
Discrete Applied Mathematics 103 (2000) 55–87

Three-dimensional orthogonal graph drawing algorithms(

Peter Eadesa ;1, Antonios Symvonisb;∗;2, Sue Whitesidesc; 3

aDepartment of Computer Science and Software Engineering, University of Newcastle, Newcastle,

Australia
bBasser Department of Computer Science, University of Sydney, Sydney, Australia

cSchool of Computer Science, McGill University, Montreal, Canada

Received 29 January 1998; revised 10 November 1999; accepted 13 December 1999

Abstract

We use basic results from graph theory to design algorithms for constructing three-dimensional,

intersection-free orthogonal grid drawings of n vertex graphs of maximum degree 6. The best

previous result generated a drawing bounded by an O(
√
n) × O(

√
n) × O(

√
n) box, with each

edge route containing up to 16 bends. Our algorithms initiate the study of bend=bounding box

trade-o� issues for three-dimensional grid drawings and produce drawings with the following

characteristics:

1. at most 7 bends per edge route, bounded by an O(
√
n)× O(

√
n)× O(

√
n) box;

2. at most 6 bends per edge route, bounded by an O(
√
n)× O(

√
n)× O(n) box;

3. at most 5 bends per edge route, bounded by an O(
√
n)× O(n)× O(n) box;

4. at most 3 bends per edge route, bounded by an O(n)× O(n)× O(n) box; and
5. for maximum degree 4 graphs, at most 3 bends per edge route, bounded by and O(n) ×
O(n)× O(1) box. ? 2000 Elsevier Science B.V. All rights reserved.

Keywords: Graph drawing; Graph theory; Layout; Graph colouring

1. Introduction

The three-dimensional orthogonal grid consists of grid points whose coordinates are

all integers, together with the axis-parallel grid lines determined by these points. A

three-dimensional orthogonal grid drawing of a graph G (possibly having loops and

(Partially written while the third author was visiting the University of Newcastle. Many of the results of

this paper were announced in [11].
∗ Corresponding author.
E-mail address: symvonis@cs.su.oz.au (A. Symvonis).
1 Supported in part by an Australian Research Council grant.
2 Supported in part by an Australian Research Council grant.
3 Supported in part by Quebec FCAR grant.

0166-218X/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.

PII: S0166 -218X(00)00172 -4

56 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Fig. 1. An orthogonal grid drawing of a graph on 6 vertices.

multiple edges) places the vertices of G at grid points and routes the edges of G

along sequences of contiguous segments contained in the grid lines. Edge routes are

allowed to contain bends but are not allowed to cross or to overlap, that is, no internal

point of one edge route may lie in any other edge route. Throughout this paper, grid

refers to the three-dimensional orthogonal grid, and grid drawing refers to the type of

three-dimensional orthogonal grid drawing just described. The +X port of a grid point

(x; y; z) is the closed undirected unit line segment joining (x; y; z) to (x+1; y; z); ports

for the other 5 signed grid directions are de�ned analogously. Note that because each

grid point has exactly six ports, any graph that admits a grid drawing necessarily has

maximum vertex degree at most 6.

Throughout this paper, we measure extent in each dimension in terms of the number

of grid points rather than in terms of length. For example, Fig. 1 shows a grid drawing

of K6, the clique on 6 vertices. This particular drawing lies in a 3×4×3 bounding box.
The length of an edge route is counted in “units” of length. The edge route joining the

two extremal vertices in the Z-direction lies along the top, back and bottom faces of

the box, contains 2 bends and has length 6. The edge route joining the two extremal

vertices in the X -direction also contains 2 bends, but passes through the interior of the

box, and has length 4.

While the graph drawing literature has extensively investigated two-dimensional grid

drawings of graphs (see [8]), three-dimensional grid drawing has been little stud-

ied. Our research is motivated in part by recent interest in exploring the utility of

three-dimensional drawings of graphs for visualisation purposes. It should also be noted

that since VLSI technology now permits the stacking of many layers, this work may

be relevant to that application area as well. Furthermore, future microfabrication tech-

nologies other than VLSI may be potential areas of application for these results.

This paper o�ers several algorithms for obtaining grid drawings of graphs of max-

imum degree 6, possibly having loops and multiple edges. All algorithms use basic

graph theory to preprocess the input graph by colouring its edges; then the algorithms

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 57

route edges according to their colour class. One of our algorithms produces drawings

with a small number of bends per edge, while the other algorithms produce more com-

pact drawings, but at the cost of an increased number of bends per edge. This raises

the issue of a trade-o� between bends and bounding box size. Our algorithmic results

establish upper bounds for the number of bends per route on the one hand, and for

various measures of the bounding box on the other hand.

Since there are many measures of bounding box compactness (for example, volume,

maximum dimension, sum of dimensions, length of long diagonal) we simply give

the dimensions, measured in terms of grid points, of the bounding box of the draw-

ings produced by our algorithms, we do not de�ne compactness precisely. Note that

volume is generally not the most appropriate measure of bounding box suitability for

three-dimensional drawings for visualisation purposes.

Our �rst algorithm takes as input any n vertex graph of maximum degree at most 6

and produces a grid drawing bounded by a box of dimensions O(
√
n)×O(√n)×O(√n).

Each edge route has length O(
√
n) and contains at most 7 bends. This improves the best

previously known result [10] of 16 bends maximum per edge route, described further

below. Kolmogorov and Barzdin ([19]; see also [10]) showed that no algorithm can

produce asymptotically more compact drawings; hence we refer to our �rst algorithm

as the compact-drawing algorithm.

By successive re�nements of the compact-drawing algorithm, we explore trade-o�s

between the number of bends of each edge route and the size of the bounding box of

the drawing. More speci�cally, we provide drawings for n-vertex graphs of maximum

degree at most 6 with the following characteristics:

1. at most 6 bends per edge route, using a bounding box of dimensions O(
√
n) ×

O(
√
n)× O(n);

2. at most 5 bends per edge route, using a bounding box of dimensions O(
√
n) ×

O(n)× O(n); and
3. at most 4 bends per edge route, using a bounding box of dimensions O(n)×O(n)×
O(n).

Further, using a di�erent and very simple technique, we show that each graph of max-

imum degree 6 has a three-dimensional orthogonal drawing with at most 3 bends per

edge, bounded by a box of dimensions O(n)×O(n)×O(n). Recently, a complex con-
structions of Papakostas and Tollis [22] has been used to produce orthogonal drawings

with at most 3 bends per edge, bounded by a box of O(n3) volume, but with an

improved constant.

Also, for graphs of maximum degree at most 4 we produce an algorithm which draws

the graph in a box of dimensions O(n)× O(n)× O(1) with 3 bends per edge route.
Note that the results of this paper are limited to graphs of maximum degree 6. This

is because we use a point to represent a vertex. Rectangles and other geometric objects

may be used to draw graphs of maximum degree greater than six in three dimensions;

see, for example, [6,22].

For two dimensions, there are many methods for producing compact orthogonal

grid drawings with few bends for graphs of maximum degree 4. Several methods for

58 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

obtaining drawings of planar and nonplanar graphs in area O(n) × O(n) with O(1)

bends per edge are available; see, for example, [3–5,13,18,21,27,29,31–33].

Not surprisingly, problems that are seemingly computationally intractable arise in

both two-dimensional and three-dimensional grid drawing. For example, in two dimen-

sions, minimising the number of bends is NP-complete [15], but can be solved in

polynomial time for any �xed planar embedding [30]. Eades et al. [10] have shown

how to generalise various two-dimensional NP-completeness results such as minimising

the number of bends, the volume of the drawing, and the maximum individual edge

route length (see [2,9,14,15,20]) to three dimensions.

Reference [10] provides an algorithm, based on the technique of Kolmogorov and

Barzdin [19], for obtaining three-dimensional orthogonal grid drawings. The algorithm

takes as input an n vertex graph of maximum degree at most 6 and produces a drawing

in which each edge route has atmost 16 bends and has O(
√
n) length. The drawing lies

in an O(
√
n) × O(√n) × O(√n) bounding box. Thus the compact-drawing algorithm

we present here reduces the number of bends per edge route to a maximum of 7 while

still achieving the bounding box dimensions and maximum edge route length obtained

by [10].

Biedl (private communication) has shown that drawings with similar bounds on the

edge length and bounding box dimensions can be obtained by using the techniques of

three-dimensional VLSI layout from the early 1980’s [24–26].

Wood [34] studied orthogonal graph drawings in higher dimensions. He showed

how to draw a graph of maximum degree d¿ 5 with at most 5 bends per edge route,

bounded by a dd=2e-hypercube of side length O(n). Wood also showed that K7, the
clique on 7 vertices, has a grid drawing with at most 2 bends per edge route; we had

originally conjectured that K7 requires at least 3 bends on some edge route. The ques-

tion of whether every graph of maximum degree 6 has an orthogonal grid drawing

with at most 2 bends per edge remains open.

