
A Complete and Effective Move Set
for Simplified Protein Folding

Neal Lesh
Mitsubishi Electric

Research Laboratories
201 Broadway

Cambridge, MA, 02139

lesh@merl.com

Michael Mitzenmacher
∗

Harvard University
Division of Engineering and

Applied Science

michaelm@eecs.harvard.edu

Sue Whitesides
†

McGill University School of
Computer Science

sue@cs.mcgill.ca

ABSTRACT
We present new lowest energy configurations for several large
benchmark problems for the two-dimensional hydrophobic-
hydrophilic model. We found these solutions with a generic
implementation of tabu search using an apparently novel set
of transformations that we call pull moves. Our experiments
show that our algorithm can find these best solutions in 3 to
14 hours, on average. Pull moves appear quite effective and
may also be useful for other local search algorithms for the
problem. Additionally, we prove that pull moves are com-
plete; that is, any pair of valid configurations are mutually
reachable through a sequence of pull moves. Our imple-
mentation was developed with the Human-Guided Search
(HuGS) middleware, which allows rapid development of in-
teractive optimization systems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems—Computations on discrete

structures

General Terms
Algorithms, Experimentation, Theory

∗Supported in part by NSF CAREER Grant CCR-9983832
and an Alfred P. Sloan Research Fellowship. This work was
done while visiting Mitsubishi Electric Research Laborato-
ries.
†Supported in part by NSERC and FCAR. This work was
done while visiting Mitsubishi Electric Research Laborato-
ries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RECOMB’03, April 10–13, 2003, Berlin, Germany.
Copyright 2003 ACM 1-58113-635-8/03/0004 ...$5.00.

Keywords
protein folding, tabu search, local moves

1. INTRODUCTION
The two-dimensional hydrophobic-hydrophilic model for

protein folding, or 2D HP model, was introduced by Dill [5,
15]. A problem consists of a sequence of amino acids, each
labeled as either hydrophobic (H) or hydrophilic (P). The
sequence must be placed on a two-dimensional grid without
overlapping, so that adjacent amino acids in the sequence
remain horizontally or vertically adjacent in the grid. The
goal is to minimize the energy, which in the simplest varia-
tion corresponds to maximizing the number of adjacent hy-
drophobic pairs. Although the model is extremely simple,
it captures the main features of the protein folding prob-
lem. This problem is NP-complete, and hence unlikely to
be solvable in polynomial time [3, 4, 10, 22]. Recent theo-
retical work has focused on approximation algorithms [1, 9,
18], although these have not proven helpful for finding min-
imum energy configurations. Many heuristic algorithms for
finding minimum energy configuration have been explored,
such as genetic algorithms in the seminal work of Unger and
Moult [21].

In this paper we demonstrate the effectiveness of pull

moves, a new local move set, with a tabu search algorithm
on the 2D HP problem. The pull moves we define recall
the classic de Gennes reptation model [6, 7] for polymer
motion.1 In our experiments, pull moves appear quite ef-
fective, they may be useful in conjunction with other local
search techniques that have been applied to the problem.
As a theoretical contribution, we prove that pull moves are
complete, i.e., any valid configuration can be reached from
any other valid configuration by a sequence of pull moves.

Tabu search is a heuristic approach for exploring a large
solution space. Our tabu algorithm is implemented using
middleware from the ongoing Human Guided Search (HuGS)
project [11]. Our implementation uses the generic tabu
search algorithm available in the HuGS middleware; the
only specialization necessary was to define the local move

1According to this model, which is widely used in poly-
mer physics, the motion of a mobile polymer chain mov-
ing through a confining environment is governed by slack
entering at the ends of the polymer and diffusing along its
length.

188

set. The HuGS middleware offers other significant advan-
tages, including frameworks for visualization and human in-
teraction that we have shown can improve the performance
of tabu search for other optimization problems [11]. In this
work, however, we focus on results obtained by the auto-
matic algorithm alone. The middleware code, including the
2D HP application, is freely available for research purposes;
we hope that the code may be useful for continued research
in the area. (Contact lesh@merl.com for the code.)

A highlight of our experimental results is that we have
found new lowest energy configurations for the three longest
benchmarks we found in the literature. For example, a se-
quence of length 85 used in [13, 16] was conjectured to have
a ground state energy, or minimal energy, of −52; we have
found a configuration with energy −53. We have similarly
found two new best lowest energy configurations for two se-
quences of length 100 used in [2, 19]. All of our results
can be found in with approximately 3 to 14 hours of CPU
time, without fine-tuning the parameters of our algorithm.
Besides showing these new lowest energy configurations, we
provide an experimental analysis of pull moves.

