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Abstract. We obtain faster algorithms for problems such as r-
dimensional matching, r-set packing, graph packing, and graph edge
packing when the size k of the solution is considered a parameter. We
first establish a general framework for finding and exploiting small prob-
lem kernels (of size polynomial in k). Previously such a kernel was known
only for triangle packing. This technique lets us combine, in a new and
sophisticated way, Alon, Yuster and Zwick’s color-coding technique with
dynamic programming on the structure of the kernel to obtain faster
fixed-parameter algorithms for these problems. Our algorithms run in
time O(n + 2O(k)), an improvement over previous algorithms for some
of these problems running in time O(n + kO(k)). The flexibility of our
approach allows tuning of algorithms to obtain smaller constants in the
exponent.

1 Introduction

In this paper we demonstrate a general method for solving parameterized packing
and matching problems by first finding a problem kernel, and then showing how
color-coding (the use of nice families of hash functions to color a substructure
with distinct colors) and dynamic programming on subsets of colors can be used
to create fixed-parameter algorithms. The problems we consider include param-
eterized versions of r-dimensional matching (a generalization of 3-dimensional
matching, from Karp’s original list of NP-complete problems [Kar72]), r-set
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packing (on Karp’s list in its unrestricted form, and W [1]-complete [ADP80]
in its unrestricted parameterized form, hence unlikely to be fixed-parameter
tractable), graph packing (a generalization of subgraph isomorphism known to
be NP-complete [Coo71]), and graph edge packing (shown to be NP-complete by
Holyer [Hol81]). Further generalizations are considered at the end of the paper.

Previous efforts in finding fixed-parameter algorithms for these problems
(asking if a given input has a solution of size at least k) have resulted in running
times involving a factor of kO(k), namely O((5.7k)k ·n) for 3-dimensional match-
ing [CFJK01] and 3-set packing [JZC04]. Earlier work did not use the technique
of kernelization (finding a subproblem of size f(k) within which any solution of
size k must lie) except for work on the problem of packing triangles [FHR+04];
that result uses the technique of crown decomposition [Fel03,CFJ04], a technique
that is not used in this paper (concurrent with this paper are further uses of this
technique for packing triangles [MPS04] and stars [PS04]). Using our techniques,
we improve all these results by replacing the kO(k) factor with a factor of 2O(k).
Kernelization also allows us to make the dependence on k additive, that is, we
can achieve a running time of O(n+2O(k)) (the hidden constant in the exponent
is linearly dependent on r).

The techniques we introduce make use of the fact that our goal is to obtain
at least k disjoint objects, each represented as a tuple of values. We first form a
maximal set of disjoint objects and then use this set both as a way to bound the
number of values outside the set (forming the kernel) and as a tool in the color-
coding dynamic programming (forming the algorithm). We are able to reduce
the size of the constants inherent in the choice of hash functions in the original
formulation of color-coding [AYZ95] by applying the coloring to our kernels only,
and using smaller families of hash functions with weaker properties. Although
both color-coding and dynamic programming across subsets appear in other
work [Mar04,Woe03,CFJ04], our technique breaks new ground by refining these
ideas in their joint use.

After introducing notation common to all the problems in Section 2, we first
present the kernelization algorithm for r-Dimensional Matching (Section 3),
followed by the fixed-parameter algorithm in Section 4. Next, we consider the
modifications necessary to solve the other problems in Section 5. The paper
concludes with a discussion of tuning the hash functions (Section 6) and further
generalization of our techniques (Section 7).

2 Definitions

Each of the problems considered in this paper requires the determination of k
or more disjoint structures within the given input: in r-dimensional matching,
we find k points so that no coordinates are repeated; in r-set packing, we find
k disjoint sets; in graph packing, we find k vertex-disjoint subgraphs isomorphic
to input H; and in graph edge packing, we find k edge-disjoint subgraphs iso-
morphic to input H. To unify the approach taken to the problems, we view each
structure as an r-tuple (where in the last two cases r = |V (H)| and r = |E(H)|,
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respectively); the problems differ in the ways the r-tuples must be disjoint and,
in the case of graph packing, on additional constraints put on the structures.