The rest of this paper is organised as follows. Section 2 gives the simple graph-

theoretic methods that our algorithms use to preprocess the input graph. Section 3

presents and analyses the compact-drawing algorithm, while Section 4 presents suc-

cessive re�nements of the compact-drawing algorithm that illustrate bend=bounding

box trade-o�s. Section 5 presents and analyses the 3-bends algorithm. Section 6 de-

scribes the 3-bend drawing algorithm for graphs of maximum degree 4. We conclude in

Section 7.

2. Preliminaries

This section gives the preprocessing step that all of our drawing algorithms employ.

First we recall a de�nition from graph theory.

De�nition 1. A cycle cover of a directed graph is a spanning subgraph that consists

of directed cycles.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 59

The following theorem combines a classical theorem of graph theory due to Petersen

[23] stating that “a regular multigraph of degree 2k has k edge-disjoint factors” (see

also, [1, p. 227]) with result of Schrijver [28]. We present the proof in algorithmic

form for completeness, since we use this algorithm throughout the paper.

Theorem 1. Suppose that G = (V; E) is an undirected graph of maximum degree �

and let d= [�=2]. Then there is a directed graph G′ = (V; E′) such that
• each vertex of G′ has indegree d and outdegree d;
• G is a subgraph of the underlying undirected graph of G′; and
• the edges of G′ can be partitioned into d edge disjoint cycle covers.
Furthermore; for an n-vertex graph G; the directed graph G′ and its d cycle covers
can be computed in O(�2n) time.

Proof. Pair the odd degree vertices of G and add a new edge for each pair. This can

be done since the number of vertices of odd degree in any graph is even. After the

addition of these new edges, each vertex has even degree at most 2d. Add k self-

loops (v; v) to each v ∈ V of degree 2(d − k) to create a regular multigraph (with
self-loops and multiple edges allowed) of degree 2d. This graph is Eulerian, since

each of its vertices has even degree. Direct its edges by following an Eulerian circuit

to obtain a directed graph G′ with indegree d and outdegree d at each vertex. Clearly
these operations can be performed in O(�n) time.

From G′, construct an undirected bipartite graph G′ = (Vout ∪ Vin ; E′′) with Vout =
{vout | v ∈ V}; Vin = {vin | v ∈ V}, and E′′ = {(uout ; vin) | (u; v) ∈ E′}. Note that G′′ is
d-regular and bipartite. By Hall’s Theorem [16,12], G′′ contains a perfect matching;
colour the edges of the matching with colour-1 and remove them. The remaining graph

is bipartite and (d−1)-regular, so it again contains a perfect matching. Colour its edges
with colour-2 and remove them. Continuing in a similar fashion, colour the remaining

edges of G′′ by using d− 2 additional colours.
Now colour each directed edge (u; v) of G′ with the colour given to (uout ; vin) of

G′′. This gives each vertex of G′ exactly one incoming and one outgoing edge of each
of the d colours. Hence the edges of G′ are partitioned into d coloured subgraphs
C1; C2; : : : ; Cd each of which is a cycle cover for G

′.
Since a maximum matching in an arbitrary bipartite graph with n vertices and

maximum degree � can be computed in O(�2n) [28], the computation of the

d = [�=2] cycle covers can be done in O(�3n) time. A simple observation can fur-

ther reduce the time complexity to O(�2n). The procedure outlined above applies

the maximum matching algorithm for arbitrary bipartite graphs and e�ectively results

to a �-edge colouring of the bipartite graph. In fact, a �-edge colouring is all we

need and it can be directly computed for a �-regular bipartite graph in O(�2n) time

[28].

Fig. 2 shows the process of partitioning the edges of a 4-regular undirected graph

into two cycle covers, Cred and Cgreen.

60 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Fig. 2. A decomposition of a 4-regular undirected graph into 2 cycle covers.

Preprocessing algorithm. We call the algorithm described in the proof of Theorem 1

the preprocessing algorithm. We concentrate on graphs of maximum degree 6 since

they are the only graphs that admit a three-dimensional orthogonal grid drawing. To

summarize, the preprocessing algorithm takes as input an undirected graph G of maxi-

mum degree 6 and computes as output a directed graph G′ whose underlying undirected
graph contains G; the preprocessing algorithm also computes a partition of the edges

of G′ into three edge disjoint cycle covers, denoted Cred ; Cgreen and Cblue. For the case
where the maximum degree of G is 4, the edges of G′ are partitioned into two edge
disjoint cycle covers, denoted Cred and Cgreen. Since �66, the algorithm runs in O(n)

time.

All of our drawing algorithms specify edge routes for the cycle covers of G′.
To obtain a drawing for G, the algorithms route the undirected edges of G according

to the routes for the corresponding directed edges of G′. Loops and edges of G′ that
do not arise from loops and edges of G are simply not drawn.

Remark. In the following sections, it is helpful to keep in mind that each vertex of

G′ has exactly one incoming and exactly one outgoing edge (not distinct in the case

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 61

of loops) of each colour. This has an important consequence for multiple edges. Two

vertices a and b in G′ may have several edges between them. However, for any speci�c
colour c, there are at most two edges of colour c between a and b; if there are two

such edges, then they are directed oppositely.

3. The compact-drawing algorithm

This section describes our compact-drawing algorithm, which takes as input a graph

G=(V; E) of maximum degree at most 6 and produces as output a grid drawing for G

having at most 7 bends per edge, maximum edge length 16d√ne − 10; and bounding
box dimensions (3d√ne+ 2)× 5d√ne × (8d√ne − 3); where |V |= n.
The compact-drawing algorithm

1. Run the preprocessing algorithm of Section 2 to construct the directed graph G′

and to obtain a partition of its edges into three edge disjoint cycle covers, denoted

Cred ; Cblue; and Cgreen.

2. Use cycle cover Cred to place the vertices on the plane Z =0; design routes for the

edges in Cred that do not leave this plane and that have at most 7 bends per route.

Draw those routes arising from edges of G.

3. Design routes for the edges in cycle cover Cblue that lie on and above plane Z = 0

and that have at most 7 bends per route. Draw those routes arising from edges of

G.

4. Design routes for the edges in cycle cover Cgreen that lie on and below plane Z =0

and that have at most 7 bends per route. Draw those routes arising from edges of

G.

The details of the �rst step are described in the previous section. Steps 2–4 are de-

scribed in the next few subsections.

3.1. Routing the red cycle cover

Assume that cycle cover Cred consists of k directed cycles c1; c2; : : : ; ck ; and use

these cycles to order the vertices of G′ as follows. Arbitrarily choose a starting vertex
from c1, and order the remaining vertices of c1 by following the cycle; then order the

vertices of the remaining cycles in similar fashion, ordering the vertices of ci before

those of cj if i¡ j.

Next, de�ne a square array of special grid points pi; j in the plane Z =0 as follows.

For 06i; j ¡ d√ne; pi; j = (5i + 3; 5j + 3; 0). The number of columns here is chosen
for convenience of description, and an improvement is possible, as we will see later.

Rather than give explicit formulas for vertex placement and edge routing we il-

lustrate this in the context of a speci�c example from which the reader can eas-

ily infer the general rules. Suppose that a graph G′ has the following cycle cover
Cred:〈v1; v2; v3〉; 〈v4; : : : ; v9〉〈v10; : : : ; v21〉; 〈v22; v23; v24〉; and 〈v25〉. Using the order just ob-
tained from cycle cover Cred, assign the vertices of G

′ to grid points pi; j in the

62 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Fig. 3. The layout of the vertices of G and the routing of edges in cycle cover Cred .

snake-like fashion illustrated in Fig. 3, omitting any edges that did not arise from

the original graph G. Then route the edges of the cycles as shown in Fig. 3. In partic-

ular, Fig. 3 shows how to handle cycles whose vertices lie within one row of special

grid points, cycles whose vertices lie in parts of two neighbouring rows, and cycles

whose vertices occupy more that one row.

Denote {(5i + k; 5j + l; 0)|16k; l65} by Sq(i; j); this is a set of grid points within
a square centred at pi; j. The squares themselves form a square array, so we speak of

the squares of row i (rows are parallel to the X -axis) and the squares of column j

(columns are parallel to the Y -axis).

Now we make two observations for future reference. The �rst one will be used in

proving that no two edge routes intersect while the second will be used in reducing

the volume of the drawing (by a constant factor).

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 63

Fig. 4. The 7 bend route for edge (v; w) of Cblue.

Observation 1. The routes for red edges satisfy the following properties:

1. The edge routes for edges in Cred have at most 6 bends per route.

2. The red routes do not use the −Y and +Y ports of any special grid point pi; j.
3. The grid points contained in routes connecting vertices in the same cycle of Cred
are entirely contained in the squares to which those vertices are assigned.

Observation 2. Consider the line segments parallel to the Y -axis that are contained in

routes for red edges. In the �rst (last) column of squares, these segments contain no

grid points in the �fth (�rst) column of grid points of the column of squares. In all

other columns of squares, these segments contain no grid points in the �rst and �fth

column of grid points of each column of squares.

3.2. Routing the blue and green cycles covers

We describe how to route the edges in cycle cover Cblue. The edges of Cgreen are

routed similarly, but on the other side of the plane Z = 0.