The remainder of the paper proceeds as follows. In Sec-
tion 2, we briefly review the 2D HP model. In Section 3, we
formally describe pull moves and give a proof of complete-
ness. Section 4 describes our implementation, focusing on
relevant aspects of the HuGS system and tabu search. In
our discussion of experiments in Section 5, we present our
new best solutions and an experimental evaluation of both
pull moves and our implementation.

2. THE 2D HP MODEL
In graph theoretic terms, a polymer in the 2D HP model is

represented combinatorially as a chain of n vertices embed-
ded as a simple (i.e., non-self-intersecting) path P in a unit
grid. Vertices that are adjacent in the chain must be placed
at adjacent points in the grid. Each vertex is assigned one
of two colors (H or P) according to the physical properties
of the corresponding amino acid in the polymer. A path
is assigned a score that is computed by summing weighted
numbers of various color adjacency occurrences. The score
models the energy of a configuration of the molecule. Here
we focus on the standard case where the only interactions
counted are between pairs of vertices that are adjacent in
the grid and both labeled H; each such pair decreases the
score by 1. Pairs of vertices that are adjacent in the chain
are not counted, since they must occur in all valid configu-
rations. The algorithms we present could also be applied to
other types of interactions.

More formally, we define the following terms. A location

is a node of the grid, corresponding to an (x, y) coordinate
pair. Locations are said to be adjacent if they are adjacent
either horizontally or vertically. Similarly, two locations are
diagonally adjacent if they lie one horizontal and one ver-
tical step from each other. A vertex is a node of the chain
(molecule), which has a label, either H or P. Vertices are
numbered consecutively from 1 to n along the chain. A valid

configuration of the chain lies along a non-self-intersecting
grid path P of locations such that adjacent vertices occupy
adjacent locations. In describing our move set and the algo-
rithm, we refer to the configuration at different time points:
P (t) defines the configuration at time t. We may drop the
reference to t when the meaning is clear. For j > i, the
subpath of P (t) from vertex i to vertex j, inclusive, is de-

noted Pi,j(t). The location occupied by vertex i at time t is
denoted by (xi(t), yi(t)). A location is free at time t if there
is no vertex there.

The energy of a configuration is obtained by counting the
number of adjacent pairs of vertices labelled H that are not
consecutively numbered, and multiplying by −1. Our goal
is to find the configuration with the lowest energy.

3. PULL MOVES
We are guided in our selection of possible moves by several

desired properties. We begin with some definitions. A move

is a function that takes as input a valid chain configuration
P (t) and produces a valid configuration P (t + 1). A set M

of moves is reversible if, for any move in M applied to a
configuration P (t) to obtain a configuration P (t + 1), there
is some move in M that can accept P (t′) = P (t+1) as input
and produce P (t′+1) = P (t). A set M of moves is complete

if, given any configurations P and P ′, there is a sequence
of moves in M that relocates P to a configuration that is
congruent (after translation and rotation) to P ′.

It is clearly beneficial that our move set be complete; oth-
erwise, otherwise an algorithm using these moves will not
be able to reach all configurations and thus might miss the
optimal solution. Reversibility is useful in proving complete-
ness, as we demonstrate below. Furthermore, it is also de-
sirable from the standpoint of building effective local search
algorithms (as well as for simplifying user interaction) if
the moves generally avoid drastic changes that destroy the
global structure of the current configuration. Hence local

moves, that is, moves that displace as few vertices as possi-
ble and do not displace any vertex very far from its current
location, are attractive.

We now describe pull moves, a set of moves that is com-
plete, reversible, and local. Of course, any larger move set
that contains pull moves will be complete, whether or not
the additional moves are local or reversible. Although we
describe pull moves on a 2D grid, it should be clear from
the discussion below that pull moves and the completeness
proof for pull moves can be extended to 3D and higher.

We describe pull moves in terms of how they might be
implemented. Consider a vertex i at time t in location
(xi(t), yi(t)). Suppose that a free location L is adjacent
to (xi+1(t), yi+1(t)) and diagonally adjacent to (xi(t), yi(t)).
Figure 1 shows examples that we use as a reference. The ver-
tices (xi(t), yi(t)), (xi+1(t), yi+1(t)), and the free location L

constitute three corners of a square; let the fourth corner be
the location C. For a pull move to occur, the location C

must either be free or must equal (xi−1(t), yi−1(t)).
When C = (xi−1(t), yi−1(t)), the entire local pull move

consists of moving vertex i to location L. When C is free,
first vertex i is moved to location L and vertex i − 1 is
moved to location C. Then, until a valid configuration is
reached, the following action is performed: starting with ver-
tex j = i−2 and down to vertex 1 set (xj(t+1), yj(t+1)) =
(xj+2(t), yj+2(t)). That is, vertices are pulled two spaces
up the chain until a valid configuration is reached. Notice
that this ensures that a valid configuration is maintained;
vertices i and i − 1 have moved to free locations, and the
lower indexed vertices are repeatedly pulled into vacated lo-
cations.

If the pull goes down to vertex 1, a valid configuration
is reached. If, however, we can stop the move before then
in a valid configuration, then we do so. This improves the

189

.

i

i+1 L

C

i+1 i

i-1

i

i+1
L

C

i-1 i-2

i

i-1

i+1

i-2

i

i-1

i+1

i-2
i

i+1 L

C

i-1

i-2

i-3i-4i-5i-5

i-3

i-4

a b c

d

i-6

i-7

i-6

i-7

Figure 1: (a) To begin a move, vertex i moves into
a free location L. (b) In the case where the fourth
corner C holds vertex i − 1, the move is complete.
(c) Otherwise, vertex i − 1 is moved to C. It is pos-
sible that this completes the move. (d) If this does
not complete the move, vertex i − 2 is moved to the
position previously held by vertex i, vertex i − 3 is
moved to the position previously held by vertex i−1,
and so on until a valid configuration is reached. Here
vertex i−3 is moved, but then the move is complete.

locality of the move, in that fewer vertices change position.
As we observe in our experimental section, in practice most
moves displace few vertices. Note that the chain is moved
over an even number of places (two), due to the parity issues
implicit in working on a unit grid.

We have described the move pulling vertices from vertex i

down to vertex 1. Similarly, we could consider a pull in the
other direction, starting from a free location L adjacent to
(xi−1(t), yi−1(t)) and diagonally adjacent to (xi(t), yi(t)).

Finally, for technical reasons to make our move space re-
versible, we must add some special pull moves at the end
vertices. Consider any path of two free locations, with one
of the locations adjacent to vertex n. We may move ver-
tices n − 1 and n to these two free locations, and then pull
the remaining vertices: starting with vertex j = n − 2 and
down to vertex 1, if the chain is not in a valid configuration,
set (xj(t + 1), yj(t + 1)) = (xj+2(t), yj+2(t)). We similarly
introduce such pull moves from vertex 1.

To help think about pull moves that affect the location
of three or more vertices, we suggest the following intuition.
The pull starts by creating a loop in the form of a square;
that is, four consecutive vertices are put in a square forma-
tion. The vertices are pulled along in one direction until
another square loop is reached. At this point, the existing
square loop is undone and the move ends.

Theorem 1. The class of pull moves described above is

reversible.

Proof. This follows by a case analysis. Moves that re-
locate just one or two vertices are clearly reversible, so we
focus on moves that re-locate three or more vertices.

Without loss of generality, suppose that vertices i to k

inclusive are moved, for k < i. In the case where k > 1,

the move has found an early stopping location. The intu-
ition above clarifies this case. To reverse the pull move, we
recreate the square by moving vertices k and k + 1 back to
their original positions and pull in the other direction. This
pull must go back to the square that was created by moving
vertices i and i − 1. It is impossible for this move to stop
before moving vertex i, since the square created by moving
vertices i and i−1 must be the first square the reverse move
reaches. Otherwise, the original move would have found a
square before vertex k.

More formally, in this case, at time t vertices j and j + 3
cannot be adjacent for k < j < i − 2, or the move would
have stopped before reaching k. To undo the move, note
that (xk−1(t), yk−1(t)), (xk(t), yk(t)), (xk+1(t), yk+1(t)), and
(xk+2(t), yk+2(t)) must have formed a square. We can there-
fore reverse the move by moving vertices k and k + 1 back
to their original positions and pull in the other direction.
Suppose, for a contradiction, that the last vertex to change
position in the reverse move is vertex m, with k < m < i−2.
Then vertices m + 1 and m− 2 were adjacent after the first
move; but this implies that vertices m+3 and m were adja-
cent in the original configuration at time t, a contradiction.
One can also show that the reverse move cannot stop at
vertices i − 2 or i − 1 by explicitly checking these cases.

The case for k = 1, in which the move pulls all the way
to the end of the chain, is entirely similar. Here we need
to make use of the fact that, in reversing the move, we can
move the end along any adjacent path of length 2.

To obtain the fact that these moves are complete, we show
that some sequence of moves can turn any valid path config-
uration into a horizontal line. Reversibility then implies that
any valid configuration can be turned into any other valid
configuration via a sequence of moves, since for any two con-
figuration P and P ′, we can move from P to the horizontal
line, and then from the horizontal line to P ′. Initially, both
ends of the chain may be buried deep inside the configu-
ration, surrounded, for example, by spirals. Nevertheless,
we give a simple argument that shows how pull moves can
straighten out one of the tails of the chain from any start-
ing position to yield a horizontal configuration of the tail,
which protrudes from the rest of the chain. We then take
advantage of this to straighten the rest of the chain.

Theorem 2. Any configuration P can be straightened to

form a horizontal line by some sequence of pull moves.

Proof. Let L(t) and R(t) denote, respectively, the left-
most and rightmost vertical grid lines containing at least one
edge of a chain configuration P (t). Possibly L(t) = R(t). If
P (t) contains no vertical edge, then the chain is already
straight and horizontal, so from now on, suppose that P (t)
contains a vertical edge. The exterior region at time t is the
set of locations that are neither on, nor between, L(t) and
R(t).

First consider the case that an endpoint of P (t) lies on
L(t) or R(t) or in the exterior region. For example, suppose
vertex 1 lies on L(t) or left of L(t). If 1 is left of L(t), it
is joined to a vertex on L(t) by a horizontal subchain. In
either case, the locations to the left of 1 are unoccupied, and
applying a sequence of pull moves that pull vertex 1 two
spaces to the left each time eventually yields a horizontal
line. The situation where 1 is on or right of R(t) is handled
similarly.

190

The only remaining case is that vertex 1 lies strictly be-
tween L(t) and R(t). Proceeding along the chain from vertex
1, let vertices i and i + 1 constitute the first edge lying on
L(t) or R(t). Suppose, without loss of generality, this edge
lies on L(t). Then the two locations immediately to the left
of vertices i and i + 1 are free. Hence we may move vertex i

to the left of vertex i + 1, applying the local pull move that
moves vertices i down to (possibly) vertex 1. In the new
configuration, the left boundary L(t + 1) is one unit to the
left of L(t), with vertices i and i− 1 lying on this boundary.
Hence this process can be repeated (moving vertex i − 1
to the left of i, and so on) until vertex 1 reaches the left
boundary, at which time the chain may be straightened as
described earlier.

We note that the pull moves above can be generalized,
so that instead of pulling the chain two spaces, the chain is
pulled any (even) number of spaces. This will be discussed
further in the full version of the paper.

4. HUGS AND TABU SEARCH
We developed and evaluated pull moves for 2D HP us-

ing the Human-Guided search (HuGS) toolkit for rapidly
developing interactive optimization systems. With HuGS,
users can manually modify solutions, backtrack to previous
solutions, and invoke, monitor, and halt a variety of search
algorithms. Pull moves, in fact, are a refinement of an op-
eration we initially designed for our user interface to help
users manually move multiple vertices at a time.

The HuGS toolkit includes general and human-guidable
search algorithms, the most powerful of which is GTabu,
a variation of tabu search. We have shown GTabu to be
effective on a variety of problems including jobshop schedul-
ing, edge-crossing minimization, and the selective traveling
salesman problem [11].

To apply GTabu to a problem, each problem instance
must be composed of a finite number of elements. For 2D
HP, the elements are the vertices in the given sequence. In
HuGS, each possible move is defined as operating on one
problem element and altering that element and possibly oth-
ers. For 2D HP, a move operates on vertex i if it begins
by moving i to a diagonally adjacent location, or if i is an
endpoint that is moved initially. Each move is defined as
altering all vertices that are moved to a new location on the
grid by the move.

The primary mechanism for guiding the search is to assign
mobilities to the problem elements. Each element is assigned
high, medium, or low mobility. The HuGS algorithms are
only allowed to apply moves that operate on a high mobility
element and that do not alter any low mobility elements.
Such moves are called legal. Thus, for example, in 2D HP, a
vertex with low mobility will remain in its current location
after any legal move. Mobilities can be assigned by the user
to guide, or constrain, the search. In our experiments we
use GTabu without guidance, i.e., all elements are initially
assigned a high mobility. However, mobilities are also used
by GTabu to control its own search.

In each iteration, GTabu evaluates all legal moves. It
then applies the move that yields the configuration with the
lowest energy, even if it increases the energy level. GTabu
then updates the mobilities in order to prevent cycling and
encourage exploration of new regions of the search space.
First, it sets all altered elements to medium for memorySize

iterations, where memorySize is one of GTabu’s three con-
trol parameters. Second, it randomly sets each element to
medium for one iteration with probability noise. Third,
GTabu encourages the algorithm to choose moves that alter
elements that have been altered less frequently in the past
based on a minDiv control parameter. Exact details are
given in [11].

An advantage of GTabu using mobilities to control its
search is that it can display the state of its search to the
user. All HuGS applications provide a color-coded visual-
ization of the current configuration with mobilities. This
same mechanism can be used to display GTabu’s mobili-
ties if the user opts to visualize the progress of the search
algorithm.

Our 2D HP application uses the same implementation of
GTabu as all the other HuGS applications. The generic
GTabu function calls domain-specific functions for compar-
ing configurations, producing moves, applying moves to con-
figurations to generate new configurations, identifying the
altered elements, and producing initial configurations. Ad-
ditionally, we developed a visualization component for in-
teractive optimization.

For an overview of Tabu, see [8]). For details of GTabu,
see [11]. For details of the HuGS toolkit, see [12].

5. EXPERIMENTAL RESULTS

5.1 New Best Results
To begin our discussion of experimental results, we pro-

vide new best lowest energy configurations for the three
longest benchmark sequences we found in previous papers.
Thus, one contribution of this work is demonstrating that
previously believed putative ground states are not ground
states. These results do not provide a direct comparison
to previous approaches, because we might be using signifi-
cantly more computational resources to find these solutions.
We show below, however, that these results can be obtained
with reasonable computation time, even with loosely-tuned
parameters. We also provide a direct comparison with re-
sults reported in [16] using a platform- and implementation-
independent metric on one of our benchmark problems.

A particularly compelling example is sequence S85 in Ta-
ble 1. In [13], it is stated that the optimal ground state has
energy −52; it appears that the authors constructed this
sequence themselves with an optimal solution in mind to
test their algorithm. The genetic algorithms of [13] found a
ground state of −47. In [16], an evolutionary Monte Carlo
algorithm found a ground state of −52, but only by specify-
ing constraints that significantly cut down the search space.
That is, the algorithm is modified to constrain specified sub-
sequences of hydrophobic residues (covering approximately
40% of the sequence) to take one of three forms, shown in
Figure 2. Their resulting solutions, such as the one shown
in Figure 2, are therefore highly structured.

Our algorithm finds several configurations with energy
−53, three of which are shown in Figure 3. Note that these
configurations do not have the secondary structures pos-
tulated in [16]; indeed, it seems quite unstructured. This
demonstrates the potential risk of searching only for struc-
tured configurations.

Table 1 summarizes the other new lowest energy config-
urations found by our algorithms. We found configurations
for S100a and S100b that with energies 1 point lower than

191

name sequence best published result best from
pull moves

S64 12H 1P 1H 1P 1H 2P 2H 2P 2H 2P −42 w/ constraints by [16]; −42
1H 2P 2H 2P 2H 2P 1H 2P 2H 2P −40 w/o constraints by [20];
2H 2P 1H 1P 1H 1P 12H

S85 4H 4P 12H 6P 12H 3P 12H 3P 12H −52 w/ constraints by [16]; −53
3P 1H 2P 2H 2P 2H 2P 1H 1P 1H −47 w/o constraints by [13]

S100a 6P 1H 1P 2H 5P 3H 1P 5H 1P 2H −47 by [2] −48
4P 2H 2P 2H 1P 5H 1P 10H 1P 2H 1P
7H 11P 7H 2P 1H 1P 3H 6P 1H 1P 2H

S100b 3P 2H 2P 4H 2P 3H 1P 2H 1P 2H 1P 4H −49 by [2] −50
8P 6H 2P 6H 9P 1H 1P 2H 1P 11H 2P
3H 1P 2H 1P 1H 2P 1H 1P 3H 6P 3H

Table 1: The four longest test sequences for 2D HP we found in the literature with previous published best
results and new best results.

Figure 2: The constrained structures used in [16] are extended sheets and directed helixes shown on the left.
These constraints yield a structured solution for S85 with energy=−52 shown on the right.

the previous best solution we could find in the literature.
As with S85, we found several configurations for the lowest
energy; two configurations for each benchmark are shown
in Figure 4. For S64, configurations with energy −42 had
been previously known and found using the substructure
constraints described above. To our knowledge, previously
the lowest energy configuration found algorithmically with-
out using constraints had energy −40 [20].

5.2 Computational assessment
Our goal in this section is to assess how much computa-

tional effort our algorithm required to produce these new
best solutions, and to compare our approach to previous
approaches.

It is difficult to perform a computational assessment on
problems with a small number of (non-trivial) benchmarks
both because of the small sample size and because it is dif-
ficult to avoid fine-tuning parameters for the target bench-
marks. We address these problems by repeatedly running
GTabu with randomly chosen parameters. The parameters
noise and minDiv are chosen uniformly at random from the
range 0 to 0.5 (the full range for these parameters is 0 to 1).
The parameter memorySize is chosen uniformly at random
from the range 5 to 10; a typical value in the tabu search
literature for the corresponding parameter is 7.

We ran GTabu with these conditions 100 times for each
problem with different random seeds. Each run is 1 hour
on a 1000 MHz Alpha processor, using the Java code from
the HuGS toolkit. GTabu found a configuration with energy
−53 in 26% for S85 of these runs. It found the lowest known
energy configuration for S64 in 97% of these runs, for S100a
in 2% of these runs, and for S100b in 1% of these runs.

We found we could improve the performance of GTabu
with a simple and well known restart strategy. We repeat-
edly ran GTabu for between 1,000 and 10,000 iterations
(chosen randomly and uniformly from that range). Each
time we restarted GTabu, we restarted it from the best con-
figuration found so far with new control parameters selected
from the ranges described above.

The results of GTabu with restart, based on 200 runs, are
shown in Table 2. These results provide a rough estimate of
how long it would take our algorithm to find the best con-
figurations known. For example, suppose we restarted our
algorithm every hour (which itself is a tunable parameter).
If our experiments indicated that 50% of the runs found the
best configuration in 1 hour, then we would expect to find
the best solution within two hours, on average. Thus, from
the data above, we would expect to find a configuration with
the lowest known energy in less than 1/2 an hour for S64,
less than 2.5 hours for S85, less than 8.5 hours for S100a,

192

Figure 3: Three −53 solutions for S85

Figure 4: Two −48 solutions for S100a (on left) and two −50 solutions for S100b (on right)

and less than 13.5 hours for S100b. We note that we also
ran our algorithm for 60 10-hour runs on each of the large
benchmarks and did not find lower energy configurations.
Because our algorithm is coded in Java and is currently not
highly optimized, we expect these running times could be
improved by straightforward engineering by a factor of 2 to
5. Table 2 also indicates the average number of iterations of
GTabu search that were used to obtain these configurations.

Finally, although it is difficult to compare algorithms di-
rectly, we attempt a comparison with the computational re-
sults presented in [16]. There, the authors report the num-
ber of valid configurations evaluated to reach the best con-
figuration found by five independent runs of various algo-
rithms (without the of use of additional constraints). For
S64, one run found −39 after evaluating about 560,000 con-
figurations. To provide a fair comparison, we multiply their
reported number by five to find that their total computa-
tional effort required examining roughly 2.8 million configu-
rations. We ran GTabu, with restarts, until it had computed
2.5 million configurations. On average, roughly 50 moves
are considered per iteration, and so 2.5 million moves are
considered but only 50,000 moves are taken. Based on 175
runs, GTabu finds a configuration with energy −42 53% of
the time, and with energy −39 or better about 84% of the
time.

5.3 Move Statistics
In other experiments, we examined the behavior of pull

moves and gathered statistics on their behavior.
Our intuition was that an important aspect of pull moves,

in terms of their effectiveness on these problems, is that they
make relatively small adjustments to a given configuration.
We modified the algorithm to keep track of the number
of vertices that were altered by the moves considered and
adopted by the tabu search. (As described above, in each
iteration, GTabu considers all legal moves and adopts the
one leading to the lowest energy state.) We ran GTabu for
10 minutes on each problem. The results confirmed that pull
moves alter only a small number of vertices. As shown in
Table 3, the average number of vertices relocated in moves
considered by GTabu ranged from 4.0 to 5.1 on the four
benchmarks. Interestingly, the move actually adopted by
GTabu consistently altered, on average, fewer vertices.

One opportunity suggested by these results is that we
could improve the efficiency of our algorithm by comput-
ing the energy of the configuration that results from apply-
ing a move by computing the change based on vertices that
moved.

To further explore our hypothesis about why pull moves
are effective, we defined a set of moves called long pull moves.
Long pull moves are identical to pull moves, except that they
always continue to pull vertices until the end of the sequence
is reached, rather than stop as soon as a valid configuration

193

name results after 30 min. results after 60 min number of
iterations
after 60 min

S64 100.0% = −42 100.0% = −42 2,412,258
S85 26.5% = −53; 65.5% = −52; 8.0% = −51 40.0% = −53; 56.0% = −52; 4.0% = −51 1,610,600
S100a 7.5% = −48; 58.5% = −47; 34% ≤ −46 12.0% = −48; 73.0% = −47; 15.0% = −46 1,144,800
S100b 3.5% = −50; 25.0% = −49; 71.5% ≤ −48; 7.5% = −50; 32.0% = −49; 60.5% ≤ −48; 1,137,800

Table 2: Results of 200 runs of GTabu with restarts using loosely tuned parameters.

problem Pulls Long Pulls Pivots
name adopted considered adopted considered adopted considered
S64 3.7 4.0 12.1 36.1 21.3 19.1
S85 3.4 4.4 14.0 47.4 14.0 23.0
S100a 3.0 5.1 14.7 54.9 15.1 26.5
S100b 2.7 4.9 15.2 55.3 20.6 25.8

Table 3: Number of vertices relocated by the moves adopted and considered by GTabu using pull moves, long
pull moves, and rotation moves. The numbers are averages from a single 10 minute run on each problem.

is reached. Table 3 shows that, as expected, long pull moves
alter a much larger number of vertices, on average, than
pull moves. Also, using long pulls dramatically degrades
the performance of GTabu. Based on 50 1-hour runs, the
lowest energy found by GTabu with long pulls was −38 on
S64 in 2% of the runs, −51 on S85 in 2% of the runs, −45
on S100a in 4% of the runs, and −44 on S100b in 20% of
the runs.

Finally, we compared pull moves to pivot moves [17, 14,
20]. Our implementation of pivot moves essentially swivels
a portion of the sequence (from one vertex to an end point)
90 degrees in one direction or another. While pivot moves
alter the grid-location of a large number of vertices, they
preserve the relative relationship between most pairs of ver-
tices that are adjacent in the sequence. However, GTabu
also performed poorly with pivot moves. Based on 50 1-
hour runs, the lowest energy found by GTabu with pivot
moves was −40 on S64 in 4% of the runs, −49 on S85 in
10% of the runs. −47 on S100a in 4% of the runs, and −48
on S100b in 4% of the runs.

6. CONCLUSIONS AND FUTURE WORK
The pull moves we have developed in this paper appear

quite natural: move one amino acid a small distance and
then pull the chain along, stopping as soon as possible. It
would be interesting to determine if there is any relation
between the theoretically designed pull moves and protein
folding in the real world.

We would like to expand our prototype to handle more
challenging protein folding problems. A relatively simple
extension would be to the 3-dimensional HP model. Func-
tioning in more complex geometries appears more difficult
but may be possible. A reasonable question is whether pull
moves and tabu search can be extended to 3-dimensional
space without an underlying unit grid.

Although our algorithm was built using the HuGS toolkit,
which is designed to allow human interaction with the op-
timization algorithms, we have not yet tested whether hu-
man guidance can lead to low energy configurations more
quickly than the automatic algorithm alone. It would be
especially interesting to see if domain-experts could provide

better guidance to our algorithm than people who only un-
derstand the algorithms well. Furthermore, other advan-
tages of interactive optimization include allowing people to
incorporate real-world knowledge they have that is not part
of the objective function given to the computer and to help
people better understand the problems and solutions they
are working with. We hope to use HuGS to explore these
benefits for interactive protein folding in future research.

Finally, our results show that previously used benchmarks
for this problem were not well understood, in that our al-
gorithm found new lowest energy configurations. Further
research on the 2D HP model would benefit from a larger
and richer set of benchmarks, preferably with known opti-
mal solutions. Because hardware speeds and algorithms may
improve rapidly, any benchmark should also include some
significantly longer strings to challenge the next generation
of algorithms and hardware applied to the problem.

7. REFERENCES

[1] R. Agarwala, S. Batzoglou, V. Dancik, S. Decatur, M.
Farach, S. Hannenhali, S. Muthukrishnan, and S.
Skiena. Local rules for protein folding on a triangular
lattice and generalized hydrophobicity in the HP
model. Journal of Computational Biology,
4(2):275-296, 1997.

[2] U. Bastolla, H. Frauenkron, E. Gerstner, P.
Grassberger, and W. Nadler. Testing a new Monte
Carlo algorithm for protein folding. Proteins:

Structure, Function, and Genetics, 32:52-66, 1998.

[3] B. Berger and T. Leighton. Protein folding in the
hydrophilic-hydrophobic (HP) model is NP-complete.
Journal of Computational Biology, 5(1):27-40, 1998.

[4] P. Crescenzi, D. Goldman, C. Papadimitriou, A.
Piccolboni, and M. Yannakakis. On the complexity of
protein folding. Journal of Computational Biology,
5(3):409-422, 1998.

[5] K. A. Dill. Theory for the folding and stability of
globular proteins. Biochemistry, 24:1501, 1985.

[6] P. G. de Gennes. Journal of Chemical Physics vol. 55,
p. 572, 1971.

194

[7] P. G. de Gennes. Scaling Concepts in Polymer

Physics. Cornell University Press, 1979.

[8] F. Glover and M. Laguna. 1997. Tabu Search. Kluwer
Academic Publishers.

[9] W. E. Hart and S. Istrail. Fast protein folding in the
hydrophobic-hydrophilic model within three-eights of
optimal. Journal of Computational Biology,
3(1):53-96, 1996.

[10] W. E. Hart and S. Istrail. Robust proofs of
NP-hardness for protein folding: general lattices and
energy potentials. Journal of Computational Biology,
4(1):1-22, 1997.

[11] G. Klau, N. Lesh, J. Marks, and M. Mitzenmacher.
Human-Guided Tabu Search. In Proceedings of the

18th National Conference on Artificial Intelligence,
pp. 41-47, 2002.

[12] G. Klau, N. Lesh, J. Marks, M. Mitzenmacher, and
G.T. Schafer. The HuGS platform: A toolkit for
interactive optimization. In Proceedings of Advanced

Visual Interfaces, pp. 324-330, 2002.

[13] R. König and T. Dandekar. Improving genetic
algorithms for protein folding simulations by
systematic crossover. BioSystems, 50:17-25, 1999.

[14] M. Lal. Monte Carlo simulations of chain molecules.
Mol. Phy., 17:57-64, 1969.

[15] K. F. Lau and K. A. Dill. A lattice statistical
mechanics model of the conformational and sequence
spaces of proteins. Macromolecules, 22:3986, 1989.

[16] F. Liang and W. H. Wong. Evolutionary Monte Carlo
for protein folding simulations. Journal of Chemical

Physics, 115(7):3374-3380, 2001.

[17] N. Madras and A. D. Sokal. The pivot algorithm: a
highly efficient Monte Carlo method for the
self-avoiding walk. Journal of Statistical Physics,
50:109-186, 1988.

[18] A. Newman. A new algorithm for protein folding in
the HP model. In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms,
pages 876-884, 2002.

[19] R. Ramakrishnan, B. Ramachandran, and J. F.
Pekney. A dynamic Monte Carlo algorithm for
exploration of dense conformational space in
heteropolymers. Journal of Chemical Physics,
106:2418, 1997.

[20] L. Toma and S. Toma. Contact interactions method:
A new algorithm for protein folding simulations.
Protein Science, 5:147-153, 1996.

[21] R. Unger and J. Moult. Genetic algorithms for protein
folding simulations. Journal of Molecular Biology,
231:75, 1993.

[22] R. Unger and J. Moult. Finding the lowest free energy
conformation of a protein is an NP-hard problem:
Proof and Implications. Bull. Math. Biology,
55(6):1183-1198, 1993.

195