To define the r-tuples, we consider a collection A1, . . . , Ar of pair-wise disjoint
sets and define A to be A1 × · · · × Ar. We call the elements of each Ai values;
given an r-tuple T ∈ A, we denote as val(T ) the set of values of T , and for
any S ⊆ A, we define val(S) =

⋃
T∈S val(T ). Depending on the problem, we

will either wish to ensure that tuples chosen have disjoint sets of values or, for
r-dimensional matching, that tuples “disagree” at a particular coordinate.

We introduce further notation to handle the discussion of r-tuples. Given a
tuple T ∈ A, the ith coordinate of T , denoted T (i), is the value of T from set
Ai. Two r-tuples T and T ′ are linked if they agree in some coordinate i, that is,
when there exists some i in {1, . . . , r} such that T (i) = T ′(i). We denote this fact
as T ∼ T ′. If T ∼ T ′ does not hold then we say that T and T ′ are independent,
denoted T �∼ T ′.

We can now define our example problem, r-Dimensional Matching, in
which the input is a set of r-tuples and the goal is to find at least k indepen-
dent tuples. The precise descriptions of the other problems will be deferred to
Section 5.
r-Dimensional Matching
Instance: A set S ⊆ A = A1×· · ·×Ar for some collection A1, . . . , Ar of pair-wise
disjoint sets.
Parameter: A non-negative integer k.
Question: Is there a matching P for S of size at least k, that is, is there a subset
P of S where for any T, T ′ ∈ P, T �∼ T ′ and |P| ≥ k?

In forming a kernel, we will be able to reduce the number of tuples that
contain a particular value or set of values. To describe a set of tuples in which
some values are specified and others may range freely, we will need an augmented
version A∗

i of each Ai so that A∗
i = Ai ∪{∗}, i ∈ {1 . . . , r}; the stars will be used

to denote positions at which values are unrestricted. We will refer to special
tuples, patterns, drawn from the set A∗ = A∗

1 × · · · × A∗
r . Associated with each

pattern will be a corresponding set of tuples. More formally, given R ∈ A∗, we
set A[R] = A′

1 × · · · ×A′
r where

A′
i =

{
Ai if R(i) = ∗
{R(i)} otherwise

As we will typically wish to consider the subset of S extracted using the pattern,
we further define, for any S ⊆ A, the set S[R] = A[R] ∩ S. We finally define
free(R) as the number of ∗’s in R, namely the number of unrestricted positions
in the pattern; free(R) will be called the freedom of R.

3 A Kernel for r-Dimensional Matching

Recall that a kernel is a subproblem of size depending only on k within which
any solution of size k must lie. The idea behind our kernelization technique is
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that if a large number of tuples match a particular pattern, we can remove some
of them (this is known as a reduction rule). For each pattern R, the threshold
size for the set of retained tuples is a function f(free(R), k), which we define
later.

The following gives a general family of reduction rules for the r-Dimensional
Matching problem with input SI and parameter k. For each application of the
function Reduce, if the size of the subset SI [R] of S extracted using the pattern
R is greater than the threshold, then |S| is reduced by removing enough elements
of SI [R] to match the size of the function f .

Function Reduce(SI , R) where R ∈ A∗ and 1 ≤ free(R) ≤ r − 1.
Input: A set SI ⊆ A and a pattern R ∈ A∗.
Output: A set SO ⊆ SI .
SO ← SI .
If |SI [R]| > f(free(R), k)
then remove all but f(free(R), k) tuples of SI [R] from SO.
output SO.

To form the kernel, we apply the function Reduce on all patterns R ∈ A∗ in
order of increasing freedom, as in the following routine.

Function Fully-Reduce(SI)
Input: A set SI ⊆ A.
Output: A set SO ⊆ SI .
SO ← SI .
For i = 1, . . . , r − 1 do

for all R ∈ A∗ where free(R) = i, SO ← Reduce(SO, R).
output SO.

The next three lemmas prove that the above function computes a kernel; the
two lemmas after that show how a slight modification can be used to bound the
size of that kernel.

We say that a set S ⊆ A is (�, k)-reduced if for any R ∈ A∗ such that
free(R) = �, Reduce(S, R) = S (where 1 ≤ � ≤ r−1). For notational convenience
we define any set S ⊆ A to be 0-reduced; we can assume the input has no
repeated tuples. As a direct consequence of the definition, if a set S is (�, k)-
reduced, then for each pattern R such that free(R) = �, |S[R]| ≤ f(�, k).