Suppose that vertices v and w are assigned to special grid points having coordinates

pv = (xv; yv; 0) and pw = (xw ; yw ; 0), respectively. Then the route for edge (v; w) of

Cblue is illustrated in Fig. 4 and consists of the 8 segments described in Table 1. Note

that the horizontal line segments are routed in the planes Z= zvw and Z= zvw+1. Here

we defer until later the speci�cation of the value zvw, noting for the moment that for

all v; w, the value of zvw will be a positive odd integer.

64 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Table 1

The route coordinates for edge (v; w) of Cblue

Segment Start point → Finish point

1 (xv ; yv ; 0) → (xv ; yv + 1; 0)

2 (xv ; yv + 1; 0) → (xv ; yv + 1; zvw)

3 (xv ; yv + 1; zvw) → (xv ; yv + 2; zvw)

4 (xv ; yv + 2; zvw) → (xw + 1; yv + 2; zvw)

5 (xw + 1; yv + 2; zvw) → (xw + 1; yv + 2; zvw + 1)

6 (xw + 1; yv + 2; zvw + 1) → (xw + 1; yw ; zvw + 1)

7 (xw + 1; yw ; zvw + 1) → (xw ; yw ; zvw + 1)

8 (xw ; yw ; zvw + 1) → (xw ; yw ; 0)

3.3. Proof of correctness

Using techniques from [10], we prove that the routes of any two edges do not

intersect (except at mutually incident vertices). Note that if a unit length segment

contains an intersection point not located at a special grid point pi; j ; then one of its

adjacent segments (of length greater than 1) also contains this intersection point. Thus

we need only consider the possibility of intersections of segments longer than one unit

of length, i.e. intersections among even-numbered segments.

Observe that the routing of segment-4 for every edge route takes place in plane

Y = 5j + 5; 06j¡ d√ne; and that the routing of segment-6 for every edge route
takes place in plane X =5i+4; 06i¡ d√ne. This implies that these segments cannot
intersect with any segment numbered 2 or 8 from any edge route. Also, note that

segment-2 obviously cannot intersect segment-8.

Further observe that it is not possible for any segment-4 to intersect any segment-6.

This is because the two segments are routed on parallel planes, one with even and

the other with odd Z-coordinates. Hence, the only possible intersections are between

segment-4 of one route and segment-4 of another, or between segment-6 of one route

and segment-6 of another.

Finally we explain how to choose the values for zvw. This is done by using the

method of [10]. Consider edge (v; w). From the preceding paragraph, the route for this

edge can intersect only with the edge routes with origin in the row of squares in which

vertex v is placed and the edge routes with destination in the same column of squares

in which vertex w is placed.

We construct a graph H whose vertex set is the edge set of cycle cover Cblue. An

edge is inserted between two vertices in the graph H whenever the vertices correspond

to edges with start vertices in the same row or end vertices in the same column. The

graph H has maximum degree 2(d√ne − 1) and thus it has a vertex colouring with
2d√ne−1 colours, which can be obtained by a greedy algorithm [7, Brook’s Theorem].
This algorithm takes time linear in the size of H , that is, O(n3=2) time in terms of the

number n of vertices of G. Suppose that colour c; 16c62d√ne−1, has been assigned
to the vertex of H that corresponds to blue edge (v; w). Then we set zvw = 2c − 1.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 65

Now we are ready to state the main result of this section.

Theorem 2. Every n vertex maximum degree 6 graph G has a three-dimensional

orthogonal grid drawing with the following characteristics:

(i) at most 7 bends per edge route;

(ii) 16d√ne − 10 maximum edge length; and

(iii) a bounding box of dimensions (3d√ne+ 2)× 5d√ne × (8d√n e − 3).
Moreover; the drawing can be obtained in O(n3=2) time.

Proof. Green edge routes begin with a −Y port. Except for such ports, green edge

routes lie below the plane Z=0 and obviously do not intersect blue edge routes, which

begin with a +Y port and otherwise lie above the plane Z = 0. Based on Observation

1 and the fact that the red edge routes lie on the plane Z = 0 (using di�erent ports

from either the green or the blue edge routes), we conclude that red edge routes do not

intersect blue or green edge routes. As discussed previously, no two edges of the same

colour intersect. Thus the drawing obtained by routing edges of a graph G according

to the routes for their corresponding directed edges in G′ gives a proper grid drawing.
The fact that there are at most 7 bends per edge route can be seen by inspection.

We now determine the dimensions of the axis-aligned bounding box. Its base is a

square of dimensions 5d√n e × 5d√n e due to the placement of the vertices and the
routing of the edges of Cred. The height of the bounding box is at most 8d

√
n e − 3.

To see this, recall that there are at most 2d√n e − 1 di�erent zvw values assigned to
the blue edges, and that two adjacent planes determined by each zvw values are used

for the routing of each edge. Thus for the routing of the blue edges, we use at most

2(2d√n e−1)=4d√n e−2 planes parallel to the XY -plane. The same number of planes
is required for the routing of the green edges, leading to a bounding box of height

8d√n e − 3 (remembering to count plane Z = 0).
The maximum possible edge route length corresponds either to a blue edge route

starting from p0;0=(3; 3; 0) and leading to pd√n e−1;d√n e−1=(5(d
√
n e−1)+3; 5(d√n e

− 1) + 3; 0) through the top of the box, or to its green counterpart directed in the

opposite direction. The length of such a route is at most (18d√n e − 12) units. To see
this, observe that it takes 8d√n e−4 units of length of climb to the top of the bounding
box and then return to the plane Z = 0, and that the length of the projection of the

path from p0;0 to pd√n e−1;d√n e−1 on the plane Z = 0 is at most 2:5(d
√
n e − 1) + 2,

adding up to an edge length of at most (18d√n e − 12) units. 4
The maximum edge route length and the volume of the drawing can be improved by

a constant factor. Based on Observation 2, each 5× 5 square except those in the �rst
and last column of squares can be replaced by a 3× 5 rectangle, while the squares in
the �rst and last column of squares can be replaced by a 4× 5 rectangle. This change
to the X -coordinates of the special grid points does not a�ect the general formulas for

4 The term “+2” in the expression 2:5(d√n e − 1) + 2 corresponds to the overshoot by one unit of length
of point pd√n e−1;d√n e−1 along the X -dimension, and its correction.

66 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

the blue and green edge routes. The modi�ed drawing remains correct, and �ts in a

box of dimensions 3(d√n e+ 2)× 5d√n e × (8d√n e − 3).
To compute the maximum edge length after the above modi�cation, observe that

in the condensed drawing the vertices previously positioned in squares Sq(1; 1) and

Sq(d√n e; d√n e) di�er by 3(d√n e − 1) in their X -coordinates and by 5(d√n e − 1)
in their Y -coordinates. Now add 2 units of length in order to cover the overshoot of

the one end of the edge in the X -dimension, as well as the 8d√n e− 4 units of length
required to climb to the top of the bounding box and then return to the plane Z = 0;

this yields a maximum edge length of (16d√n e − 10) units.
The time consuming part of the compact-drawing algorithm is the vertex colouring

used in the routing of the blue and green edges. This can be implemented in linear

time in the size of the conict graph H , which is O(n3=2) in terms of the number n of

vertices of G.

4. Bend=bounding box trade-o�s

In this section we explore trade-o�s between the number of bends per edge and

the dimensions of the bounding box of the drawing. By successive re�nements of the

compact-drawing algorithm, we provide drawings with the following characteristics:

• 6 bends per edge route, using a bounding box of dimensions O(√n)×O(√n)×O(n);
• 5 bends per edge route, using a bounding box of dimensions O(√n)×O(n) O(n)×;
and

• 4 bends per edge route, using a bounding box of dimensions O(n)× O(n)× O(n).
We choose to focus solely on asymptotic measures in these trade-o�s, and we make

no e�ort to minimize the dimensions of the bounding box with respect to the constants

hidden in the big-Oh notation. Condensed drawing that improve the volume of the

layout by a constant factor can be easily obtained based on an observation similar to

Observation 2.

We re�ne the compact-drawing algorithm by eliminating the three unit-length seg-

ments, that is, segment-3, segment-5, segment-7, from the routes of the blue and green

edges. For each segment that we eliminate, the number of bends reduces by one while

the length of the bounding box side parallel to the eliminated segment increases by a

factor of O(
√
n).

Recall from Observation 1 that in the drawing produced by the compact-drawing

algorithm, each red edge has at most 6 bends. We next revise the routing of Cred so

that each edge has a most 4 bends.

4.1. Routing the red cycle cover with at most 4 bends per edge route

The vertices of the graph are again placed on grid points at the centres of 5 × 5
squares. However, this time the layout consists of at most d2√n e rows of squares,
with each row consisting of d√n e squares.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 67

Assume as before that cycle cover Cred consists of k directed cycles c1; c2; : : : ; ck
but now also assume that the cycles are listed in decreasing order with respect to their

size, that is, |c1|¿|c2|¿ · · ·¿|ck |, where |ci| denotes the number of vertices of cycle
ci ; 16i6k. Let cl; 16l6k − 1, be the cycle with the largest index that consists of
more than d√n e vertices, that is, |cl|¿ d√n e and |cl+1|6d√n e. In the event that all
cycles have more than d√n e vertices, set l = k. If no cycle with more than d√n e
vertices exists, by de�nition set l= 0.

Assign the vertices of cycles c1; : : : cl to the grid points at the centres of the squares

in a snake-like fashion, ensuring that the �rst vertex of each cycle is assigned to a

grid point in the leftmost column of squares, with the cycle initially extending to

the right. A di�erent set of rows of squares is devoted to the layout of the vertices

of the remaining cycles. The vertices of cycles cl+1; : : : ; ck are assigned to rows of

squares, extending from left to right, in a way similar to the famous �rst-�t-decreasing

bin-packing algorithm [17]. We process the cycle in decreasing order of their lengths,

and when we assign the vertices of a cycle to grid points at the centres of squares,

we try to allocate them to squares to the right of a cycle whose vertices have already

been assigned to grid points, provided that there are enough squares in the row to

accommodate the whole cycle. If we are not able to �nd such a row of squares, then

we simply use a new one and we place the cycle starting at the leftmost square and

extending to the right. We refer to the assignment of the vertices to grid points just

described as the 4-bend vertex placement.

Fig. 5 shows the 4-bend vertex placement based on the cycle cover c1=〈v10; : : : ; v21〉;
c2= 〈v4; : : : ; v9〉; c3= 〈v1; v2; v3〉; c4= 〈v22; v23; v24〉, and c5= 〈v25〉. This is the same cycle
cover as in the example of Fig. 3, but the order of the cycle placement is di�erent.

Fig. 5 also shows how to route the edges of each cycles. Cycles of size at most

d√n e lie entirely within one row of squares, and the routing of their edges is done in
a way identical to the routing of the edges of cycles 〈v1; v2; v3〉, and 〈v22; v23; v24〉, in
Fig. 3, with at most 4 bends per edge route. For cycles of size greater than d√n e we
consider two cases. In the �rst case, vertices of the cycle occupy the leftmost squares of

the last row of squares devoted to the cycle. The routing of the edges is performed as

is shown for c1 in Fig. 5 with at most 4 bends per edge. The second case corresponds

to the situation where vertices of the cycle occupy the leftmost squares of the last row

of squares devoted to the cycle. In this case, the routing of the edges is done as is

shown for c2 in Fig. 5; here there are less than 4 bends.

Lemma 1. The 4-bend vertex placement of an n vertex degree-6 graph G requires at

most b2√nc rows of squares.

Proof. Let c1; c2; : : : ; ck denote the cycles of cycle over Cred, listed in decreasing order

of their sizes. Let cl; 06l6k, be the cycle with the largest index and size greater than

d√n e, that is, |cl|¿ d√n e and |cl+1|6d√n e; if no such cycle exists, by de�nition we
set l= 0.

68 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Fig. 5. The layout of the vertices of G and the routing of edges in cycle cover Cred .

Let N1 denote the number of rows required for the placement of the vertices in

cycles c1; : : : ; cl, and let N2 denote the number of rows required for the placement of

the vertices in cycles cl+1; : : : ; ck .

Since |ci|¿d√n e; 16i6l, we have that
k

∑

i=l+1

|ci|6n− ld
√
n e: (1)

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 69

Cycle ci ; 16i6l, requires d|ci|=d
√
n ee rows of squares for the placement of its

vertices. Thus

N1 =
∑l

i=1

⌈ |ci|
d√n e

⌉

6

∑l
i=1 |ci|
d√n e + l: (2)

During the placement of the vertices of cycles cl+1; : : : ; ck we introduce a new row

of squares only if we cannot �t the cycle under consideration into one of the existing

rows of squares. This implies that, at the end of the vertex placement, out of all rows

devoted to cycles cl+1; : : : ; ck only one row can have as many as dd√ne=2e squares
without any vertex assigned to them. Thus there are N2 − 1 rows r such that

d
√
n e¡ 2

∑

ci in row r

|ci|:

Hence it follows that

(N2 − 1)d
√
n e¡ 2

k
∑

i=l+1

|ci|;

and that

N2¡
2
∑k

i=l+1 |ci|
d√n e + 1: (3)

Combining inequalities (2) and (3) (and by using (1)) we get

N1 + N2¡

∑l
i=1 |ci|
d√n e + l+

2
∑k

i=l+1 |ci|
d√n e + 1

=
n+

∑k
i=l+1 |ci|

d√n e + l+ 1

6
n+ (n− ld√n e)

d√n e + l+ 1

=
2n

d√n e + 1

6 b2
√
nc+ 1:

Thus, the total number of rows of squares is bounded by b2√n c. Note that the
bound in the lemma is tight. For example, if n= (d√n e+ 1)(d√n e − 1) and if each
cycle consists of exactly d√n e+1 vertices and there are d√n e−1 cycles in Cred, then
the placement requires 2 rows of squares for each cycle, for a total of 2d√n e − 2 =
2(b√nc+ 1)− 2 = 2b√nc rows of squares.

An inspection of the 4-bend vertex placement reveals that the properties stated in

Observation 1 still hold; the only di�erence is that we now have at most 4 bends per

edge route. Thus if we employ the 4-bend vertex placement of this section together

with the routing of Cblue and Cgreen described in Section 3.2, then we obtain a drawing

with at most 7 bends per edge route and a bounding box of dimensions O(
√
n) ×

O(
√
n)× O(√n).

70 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

The squares we used in the 4-bend vertex placement have dimensions 5 × 5. The
reader interested in reducing the volume of the bounding box by a constant factor

should note that an observation similar to Observation 2 holds, allowing the use of a

3×5 rectangle (instead of a 5×5 rectangle) in all columns of squares but the leftmost
one, where a rectangle of dimensions 4 × 5 is required. The additional observation

that the 4-bend vertex placement never uses the �rst row of each square (see Fig. 5)

results in some additional savings in volume, placing (in the worst case) each vertex

in a 4× 4 square. Also note that the 4-bend vertex placement can be re�ned so that,
whenever possible, the number of rows of squares it occupies is reduced by a constant.

This is achieved by either (i) having two cycles, each of size greater than d√ne,
share their non-full row of squares (if possible; this might require that one of the two

cycles starts from the rightmost column and extends to the left), and=or (ii) allowing

cycles of size smaller than or equal to d√ne to be placed in the non-full row of squares
partly occupied by a cycle of size greater than d√ne.

4.2. Re�ned routing for the blue and green cycle covers

In this section we eliminate, in turn, segment-3, segment-5 and segment-7 from the

routes of the blue and green edges.

Theorem 3. Every n vertex maximum degree 6 graph G has a three-dimensional

orthogonal grid drawing with the following characteristics:

(i) at most 6 bends per edge route; and

(ii) a bounding box of dimensions O(
√
n)× O(√n)× O(n).

Moreover; the drawing can be obtained in O(n) time.

Proof. We achieve a drawing with the characteristics stated in the theorem by elim-

inating segment-5 from the edge route of the blue (and green) edges in the compact-

drawing algorithm (as shown in Fig. 4). The elimination of segment-5 results in

segment-4 and segment-6 becoming adjacent to each other and routed on the same

XY -plane. Recall from the compact-drawing algorithm that we assigned to each edge a

z-value (determining the XY -planes that are used by its edge route) based on a colour-

ing algorithm that use at most 2d√ne − 1 colours. The small number of colours was
possible due to the fact that we only had to avoid having an intersection between two

edge routes along their segment-4 (or segment-6) parts. Now we also have to prevent

segment-4 of an edge intersecting with segment-6 of another edge. Preventing these

intersections is simple. Just devote an individual XY -plane to the routing of each edge.

Thus n XY -planes are used for the routing of Cblue; n for the routing of Cgreen and 1

for the routing of Cred, resulting in a bounding box of height 2n + 1 grid points and

an O(
√
n)× O(√n) base.

Devoting a distinct XY -plane to the routing of each edge, eliminates the need for

building and vertex coloring the conict graph used in the compact-drawing algorithm.

Thus, the dominant part of the running time is due to the computation of the cycle

covers, resulting in O(n) time complexity.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 71

Theorem 4. Every n vertex maximum degree 6 graph G has a three-dimensional

orthogonal grid drawing with the following characteristics:

(i) at most 5 bends per edge route; and

(ii) a bounding box of dimensions O(
√
n)× O(n)× O(n).

Moreover; the drawing can be obtained in O(n) time.

Proof. We achieve the stated result by a second re�nement of the compact drawing

algorithm. This time we route the red edges according to one of the ways described

in Section 4.1, since the routing originally employed had 6 bends per edge, one more

than the number of bends stated in the theorem. Again we route the blue (and green)

edges as described in the proof of Theorem 3 (with 6 bends per edge route), and now

we show how to eliminate segment-3, resulting in a drawing with 5 bends per edge

route. The purpose of segment-3 of the edge route of a blue edge was to guarantee

that it is impossible for a segment-2 of one edge to intersect with a segment-4 of

another, since segment-2 and segment-4 were routed on XZ-planes with even and odd

Y -coordinates, respectively. Now, with the elimination of segment-3, we have to con-

sider intersections between segment-2 and segment-4 of two di�erent edges. However,

observe that segment-2 of one edge e can only intersect with segment-4 of another

edge e′ originating in the same row of squares as e. Thus, if we devote a di�erent

XZ-plane to each of the d√ne edges starting in a given row of squares, then we still

get an intersection-free layout. This can be easily achieved by extending the square

devoted to each vertex to a rectangle, and routing edges starting from vertices in the ith

column of rectangles on the ith XZ-plane within the rectangle, relative to the XZ-plane

of the origin vertex ((−i)th for Cgreen). In total, for any given row of squares, we use:
• d√ne XZ-planes for the blue edges,
• d√ne XZ-planes for the green edges,
• On XZ-plane through the vertex itself, and
• two XZ-planes devoted to the routing of the red edges.
This gives a layout where each constant size square has been replaced by an O(1) ×
O(

√
n) rectangle. This results in a bounding box with a base of dimensions O(

√
n)×

O(n).

The running time remains O(n) since constant time is spent in determining the new

route of each edge.

Theorem 5. Every n vertex maximum degree 6 graph G has a three-dimensional

orthogonal grid drawing with the following characteristics:

(i) at most 4 bends per edge route; and

(ii) a bounding box of dimensions O(n)× O(n)× O(n).
Moreover; the drawing can be obtained in O(n) time.

Proof. We achieve the stated result by a third successive re�nement of the compact-

drawing algorithm. This time we eliminate the only unit-length segment left, that is,

segment-7. This segment was used for two reasons: Firstly to guarantee that segment-6

72 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

of one edge route does not intersect with segment-8 of another, and secondly, in order

to guarantee that segment-6 of an incoming edge to an arbitrary vertex v does not

intersect with segment-2 of an outgoing edge (belonging to the same cycle cover)

from vertex v. We describe the part of the re�nement devoted to avoiding each type

of possible intersection separately.

Avoiding intersections between segment-6 and segment-8: Observe that only edge

routes that terminate at vertices in a given column of rectangle can intersect. Thus, if for

each edge route that terminates in the same column of rectangles we devote a distinct

YZ-plane, then no intersection of a segment-6 with a segment-8 belonging to a di�erent

edge route is possible. We devote a distinct YZ-plane to each segment-8 of each column

of rectangles. This implies that the vertex placement has to be re�ned so that in each

column of rectangles each vertex is placed in its own YZ-plane. Given that each column

of rectangles consists of at most b2√nc rectangles (due to Lemma 1), it is su�cient
to extend each 4 × (2d√ne + 3) rectangle (used in the 5-bend drawing) to a (3 +
b2√nc)× (2d√ne+3) rectangle and to assign the vertices at the ith row of rectangles,
16i6b2√nc, to the (i+2)nd column of grid points within the given row of rectangles.
This results in a bounding box in the XY -plane with base of dimensions O(n)×O(n).
Avoiding intersections between segment-6 and segment-2: Notice that this type of

intersection is only possible between adjacent edges that belong in the same cycle of

the blue (or the green) cycle cover.

Without loss of generality, assume that the edges belong in Cblue (the case where

they belong in Cgreen is treated symmetrically). Let (u; v) and (v; w) be the two edges

in question where edges (u; v) immediately precedes edge (v; w) in some cycle of Cblue.

We describe how to draw these edges so that segment-6 of (u; v) does not intersect with

segment-2 of (v; w). Our routing does not require any increase in volume. We avoid

intersections by simply routing each edge in an appropriate XY -plane. Consider the

vertices of the cycle c of Cblue that contains (u; v) and (v; w). We examine two cases:

Case 1: Not all vertices of cycle c are placed in the same row of rectangles. Con-

sider edges (u; v) and (v; w) and let vertices u and v be placed at points (xu; yu; 0) and

(xv; yv; 0), respectively. Observe that if yu¡yv, then no overlap between segment-6

of (u; v) and segment-2 of (v; w) is possible since the points of the former segment

have smaller Y -coordinate, than the points of the latter segment (see Fig. 6).

If follows that an intersection is only possible if yu¿yv. However, in this case we

can avoid the intersection by routing edge (u; v) on an XY -plane which is above the

XY -plane in which edge (v; w) is routed. This is because the points of segment-6 of

(u; v) have larger Z-coordinate than the points of segment-2 of (v; w) (see Fig. 7).

Based on the above observations, it is easy now to assign XY -planes to the rout-

ing of the edges of cycle c so that there is no intersection between two adjacent

edges of the cycle. Identify 2 adjacent (in the direction of cycle c) edges (u; v) and

(v; w) such that yu¡yv. The fact that not all vertices are placed in the same row of

rectangles guarantees that these two edges exist. Starting from edge (v; w), traverse

cycle c and assign decreasing Z-coordinates (i.e., lower XY -planes) to its edges.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 73

Fig. 6. No overlap is possible in the re�nement of Theorem 5 for the case where not all vertices are placed

in the same row of rectangles and yv¡yu.

Fig. 7. Avoiding overlaps in the re�nement of Theorem 5 for the case where not all vertices are placed in

the same row of rectangles and yv¿yu.

Edge (v; w) is assigned the largest Z-coordinate while edge (u; v) is assigned the

smallest. Edges (u; v) and (v; w) cannot intersect because yu¡yv and no other pair

of adjacent edges can intersect with each other due to the decreasing Z-coordinates

which were assigned to their routes.

Case 2: All vertices of cycle c are placed in the same row of rectangles. Recall

that after the re�nement that eliminated segment-3 (see proof of Theorem 4) a dif-

ferent XZ-plane is devoted to the routing of each edge starting at the same row of

rectangles. Consider again two adjacent edges (u; v) and (v; w) of cycle c and as-

sume that they are routed on the ith and the jth XZ-planes of their row of rectangles,

respectively. The XZ-planes in a given row of rectangles are numbered relative to

74 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Fig. 8. Avoiding overlaps in the re�nement of Theorem 5 for the case where all vertices are placed in the

same row of rectangles and xu¡xv. Row numbers within a rectangle are relative to the position of the

vertex on the rectangle.

Fig. 9. Avoiding overlaps in the re�nement of Theorem 5 for the case where all vertices are placed in the

same row of rectangles and xu¿xx . Row numbers within a rectangle are relative to the position of the

vertex on the rectangle.

the XZ-plane on which the vertices of the row of rectangles are positioned (see

Figs. 8 and 9). According to the drawing of Theorem 4, vertex u and v are posi-

tioned in the ith and the jth column of rectangles, respectively. Let xu and xv be the

X -coordinates of vertices u and v, respectively. Then we have that i¡ j if and only

if xu¡xv. We guarantee that no intersection between the routes of (u; v) and (v; w)

takes place by routing (u; v) on a XY -plane below (i.e., with smaller Z-coordinate)

the one in which (v; w) is routed if and only if xu¡xv (that is, i¡ j). To see that

no overlap is possible, consider �rst the case where xu¡xv, that is, i¡ j (see Fig.

8). In this case, the points of segment-6 of (u; v) have smaller Y -coordinate than

that of the points of segment-2 of (v; w) and thus no intersection is possible. In

the case where xu¿xv, that is, i¿ j (see Fig. 9), the points of segment-6 of (u; v)

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 75

Fig. 10. Three disjoint paths along the edges of an isothetic cube.

have larger Z-coordinate than that of the points of segment-2 of (v; w) and again no

intersection is possible.

The running time remains O(n) since the assignment of Z-coordinates to the edge

routes can be implemented by traversing the edges of each cycle at most twice, one

time to determine whether all vertices are positioned in the same row of rectangles

(and if not the edge which will be allocated the largest Z-coordinate) and one time to

actually allocate the Z-coordinates.

5. The 3-bends algorithm

In this section we present an algorithm, referred to as the 3-bends algorithm, which

draws a graph of maximum degree at most 6 with 3 bends per edge route in a box

of dimensions O(n) × O(n) × O(n). The drawing produced by the 3-bends algorithm
is quite di�erent from the 4-bend drawing with identical (in the sense of asymptotic

notation) bounding box dimensions produced in Section 4.2.

The 3-bends algorithm uses the preprocessing algorithm of Section 2 to obtain a

6-regular directed graph G′ together with edge disjoint cycle covers Cred ; Cgreen and
Cblue for G

′. However, it places the vertices of G (that is, the vertices of G′) on
the diagonal of a cube. More precisely, it arbitrarily assigns numbers 1; 2; : : : ; n to the

vertices and places vertex a ∈ {1; 2; : : : ; n} at location (3a; 3a; 3a). For simplicity, we
use the same symbol to denote both a vertex and its location.

Each pair a; b of vertices in G′ determines an isothetic cube C(a; b) with a and b at
opposite corners. For the purpose of de�ning routes for possible coloured edges of the

form (a; b), we �rst de�ne red, green and blue paths between a and b along the edges

of the cube C(a; b) as illustrated in Fig. 10. Each path of cube edges has only 2 bends.

Later, we are going to route a coloured edge (a; b) of G′ close to the coloured path
of cube edges of the same colour on C(a; b), so that no point on the actual route for

76 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

(a; b) is more than one unit away from some point on the corresponding coloured path

of cube edges on C(a; b). The following easy lemma shows that by doing this, we

guarantee that routes for edges that are not incident to a common vertex of G′ do not
intersect.

Lemma 2. Suppose that a; b; c; d ∈ V are distinct vertices of G′. Suppose that p is
a point on a cube edge of C(a; b) and that q is a point on a cube edge of C(c; d).

Then the Euclidean distance between p and q is at least 3.

The above lemma, together with the fact that coloured paths of cube edges on the

same cube get close to one another only in the vicinity of the ends of the paths,

suggests that the main di�culty will be to ensure that routes do not intersect in the

vicinity of their endpoints.

Given this intuition about the routing strategy, we �rst give an overview of the

3-bends algorithm and then give the routing details.

The 3-bends algorithm

1. Use the preprocessing algorithm of Section 2 to compute the 6-regular directed

graph G′ and its three cycle covers Cred ; Cgreen and Cblue.
2. Arbitrarily number the vertices of G′ 1 to n; for 16a6n, place vertex a at
(3a; 3a; 3a).

3. Compute and draw the routes for each coloured edge of G′ that arises from an edge
of G, as described in detail below.

To specify the edge routes in detail, it is helpful �rst to introduce the concept of

a local minimum or maximum of a coloured cycle of length at least 2. Suppose, for

example, that u1 → u2 → · · · → uk → u1 is the red cycle through some vertex b

of G′. Hence b = ui for some 16i6k, and each uj on the cycle is a number in the
range 1 to n. The successor ui+1 of b= ui may be a larger or a smaller number than

ui. Hence as one moves along the red cycle, the coordinate values associated with the

vertices on the cycle are sometimes increasing, sometimes decreasing. This motivates

the following de�nition.

De�nition 2. A vertex ui is a local maximum with respect to a coloured cycle u1; : : : ; uk
of length k ¿ 1 if its value is greater than that of both its predecessor and its successor,

i.e., if ui−1¡ui and ui+1¡ui ; where subscript arithmetic is modulo k.

A local minimum is de�ned analogously. A vertex is normal with respect to a colour

if it is neither a local maximum nor a local minimum for that colour. (A vertex of a

loop is normal.) An edge (ui ; ui+1), ui 6= ui+1, is said to be increasing or decreasing
if ui¡ui+1 or ui¿ui+1, respectively. The route for a coloured edge (ui ; ui+1) will

depend on whether the edge is increasing or decreasing and also, on whether ui+1 is a

local minimum, a local maximum, or normal for that colour. Note, for example, that

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 77

Fig. 11. Categories of edges in the 3-bends algorithm.

a vertex may be a local maximum with respect to one colour and a local minimum

with respect to another colour.

We de�ne �ve categories of edges:

• normal increasing edges: edges (ui ; ui+1) with ui¡ui+1 and ui+1¡ui+2,

• normal decreasing edges: edges (ui ; ui+1) with ui¿ui+1 and ui+1¿ui+2,

• loops,
• edges entering a local minimum: edges (ui ; ui+1) with ui¿ui+1 and ui+1¡ui+2,

• edges entering a local maximum: edges (ui ; ui+1) with ui¡ui+1 and ui+1¿ui+2.

The categories (except for the case of loops) are illustrated in Fig. 11 for a cycle

that passes through vertices numbered 1 to 9 with no omissions. In the cycle 1 →
3 → 6 → 9 → 4 → 7 → 8 → 5 → 2 → 1, edges (1; 3), (3; 6) and (4; 7) are normal

increasing, edges (8; 5) and (5; 2) are normal decreasing, edges (9; 4) and (2; 1) enter

a local minimum, and edges (6; 9) and (7; 8) enter a local maximum.

A red normal edge (ui ; ui+1) (increasing or decreasing) is routed along the red path

of cube edges of the cube C(ui ; ui+1), that is, the routes for red normal edges are as

shown in Table 2. Note that each route for a normal red edge has two bends. The

table also describes the routes for loops. A red loop uses the +X and −Z ports of the
grid point at which its vertex ui is placed, and consists of the unit square determined

by these two ports. The route contains 3 bends. Finally the table describes the routes

for red edges entering a local minimum or maximum with exactly 3 bends per edge

route. These red edges are routed near the red path of cube edges, but slightly o�set,

as illustrated in Fig. 12. The blue and green edges are routed similarly.

The routing scheme leads to the following theorem.

Theorem 6. Every n vertex graph G of maximum degree at most 6 has a three-

dimensional orthogonal grid drawing with the following characteristics:

(i) at most 3 bends per edge;

(ii) maximum edge route length 9(n− 1) + 2; and
(iii) a bounding box of dimensions 3n× 3n× 3n.
Moreover; the drawing can be obtained in O(n) time.

Proof. A red conduit between distinct vertex locations a and b consists of the line

segments for all possible red routes between a and b. Blue and green conduits are

78 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Table 2

The coordinates of the routes for red edges in the 3-bends algorithm

Edge category Segment Start point → Finish point

Normal increasing 1 (3ui ; 3ui ; 3ui) → (3ui+1; 3ui ; 3ui)

red edge 2 (3ui+1; 3ui ; 3ui) → (3ui+1; 3ui+1; 3ui)

3 (3ui+1; 3ui+1; 3ui) → (3ui+1; 3ui+1; 3ui+1)

Normal decreasing 1 (3ui ; 3ui ; 3ui) → (3ui ; 3ui ; 3ui+1)

red edge 2 (3ui ; 3ui ; 3ui+1) → (3ui ; 3ui+1; 3ui+1)

3 (3ui ; 3ui+1; 3ui+1) → (3ui+1; 3ui+1; 3ui+1)

Red loop 1 (3ui ; 3ui ; 3ui) → (3ui + 1; 3ui ; 3ui)

2 (3ui + 1; 3ui ; 3ui) → (3ui + 1; 3ui ; 3ui − 1)

3 (3ui + 1; 3ui ; 3ui − 1) → (3ui ; 3ui ; 3ui − 1)

4 (3ui ; 3ui ; 3ui − 1) → (3ui ; 3ui ; 3ui)

Red edge entering 1 (3ui ; 3ui ; 3ui) → (3ui ; 3ui ; 3ui+1 − 1)

a local minimum 2 (3ui ; 3ui ; 3ui+1 − 1) → (3ui ; 3ui+1; 3ui+1 − 1)

3 (3ui ; 3ui+1; 3ui+1 − 1) → (3ui+1; 3ui+1; 3ui+1 − 1)

4 (3ui+1; 3ui+1; 3ui+1 − 1) → (3ui+1; 3ui+1; 3ui+1)

Red edge entering 1 (3ui ; 3ui ; 3ui) → (3ui+1 + 1; 3ui ; 3ui)

a local maximum 2 (3ui+1 + 1; 3ui ; 3ui) → (3ui+1 + 1; 3ui+1; 3ui)

3 (3ui+1 + 1; 3ui+1; 3ui) → (3ui+1 + 1; 3ui+1; 3ui+1)

4 (3ui+1 + 1; 3ui+1; 3ui+1) → (3ui+1; 3ui+1; 3ui+1)

Fig. 12. Red routes in the 3-bends algorithm entering a local minimum and maximum, respectively.

de�ned similarly. See the dark segments in Fig. 13. Note that red conduits and red

loops use the +X and −Z ports of endpoints a and b; blue conduits and blue loops
use the +Y and −X ports of their endpoints; and green conduits and green loops use

the −Y and +Z ports of their endpoints.
We �rst show that no two edge routes produced by the 3-bends algorithm intersect

each other, that is, no two edge routes share a common point other than a route

endpoint. By Lemma 2, two edges routes that intersect must have one or both endpoints

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 79

Fig. 13. Conduits: (i) red, (ii) blue, and (iii) green.

Fig. 14. Cubes for routes with a common endpoint.

in common. In what follows, consider Fig. 13, which illustrates coloured conduits, and

Fig. 14, which illustrates the underlying cubes for routes of nonloop edges with a

common endpoint.

Clearly a route for a loop intersects no other route of the same or di�erent colour;

from now on, we consider the routes for nonloop edges.

Suppose that two routes of the same colour share both endpoints, say a and b where

b¿a; note that b is a local maximum and a is a local minimum (see Fig. 14(i)).

80 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Although the routes use the same conduit, they use di�erent line segments within this

conduit and hence do not intersect.

Next, consider two edge routes of the same colour that share exactly one endpoint.

Suppose that the three endpoints determined by the two edge routes are a; b and c,

where a¡b¡c. If a is the common endpoint, then a is a local minimum. Hence

the arc entering a is o�set while the arc leaving a is not; thus the two routes do not

intersect. If c is the common endpoint, then c is a local maximum and an analogous

argument applies. If b is the common endpoint then b must be normal (see Fig. 14(ii));

hence routes of the edges incident to b lie along cubes that intersect only at b, and

the routes do not intersect.

Now consider two routes of di�erent colours i and j. If they share both endpoints,

their conduits do not intersect. For a¡b¡c, the colour i conduit between a and b

does not intersect the colour j conduit between b and c, and likewise for conduits

of di�erent colours between a and c and between b and c. Hence routes of di�erent

colours do not intersect.

To establish the size of the bounding box, observe that vertex 1 and vertex n are

assigned to grid points (3; 3; 3) and (3n; 3n; 3n), respectively. In the worst case, vertex

1 is a local minimum and vertex n is a local maximum in all of the three cycle covers.

In this case the grid points (2; 2; 2) and (3n + 1; 3n + 1; 3n + 1) are the diametrically

opposite corners of the bounding box, leading to a drawing of dimensions 3n×3n×3n
(recall that we measure the extent on the bounding box in each dimension in terms of

the number of grid points rather than in terms of length).

The length of the longest edge route corresponds to the case where edge (1; n) enters

a local maximum at vertex n, or the symmetric case where edge (n; 1) enters a local

minimum at vertex 1. In both cases, the edge route overshoots the end-vertex by one

unit of length in one direction (depending on the colour of the edge) and then corrects

it. Thus, the longest edge route is two units longer than the distance between vertex 1

and vertex n i.e., 9(n− 1) + 2 units.
The part of the algorithm that dominates the runtime is the computation of the cycle

covers; this takes time O(n) by Theorem 1, since the maximum degree � of G is at

most 6.

6. Drawings for graphs of maximum degree 4

In this section, we present a drawing algorithm for graphs of maximum degree 4. The

drawing algorithm again uses the partition of a regular graph into disjoint cycle covers.

The drawing produced has 3 bends per edge and is contained in a 2n × (n + 2) × 3
bounding box, where n is the number of vertices of the graph. Compared to the 3-bends

algorithm of the previous section for graphs of maximum degree 6, which required a

bounding box of O(n3) volume, the algorithm of this section demonstrates that graphs

of maximum degree 4 require a bounding box of asymptotically smaller volume for

their drawing. An overview of the algorithm follows.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 81

Fig. 15. The edge routes of red edges in the 3-bend algorithm for graphs of maximum degree 4.

Algorithm for graphs of maximum degree 4.

1. Use the preprocessing algorithm of Section 2 to compute the 4-regular directed

graph G′ and its two cycle covers, Cred and Cgreen.
2. Suppose that Cred consists of k directed cycles c1; c2; : : : ; ck . Use these cycles to

assign for each vertex v ∈ V an order number r(v) with respect to cycle cover

Cred, 16r(v)6n, as follows. Arbitrarily choose a starting vertex for c1 and assign

numbers in increasing order to the remaining vertices of c1 by following the directed

cycle. Then order the vertices of the remaining cycles in a similar fashion, ordering

the vertices of cycle ci before those of cycle cj if and only if i¡ j.

3. In similar fashion, assign for each vertex v ∈ V an order number g(v) with respect

to cycle cover Cgreen, 16g(v)6n.

4. Place vertex v ∈ V at location (2r(v); g(v); 0).

5. Design routes for each edge of G′ as described in detail below. Draw those routes
arising from edges of G.

We describe how to route the edges of a single cycle in each of the cycle covers

Cred and Cgreen. In a similar way we route all the remaining cycles in each cycle

cover.

6.1. Routing the red cycle cover

The route for a red loop uses the +X and −Y ports of the grid point at which its
vertex is placed, and consists of the unit square determined by these two ports.

Now consider an arbitrary cycle c = v1; v2; : : : ; vl of Cred, l¿2.

We �rst consider the route edge (vi ; vi+1), 16i6l − 1. Vertex vi is at location

(2r(vi); g(vi); 0) while vertex vi+1 is at location (2r(vi) + 2; g(vi+1); 0). We consider

two cases.

Case 1: g(vi)¿g(vi+1). The route of edge (vi ; vi+1) consists of the following four

segments, illustrated in Fig. 15(a).

82 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Segment Start point → Finish point

1 (2r(vi); g(vi); 0) → (2r(vi) + 1; g(vi); 0)

2 (2r(vi) + 1; g(vi); 0) → (2r(vi) + 1; g(vi+1)− 1; 0)
3 (2r(vi) + 1; g(vi+1)− 1; 0) → (2r(vi) + 2; g(vi+1)− 1; 0)
4 (2r(vi) + 2; g(vi+1)− 1; 0) → (2r(vi) + 2; g(vi+1); 0)

Case 2: g(vi)¡g(vi+1). The route of edge (vi ; vi+1) consists of the following two

segments, illustrated in Fig. 15(b).

Segment Start point → Finish point

1 (2r(vi); g(vi); 0) → (2r(vi) + 2; g(vi); 0)

2 (2r(vi) + 2; g(vi); 0) → (2r(vi) + 2; g(vi+1); 0)

The route of the last edge (vl; v1) of the cycle consists of the following four segments,

illustrated in Fig. 15(c) (the �gure assumes that g(v1)¡g(vl); the same route is valid

when g(v1)¿g(vl)).

Segment Start point → Finish point

1 (2r(vl); g(vl); 0) → (2r(vl) + 1; g(vl); 0)

2 (2r(vl) + 1; g(vl); 0) → (2r(vl) + 1;−1; 0)
3 (2r(vl) + 1;−1; 0) → (2r(vl);−1; 0)
4 (2r(vl);−1; 0) → (2r(vl); g(v1); 0)

Observe that, in all cases, the edge routes for the red edges do not intersect each

other. This is because an edge always leaves a vertex with a +X port and enters a

vertex with a −Y port.
Further, it is easy to see that there is no overlap between the routes of edges that

belong to the same cycle of Cred. In order to prove that the routes of edges that belong

to di�erent cycles of Cred do not intersect, simply observe that the edges of each cycle

are routed entirely within a strip of columns the width and position of which depend

on the number of vertices in the cycle and the ordering of the vertices with respect

to cycle cover Cred, respectively. The ordering of the vertices with respect to Cred
guarantees that the vertical strips devoted to the routing of di�erent cycles of Cred do

not overlap.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 83

Fig. 16. The edge routes of green edges in the 3-bend algorithm for graphs of maximum degree 4.

6.2. Routing the green cycle cover

The route for a green loop uses the +Y and +Z ports of the grid point at which its

vertex is placed, and consists of the unit square determined by these two ports.

Consider an arbitrary cycle c = v1; v2; : : : ; vl of Cgreen ; l¿2.

We �rst consider the route of edges (vi ; vi+1); 16i6l− 1. Vertex vi is at location
(2r(vi); g(vi); 0) while vertex vi+1 is at location (2r(vi+1); g(vi) + 1; 0) since g(vi+1) =

g(vi) + 1. The route of edge (vi ; vi+1) consists of the four segments illustrated in

Fig. 16(a) for the case r(vi+1)¿r(vi).

Segment Start point → Finish point

1 (2r(vi); g(vi); 0) → (2r(vi); g(vi) + 1; 0)

2 (2r(vi); g(vi) + 1; 0) → (2r(vi); g(vi) + 1; 1)

3 (2r(vi); g(vi) + 1; 1) → (2r(vi+1); g(vi) + 1; 1)

4 (2r(vi+1); g(vi) + 1; 1) → (2r(vi+1); g(vi) + 1; 0)

The route of the last edge (vl; v1) of the cycle consists of the four segments illustrated

in Fig. 16(b).

Segment Start point → Finish point

1 (2r(vl); g(vl); 0) → (2r(vl); g(vl);−1)
2 (2r(vl); g(vl);−1) → (2r(vl); g(v1);−1)
3 (2r(vl); g(v1);−1) → (2r(vl); g(v1);−1)
4 (2r(v1); g(v1);−1) → (2r(v1); g(v1); 0)

84 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

Note that in both Figs. 16(a) and (b) it is assumed that r(vi)¡r(vi+1); 16i6l− 1.
The same routes are valid when r(vi)¿r(vi+1).

It is easy to check that the routes of edges of Cgreen do not intersect, as the routing

of each cycle of Cgreen lies within a strip of adjacent rows (parallel to the X -axis), and

the strips of distinct cycles are disjoint. The described drawing allows us to state the

following theorem.

Theorem 7. Every n vertex maximum degree 4 graph G has a three-dimensional

orthogonal grid drawing with

(i) at most 3 bends per edge route;

(ii) 4n+ 1 maximum edge length; and

(iii) a bounding box of dimensions 2n× (n+ 2)× 3.
Moreover; the drawing can be obtained in O(n) time; where n is the number of

vertices.

Proof. The drawing described in this section satis�es all the stated characteristics of

the theorem.

By inspection we can verify (i), that is, each edge route has at most 3 bends.

For (ii), note that the maximum edge length clearly occurs when the last edge of

a red cycle is as long as possible; this happens when edge (vn; v1) is the last edge of

a red cycle and moreover g(v1) = n − 1 and g(vn) = n. In this case (see Fig. 15(c)),
the red edge route moves 1 unit in the +X direction, n+1 units in the −Y direction,
2n − 1 units in the −X direction, and n units in the +Y dimension to v1, for a total

of 4n+ 1 units of length.

Now consider (iii). Inspection of the routing tables (for red and green) reveals that

the smallest X -coordinate is 2, and the largest X -coordinate is 2n+1; thus the bounding

box has X -dimension (2n + 1) − 2 + 1 = 2n (counting by grid points). Similarly, we
can use extreme values in the routing tables to show that the bounding box has Y and

Z-dimensions n+ 2 and 3, respectively.

It has already been established that edges of the same cycle cover do not intersect

with each other. Now we check that the routes of edges of Cred and Cgreen do not

intersect. The edges of Cred are routed on plane Z = 0 and use only the +X and −Y
ports, while the edge routes of Cgreen intersect the plane Z=0 only in +Y ports. Hence

all that remains is to check two cases, namely that a +Y port of a green edge does

not intersect either a Y -segment or an X -segment of a red route. For the �rst case,

note that a green +Y port does not intersect a red Y -segment because Y -segments of

red edges use either use the −Y port or occupy the grid lines immediately to the right
of the vertices. Also, note that any two vertices have X -coordinates which di�er by at

least 2. For the second case, an intersection is impossible because the X -segments of

concern in Figs. 15(a) and (b) are at most 2 units long, and in that case (Fig. 15(b))

the vertex at the grid line containing the bend has the same X -coordinate as the bend.

Again, recall that X -coordinates of vertices di�er by at least 2.

Thus, the drawing is intersection free.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 85

Table 3

Trade-o�s between the number of bends and the drawing size

Maximum degree Maximum bends per edge Dimensions

6 7 O(
√
n)× O(

√
n)× O(

√
n)

6 6 O(
√
n)× O(

√
n)× O(

√
n)

6 5 O(
√
n)× O(n)× O(n)

6 3 O(n)× O(n)× O(n)

4 3 O(1)× O(n)× O(n)

The dominant part of the running time is again due to the computation of the cycle

covers, resulting in O(n) time complexity.

7. Conclusion

In this paper, we studied three-dimensional orthogonal intersection-free grid drawings

for n vertex graphs. We presented several drawing algorithms, focusing on the number

of bends per edge route, on the dimension of the bounding box of the drawing and on

trade-o�s between these quantities.

Table 3 summarises these trade-o�s.

The work presented in this paper raises new issues. These include the following.

1. It would be interesting to know whether a maximum of 3 bends per edge route is

best possible. Note, however, that K7, the 6-regular complete graph on 7 points, does

have a grid drawing with at most 2 bends per edge [34]. The techniques presented

in this paper do not appear to be su�cient on their own to produce a drawing with

two bends per edge, if one is possible. The fact that our algorithms were based

on the decomposition of a regular graph into cycle covers suggests that the use of

di�erent decomposition techniques might lead to layouts of two bends per edge. If

this proves feasible, then the trade-o� issues should be revisited.

2. The drawing produced by the 3-bends algorithm is quite di�erent from the 4-bend

drawing with identical (in the sense of asymptotic notation) bounding box dimen-

sions that was produced by the re�nement of the compact-drawing algorithm. This

suggests that it might still be possible to get drawings with fewer bends per edge

route than the drawings produced by the re�nements of the compact-drawing algo-

rithm, for bounding boxes of similar dimensions.

3. The drawing with 3 bends per edge route for graphs of maximum degree 6 requires

O(n3) volume while the drawing with the same number of bends per graphs of

maximum degree 4 requires O(n2). Further, one can achieve O(n3=2) volume using

Theorem 2. This suggests that it is worthwhile studying the trade-o� between bends

and volume for graphs of maximum degree 4.

4. The drawing produced for graphs of maximum degree 4 raises the issue of drawings

of constant height. Such drawings might be useful for VLSI applications. The study

86 P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87

of trade-o�s between the number of bends and the base of the bounding box of the

drawing, for a �xed constant height, is worth investigation.

Acknowledgements

We would like to thank Therese Beidl for pointing out Schrijver’s algorithm [28],

David Wood for his comments on an earlier version of the paper, and the anonymous

referees for many helpful suggestions.

References

[1] C. Berge, Graphs, 2nd revised Edition, North-Holland, Amsterdam, 1985.

[2] S. Bhatt, S. Cosmadakis, The Complexity of Minimizing Wire Lengths in VLSI Layouts, Inform.

Process. Lett. 25 (1987) 263–267.

[3] T. Biedl, Embedding Nonplanar Graphs in the Rectangular Grid, Rutcor Research Report 27-93, 1993.

[4] T. Biedl, G. Kant, A better heuristic for orthogonal graph drawings, Comput. Geom. Theory Appl. 9

(3) (1998) 159–180.

[5] T. Biedl, New lower bounds for orthogonal graph drawings, Graph Drawing, Lecture Notes in Computer

Science, Vol. 1027, Springer, Berlin, 1995, pp. 28–39.

[6] T. Biedl, T. Shermer, S. Whitesides, S. Wismath, Orthogonal 3D graph drawing, in: GD97, Lecture

Notes in Computer Science, Vol. 1353, Springer, Berlin, 1998, 76–86.

[7] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, Amsterdam, 1976.

[8] G. DiBattista, P. Eades, R. Tamassia, I. Tollis, Algorithms for drawing graphs: an annotated

bibliography, Comput. Geom. Theory Appl. 4 (1994) 235–282.

[9] D. Dolev, F.T. Leighton, H. Trickey, Planar Embeddings of Planar Graphs, in: F.P. Preparata (Ed.),

Advances in Computing Research 2, JAI Press Inc., Greenwich CT, USA, 1984, pp. 147–161.

[10] P. Eades, C. Stirk, S. Whitesides, The techniques of Komolgorov and Barzdin for three dimensional

orthogonal graph drawings, Inform. Process. Lett. 60 (2) (1996) 97–103.

[11] P. Eades, A. Symvonis, S. Whitesides, Two algorithms for three dimensional orthogonal graph drawing,

in: S. North (Ed.), GD96, Springer Lecture Notes in Computer Science, Vol. 1190, Springer, Berlin,

1996, pp. 139–154.

[12] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

[13] S. Even, G. Granot, Rectilinear Planar Drawings with Few Bends in Each Edge, Technical Report 797,

Computer Science Department, Technion, 1994.

[14] M. Formann, F. Wagner, The VLSI layout problem in various embedding models, in: WG91, Lecture

Notes in Computer Science, Vol. 484, Springer, Berlin, 1991, 130–139.

[15] A. Garg, R. Tamassia, On the computational complexity of upward and rectilinear planarity testing,

Proceedings of the Graph Drawing: DIMACS International Workshop (GD’94), Lecture Notes in

Computer Science, Vol. 894, Springer, Berlin, 1995, pp. 286–297.

[16] P. Hall, On representation of subsets, J. London Math. Soc. 10 (1935) 26–30.

[17] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham, Worst-case Performance Bounds

for Simple One-dimensional Packing Algorithms, SIAM J. Comput. 3 (1974) 299–325.

[18] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica 16 (1) (1996) 4–32.

[19] A.N. Kolmogorov, Ya.M. Barzdin, About realisation of sets in 3-dimensional space, Problems Cybernet.

(1967) 261–268.

[20] M. Kramer, J. van Leeuwen, The complexity of wire routing and �nding minimum area layouts for

arbitrary VLSI circuits, in: F. Preparata (Ed.), Advances in Computing Research, Vol. 2 (VLSI Theory),

1984, 129–146.

[21] A. Papakostas, I. Tollis, Algorithms for area-e�cient orthogonal drawings, Comput. Geom. Theory

Appl. 9 (1-2) (1998) 83–110.

P. Eades et al. / Discrete Applied Mathematics 103 (2000) 55–87 87

[22] A. Papakostas, I. Tollis, Incremental orthogonal graph drawing in three dimensions, in: GD97, Lecture

Notes in Computer Science, Vol. 1353, Springer, Berlin, 1998, pp. 52–63.

[23] J. Petersen, Die theorie der regul�aren graphen, Acta Math. 15 (1891) 193–220.

[24] F.P. Preparata, Optimal three-dimensional VLSI layouts, Math. Systems Theory 16 (1983) 1–8.

[25] A.L. Rosenberg, Three-dimensional integrated circuitry, in: Kung, Sproule, Steele (Eds.), VLSI Systems

and Computations, Computer Science Press, 1981, pp. 69–80.

[26] A. L. Rosenberg, Three-dimensional VLSI: a case study, J. ACM 30 (3) (1983) 397–416.

[27] M. Sch�a�ter, Drawing graphs on rectangular grids, Discrete Appl. Math. 63 (1995) 75–89.

[28] A. Schrijver, Bipartite edge-coloring in O(�m) time, SIAM J. Comput. 28 (3) (1998) 841–846.

[29] J. Storer, On minimal node-cost planar embeddings, Networks 14 (1984) 181–212.

[30] R. Tamassia, On embedding a graph in the grid with a minimum number of bends, SIAM J. