Fig. 9. Entropy maps before and after surface registration of 151 subjects. Notice that the entropy (variability) is reduced in all areas of the cortex

after surface registration.

320 S. Robbins et al. / Medical Image Analysis 8 (2004) 311–323
segmentation. We believe the segmentation is a more

accurate indication of tissue type than is the image in-

tensity. A typical MR image will exhibit a range of in-

tensity values for a given tissue so while the matched pair

voxels may both be white matter, the intensity value
might well be different. This may give rise to a non-zero

variability score even if the tissues are perfectly matched.
Another criticism is that a labelling with only white

matter, gray matter, and CSF classes is crude and

therefore so is the measure of variability. This is true to

some extent, since in some cases gray matter belonging

to a particular sulcus of one subject is being matched to
gray matter contained in a neighbouring sulcus on a

second subject. That does not negate the value of the



Fig. 10. Average of crown distance transform feature data of 151 subjects shown before and after surface registration with the template data shown

for comparison. Note the appearance of smaller sulci after registration, and the agreement with the template data pattern.
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general method, however, as the variability of any label

data can be measured. The measure can be made more
sensitive by using a finer labelling, e.g., functional fields

or sulcal folds. The latter, in our experiments (see

Fig. 3), shows broadly the same optimal parameters as

those obtained using tissue labels. We choose to use

simple tissue labels for two reasons. First, the labels can

be obtained automatically using any one of a number of

methods (Kollokian, 1996; Dale et al., 1999; Joshi et al.,

1999). Second, the generated labels cover the brain, al-
lowing a variability measure that is sensitive to label

consistency across the entire brain.

Another point to consider in assessing competing

algorithms for spatial normalization is whether to have

one or several measures of variability. As we show, a

single measure enables optimization of the algorithm
parameters. Other authors (Warfield et al., 2001; Criv-

ello et al., 2002) generate three or more measures of
variability from tissue classification labels: the variabil-

ity of CSF, of white matter, of gray matter, etc. This

complicates the interpretation in the case that two nor-

malization methods under comparison each score best in

some measures but not for all measures; i.e., there may

be no clear-cut winner. Though multiple measures

would be useful in a situation in which performance

tradeoffs were being evaluated, e.g., a tradeoff between
residual variability and running time, it is not clear how

one should trade off accuracy in normalizing different

structures or tissue classes.

Finally, one may wonder whether it would be more

straightforward to consider the entropy measure as a

function of all N transformations and use total entropy
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as the objective function for registration. Minimizing

total entropy would thus co-register all N images si-

multaneously. Such an approach, which is feasible for

affine registration of small 2D images (Miller et al.,

2000), would be more direct than the method described
here in which the registration optimization is done for

each image (to the template) using fixed parameters se-

lected using the entropy measure. However, given that

the computational cost for (pairwise) 3D image regis-

tration using free-form deformations is already high, it

is expected that attempting to simultaneously co-register

a number of 3D images would not be feasible.
5. Conclusions

We have presented a strategy for evaluating the

quality of a spatial normalization procedure on real

data. The contribution of this paper is an objective

method to assess the impact of any design choice such as

the value of a numerical parameter or the choice of data
similarity measure. As noted in Section 2.1, assessing

variability using label consistency obviates the need for

a ground truth segmentation. The evaluation procedure

is fully automatic and can be applied to any spatial

normalization method.

Our experiments on tuning pointed out several

surprising features of the ANIMAL algorithm and

allowed us to make modifications to it that improved
its performance. We expect that our evaluation strat-

egy would provide similar insights into other normal-

ization methods, whether 3D or 2D. This entropy

measure can also be used to compare two competing

methods of normalization, once each has been suitably

tuned.
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