We now show that our reduction function does not change a yes-instance of r-
Dimensional Matching into a no-instance, nor vice versa. Given a set S ⊆ A
and a non-negative integer k, we denote as µ(S, k) the set of all matchings for
S of size at least k. If µ(S, k) is non-empty, S is a yes-instance. The following
lemma shows that upon applying the reduction rule to an (� − 1, k)-reduced
set using a pattern R of freedom �, yes-instances will remain yes-instances. The
proof requires the precise definition of f(�, k), which is that f(0, k) = 1 and
f(�, k) = � ·(k−1) ·f(�−1, k)+1 for all � > 0. It is easy to see that f(�, k) ≤ �!k�.
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Lemma 1. For any �, 1 ≤ � ≤ r − 1, the following holds: If S ⊆ A, S is
(�− 1, k)-reduced, and S ′ =Reduce(S, R) for some R such that free(R) = �, then
µ(S, k) �= ∅ if and only if µ(S ′, k) �= ∅.
Proof. Since S ′ ⊆ S, µ(S ′, k) �= ∅ implies µ(S, k) �= ∅. Supposing now that
µ(S, k) �= ∅, we choose P ∈ µ(S, k) where |P| = k and prove that µ(S ′, k) �= ∅.
In essence, we need to show that either P ∈ µ(S ′, k) or that we can form a
matching P ′ ∈ µ(S ′, k) using some of the tuples in P.

Denote by Ŝ the set S ′[R], that is, the tuples retained when Reduce is applied
to S using pattern R to form S ′. Clearly if either P contained no tuple in S[R]
or the single tuple T ∈ P ∩ S[R] was selected to be in Ŝ, then P ∈ µ(S ′, k),
completing the proof in these two cases.

In the case where T ∈ P and T �∈ Ŝ, we show that there is a tuple T ′ ∈ Ŝ
that can replace T to form a new matching, formalized in the claim below.
Claim: There exists a T ′ ∈ Ŝ that is independent from each T̃ ∈ P − {T}.
Proof: We first show that for any i ∈ {j | R(j) = ∗} and any T̃ ∈ P − {T} there
exist at most f(� − 1, k) r-tuples in Ŝ that agree with T̃ at position i. The set
of r-tuples in S[R] that agree with T̃ at position i is exactly the set of tuples
in S[R′] where R′ is obtained from R by replacing the ∗ in position i by T̃ (i).
We use the size of this set to bound the size of the set of tuples in Ŝ that agree
with T̃ at position i. As S is (� − 1, k)-reduced and free(R′) = � − 1, we know
that |S[R′]| ≤ f(�− 1, k). Since in the special case where � = 1, we directly have
|S[R′]| ≤ 1 = f(0, k), the bound of f(�− 1, k) holds for any T̃ and any i.

To complete the proof of the claim, we determine the number of elements
of Ŝ that can be linked with any T̃ and show that at least one member of Ŝ is
not linked with any in the set P − {T}. Using the statement proved above, as
|{j | R(j) = ∗}| = � and |P−{T}| = k−1, at most �·(k−1)·f(�−1, k) = f(�, k)−1
elements of Ŝ will be linked with elements of P − {T}. Since |Ŝ| = f(�, k), this
implies the existence of some T ′ ∈ Ŝ with the required property.
The claim above implies that P ′ = (P − {T}) ∪ {T ′} is a matching of S of size
k. As T ′ ∈ Ŝ, P ′ is also a matching of S ′, and thus µ(S ′, k) �= ∅. �

Lemma 2 can be proved by induction on the number of iterations; proofs for
this and subsequent lemmas are omitted due to space limitations.

Lemma 2. If S ⊆ A and S ′ is the output of routine Fully-Reduce(S), then (a)
S ′ is an (r − 1, k)-reduced set and (b) µ(S, k) �= ∅ if and only if µ(S ′, k) �= ∅.

We now use a maximal matching in conjunction with the function Fully-
Reduce defined above to bound the size of the kernel. The following lemma is a
direct consequence of the definition of an (r − 1, k)-reduced set.

Lemma 3. For any (r − 1, k)-reduced set S ⊆ A, any value x ∈ val(A) is
contained in at most f(r − 1, k) r-tuples of S.
We now observe that if we have a maximal matching in a set S of r-tuples, we
can bound the size of the set as a function of r, the size of the matching, and
f(r− 1, k), as each r-tuple in the set must be linked with at least one r-tuple in
the matching, and the number of such links is bounded by f(r− 1, k) per value.
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Lemma 4. If S ⊆ A is an (r−1, k)-reduced set containing a maximal matching
M of size at most m, then S contains no more than r ·m · f(r − 1, k) r-tuples.

Lemma 4 suggests a kernel for the r-Dimensional Matching problem in
the function that follows; Lemma 5 shows the correctness of the procedure and
size of the kernel.

Function Kernel-Construct(S)
Input: A set S ⊆ A.
Output: A set K ⊆ S.
S ′ ←Fully-Reduce(S).
Find a maximal matching M of S ′.
If |M| ≥ k then output any subset K ofM of size k and stop;
otherwise output K ← S ′.

Lemma 5. If S ⊆ A and K is the output of the function Kernel-Construct(S),
then (a) |K| ∈ O(kr) and (b) µ(S, k) �= ∅ if and only if µ(K, k) �= ∅.

Note that function Kernel-Construct can be computed in time O(n) for fixed r,
simply by looking at each tuple in turn and incrementing the counter associated
with each of the 2r − 1 patterns derived from it, deleting the tuple if any such
counter overflows its threshold.

4 An FPT Algorithm for r-Dimensional Matching

While it suffices to restrict attention to the kernel K when seeking a matching
of size k, exhaustive search of K does not lead to a fast algorithm. Hence we
propose a novel alternative, which combines the colour coding technique of Alon
et al. [AYZ95] with the use of a maximal matchingM⊆ K.

In its original form, the colour-coding technique of Alon et al. makes use of
a family of hash functions F = {f : U → X} with the property that for any
S ⊆ U with |S| ≤ |X|, there is an f ∈ F that is 1− 1 on X. The original idea,
in the context of our problem, would be to look for a matching of size k whose
values receive distinct colours under some f ∈ F . In our case, the universe U
is the set of values appearing in tuples in the kernel of the problem, which has
size O(kr), and the set of colours X has size rk. The family of hash functions
F used by Alon et al. is of size 2O(rk) in our case. In Section 6 we will consider
modifications towards improving this approach.

To modify colour-coding for our purposes, we first compute a maximal match-
ing M in the kernel. By the maximality of M, each r-tuple in a matching P
of size k in the kernel must contain a value in M. Hence there may be at most
(r − 1)k values of P that do not belong to M. We will seek a proper colouring
of these values. Thus we choose a universe U = val(K) − val(M), and we set
|X| = (r − 1)k.

Our dynamic programming problem space has four dimensions. Two of them
are the choice of hash function φ, and a subset W of values ofM that might be
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used by P. For each choice of these, there are two more dimensions associated
with a possible subset P ′ of P: the set of values Z in W it uses, and the set of
colours C that φ assigns its values not in W . More formally, for M a maximal
matching of S ⊆ A, then for any W ⊆ val(M), φ ∈ F , Z ⊆W , and C ⊆ X such
that |Z|+ |C| ≤ r · |P| and |Z|+ |C| ≡ 0 mod r we define

Bφ,W (Z, C) =






1 if there exists a matching P ′ ⊆ S where |P ′| = |Z|+|C|
r ,

val(P ′) ∩ val(M) = Z, and φ(val(P ′)− Z) = C,
0 otherwise

where for convenience we use the notation φ(S) for a set S to be ∪v∈Sφ(v). In
order to solve the problem, our goal is then to use dynamic programming to
determine Bφ,W (Z, C) for each W , for each φ in the family F , and for each Z
and C such that |Z|+ |C| ≤ rk.

To count the number of dynamic programming problems thus defined, we
note that there are at most 2(r−1)k choices for W , C, and Z, and 2O(rk) choices
of φ ∈ F . Thus there are 2O(rk) problems in total.

To formulate the recurrence for our dynamic programming problem, we note
that Bφ,W (Z, C) = 1 for |Z| + |C| = 0, and observe that Bφ,W (Z, C) = 1, for
|Z| + |C| > 0, holds precisely when there exists an r-tuple formed of a subset
Z ′ of Z and a subset C ′ of C such that there is a matching of size one smaller
using Z − Z ′ and C − C ′. For the ease of exposition, we define the function
Pφ : 2W × 2X → {0, 1} (computable in O(kr) time) as

Pφ(Z ′, C ′) =






1 if there exists an r-tuple T ∈ S where Z ′ ⊆ val(T )
and φ(val(T )− Z ′) = C ′,

0 otherwise

Observing that each r-tuple must contain at least one element in Z, we can then
calculate Bφ,W (Z, C) by dynamic programming as follows:

Bφ,W (Z, C) =






1 if there exist Z ′ ⊆ Z, C ′ ⊆ C with |Z ′| ≥ 1, |Z ′|+ |C ′| = r,
Pφ(Z ′, C ′) = 1 and Bφ,W (Z − Z ′, C − C ′) = 1

0 otherwise

One table entry can be computed in O(kr) time. The number of choices for Z ′

and C ′ can be bounded by
(|Z|+|C|

r

)
≤

(
rk
r

)
= O(kr). The algorithm below is

a summary of the above description, where F is a set of hash functions from
val(S)− val(M) to X.

In merging the following routine with the kernel construction, the maximal
matching needs to be found only once. To find a maximal matching in the kernel,
we use a greedy algorithm running in time O(kr). The running time is dominated
by kernel construction (taking time O(n)) plus dynamic programming (taking
time 2O(rk)). This yields the following theorem.

Theorem 1. The problem r-Dimensional Matching can be solved in time
O(n + 2O(rk)).
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Routine Color-Coding-Matching(S)
Input: A set S ⊆ A.
Output: A member of the set {Yes, No}.
Find a maximal matching M of S.
If |M| ≥ k then output “Yes” and stop.
set V = val(S)− val(M).
For each W ⊆ val(M), do

for each coloring φ : V → X where φ ∈ F
for each Z ⊆W by increasing |Z|

for each C ⊆ X by increasing |C|, where |Z|+ |C| ≡ 0 mod r
compute Bφ,W (Z, C).
if Bφ,W (Z, C) = 1 and |Z|+ |C| = rk, output “Yes” and stop.

Output “No”.

5 Kernels and FPT Algorithms for the Other Problems

We can now define other problems addressable by our technique. To avoid intro-
ducing new notation, each of them will be defined in terms of sets of tuples, even
though order within a tuple is not important in some cases. For r-Set Packing,
the input r-tuples are subsets of elements from a base set A, each of size at most
r, and the goal is to find at least k r-tuples, none of which share elements.
r-Set Packing
Instance: A collection C of sets drawn from a set A, each of size of at most r.
Parameter: A non-negative integer k.
Question: Does C contain at least k mutually disjoint sets, that is, for S ⊆ A =
Ar, is there a subset P of S where for any T, T ′ ∈ P, val(T ) ∩ val(T ′) = ∅ and
|P| ≥ k?

In order to define the graph problems, we define G[S] to be the subgraph of
G induced on the vertex set S ⊆ V (G), namely the graph G′ = (V (G′), E(G′)),
where V (G′) = S and E(G′) = {(u, v) | u, v ∈ S, (u, v) ∈ E(G)}. Moreover, we
use H ⊆ G to denote that H is a (not necessarily induced) subgraph of G.
Graph Packing
Instance: Two graphs G = (V (G), E(G)) and H = (V (H), E(H)).
Parameter: A non-negative integer k.
Question: Does G contain at least k vertex-disjoint subgraphs each isomorphic
to H, that is, for S ⊆ A = V (G)|V (H)|, is there a subset P of S where for
any T, T ′ ∈ P, val(T ) ∩ val(T ′) = ∅, there is a subgraph G′ ⊆ G[val(T )] that is
isomorphic to H for any T ∈ P, and |P| ≥ k?
Graph Edge-Packing
Instance: Two graphs G = (V (G), E(G)) and H = (V (H), E(H)) such that H
has no isolated vertices.
Parameter: A non-negative integer k.
Question: Does G contain at least k edge-disjoint subgraphs each isomorphic to
H, that is, for S ⊆ A = E(G)|E(H)|, is there a subset P of S where for any
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T, T ′ ∈ P, val(T ) ∩ val(T ′) = ∅, there is a subgraph G′ that is isomorphic to H
such that each edge of G′ is in T for any T ∈ P, and |P| ≥ k?

To obtain kernels for the above problems, we can adapt the ideas developed
for r-Dimensional Matching. As in that case, we first apply a reduction rule
that limits the number of tuples containing a particular value or set of values,
and then use a maximal set of disjoint objects to bound the size of the kernel.
In the remainder of this section we detail the differences among the solutions for
the various problems.

For each of these problems, the tuples in question are drawn from the same
base set (A, V (G), or E(G)) respectively, resulting in the tuples being sets of
size at most r, as position within a tuple is no longer important. Since in the last
two problems there is an additional constraint that the set of vertices or edges
forms a graph isomorphic to H, the sets are forced to be of size exactly r; for
r-Set Packing there is no such constraint, allowing smaller sets.

For all three problems, since the Ai’s are no longer disjoint, the potential for
conflicts increases. As a consequence, we define a new function g for use in the
function Reduce: g(0, k) = 1 and g(�, k) = r ·� ·(k−1) ·g(�−1, k)+1 for all � > 0,
for r = |V (H)| and r = |E(H)| in the latter two problems. By replacing f by g
in the definition of the function Reduce, we obtain a new function SetReduce and
the notion of a set being (�, k)-set-reduced, and by replacing Reduce by SetRe-
duce in the function Fully-Reduce, we can obtain a new function Fully-SetReduce.
Instead of finding a maximal matching, we find a maximal set of disjoint sets or
a maximal set of disjoint sets of vertices or edges yielding subgraphs isomorphic
to H in the function Kernel-Construct. It then remains to prove analogues of
Lemmas 1 through 5; sketches of the changes are given below.

Each of the lemmas can be modified by replacing f by g, Reduce by SetReduce,
and Fully-Reduce by Fully-SetReduce, with the analogue of Lemma 5 yielding a
kernel of size O(kr). The need for g instead of f is evident in the proof of the
claim in the analogue of Lemma 1. Here we count the number of r-tuples T̂ in
Ŝ such that val(T̂ ) ∩ val(T̃ ) �= ∅. Since the r-tuples are in fact sets, positions
have no meaning, and hence the number of such r-tuples will be the number
of positions per tuple (that is, r) multiplied by the number of free positions
(� in any R′ formed by fixing one more index) multiplied by the number of
tuples in P −{T } (that is, k− 1) multiplied by g(�− 1, k). In total this gives us
r · � · (k − 1) · g(�− 1, k) = g(�, k)− 1 elements of Ŝ with nonempty intersection
with values in elements of P−{T }, as needed to show that there is a T ′ with the
required property. We then have the following lemma, analogous to Lemma 5:

Lemma 6. For the problems r-Set Packing, Graph Packing, and Graph
Edge-Packing, if S ⊆ A and K is the output of the function Kernel-
Construct(S), then (a) |K| ∈ O(rrkr) and (b) S has a set of at least k objects (dis-
joint sets, vertex-disjoint subgraphs isomorphic to H, or edge-disjoint subgraphs
isomorphic to H, respectively) if and only if K has a set of at least k such objects.

To obtain algorithms for these problems, we adapt the ideas developed for
r-Dimensional Matching; as in that case we form a kernel, find a maximal set
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of disjoint sets or graphs, and then use dynamic programming and color-coding
to find a solution of size k, if one exists.

Our algorithms differ from that for r-Dimensional Matching only in the
definitions of Bφ,W (Z, C) and Pφ. In particular, the conditions for Bφ,W (Z, C) to
be 1 are as follows: there exists a set P ⊆ S of disjoint sets where |P| ≥ |Z|+|C|

r ,
val(P) ∩ val(M) = Z, and φ(val(P) − Z) = C (r-Set Packing); there exists
a set P ⊆ S such that |P| ≥ |Z|+|C|

r , for any T, T ′ ∈ P, val(T ) ∩ val(T ′) = ∅,
for each T ∈ P there is a subgraph G′ ⊆ G[val(T )] that is isomorphic to T ,
val(P) ∩ val(M) = Z, and φ(val(P) − Z) = C (Graph Packing); and there
exists a set P ⊆ S such that |P| ≥ |Z|+|C|

r , for any T, T ′ ∈ P, val(T )∩val(T ′) = ∅,
for each T ∈ P there is a subgraph G′ that is isomorphic to H such that each
edge of G′ is in T , val(P)∩ val(M) = Z, and φ(val(P)−Z) = C (Graph Edge-
Packing). In addition, we alter the conditions for Pφ to be 1 in a similar manner,
though no alteration is needed for r-Set Packing: for Graph Packing we add
the condition that there is a subgraph G′ ⊆ G[val(T )] that is isomorphic to H
and for Graph Edge-Packing we add the condition that there is a subgraph
G′ that is isomorphic to H such that each edge of G′ is in T .

The analysis of the algorithms depends on Lemma 6 and, in the graph prob-
lems the need to find all copies of H in G, resulting in the theorem below.

Theorem 2. The problems r-Set Packing, Graph Packing, and Graph
Edge-Packing can solved in time O(n + 2O(rk)), O(n|V (H)| + 2O(rk)), and
O(n|E(H)| + 2O(rk)), respectively.

6 Choosing Hash Functions

To construct the family of hash functions F = {f : U → X} with the prop-
erty that for any subset S of U with |S| = |X|, there is an f ∈ F that is
1-1 on S, Alon et al. used results from the theory of perfect hash functions to-
gether with derandomization of small sample spaces that support almost �-wise
independent random variables. They were able to construct a family F with
|F| = 2O(|X|) log |U |, and this is what we used in Section 4. However, they made
no attempt to optimize the constant hidden in the O-notation, since they were
assuming |X| fixed and |U | equal to the size of the input.

In our case (and in any practical implementation of the algorithms of Alon
et al.), it would be preferable to lower the constant in the exponent as much
as possible. We have one advantage: kernelization means that |U | in our case is
O(kr), not O(n), and so we are less concerned about dependence on |U | (note
that |S| = (r − 1)k in our case). Two other optimizations are applicable both
to our situation and that of Alon et al. First, we can allow more colours, i.e.
|X| = α(r − 1)k for some constant α. This will increase the number of dynamic
programming problems, since the number of choices for C (in determining the
number of Bφ,W (Z, C)) grows from 2(r−1)k to

(
α(r−1)k
(r−1)k

)
≤ (eα)(r−1)k. But this

may be offset by the reduction in the size of the family of hash functions, since
allowing more colours makes it easier to find a perfect hash function. Second,
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for some of the work on the theory of perfect hash functions used by Alon et al.,
it is important that the hash functions be computable in O(1) time, whereas in
our application, we can allow time polynomial in k.

As an example of applying such optimization, we can make use of the work of
Slot and van Emde Boas [SvEB85]. They give a scheme based on the pioneering
work of Fredman, Komlós, and Szemerédi [FKS82] that in our case results in a
family F of size 24|S|+5 log |S|+3|U |, where |X| = 6|S|, and it takes O(k) time to
compute the value of a hash function. We will not explore this line of improve-
ment further beyond underlining that there is a tradeoff between the power of
the family of hash functions we use and the size, and we have some latitude in
choosing families with weaker properties.

Another possibility, also discussed by Alon et al., is to replace the determin-
istic search for a hash function (in a family where the explicit construction is
complicated) by a random choice of colouring. A random 2|S|-colouring of U is
likely to be 1-1 on a subset S with failure probability that is exponentially small
in |S|. However, this means that a “no” answer has a small probability of error,
since it could be due to the failure to find a perfect hash function.

7 Conclusions

Our results can be extended to handle problems such as packing or edge-packing
graphs from a set of supplied graphs, and more generally to disjoint structures.
To express all problems in a general framework, we view tuples as directed hy-
pergraph edges, sets of tuples as hypergraphs, and inputs as triples of a sequence
of hypergraphs, a matching-size parameter �, and a supplied hypergraph G.

To define the necessary terms, we consider the projection of tuples and an
associated notion of independence. Given a tuple T = (v1, . . . , vr′) where r′ ≤ r
and a subset of indices I = (i1, . . . , i�) ⊆ {1, . . . , r}, we define the projection of
T on I as T [I] = (vi1 , . . . , vm) where m = max{1, . . . , r′} ∩ {i1, . . . , i�}. To form
a set of related tuples, given an hypergraph S and a subset I ⊆ {1, . . . , r} such
that |I| = �, we denote as w(S, I) = {T ′ ∈ V � | there exists a tuple T ∈ S
such that T [I] = T ′}. We then say that a subsequence C′ ⊆ C is an �-matching

if for any pair of hypergraphs S,S ′ ∈ C′, for all subsets of indices I ⊆ {1, . . . , r}
of size �, w(S, I) �= w(S ′, I).

Our problem is then one of finding a subsequence C′ of the hypergraphs form-
ing an �-matching of size at least k such that the elements of each hypergraph
in C′ can be restricted to a smaller structure isomorphic to G. This problem
subsumes all problems in this paper, and can be solved in time O(n + 2O(�k)).
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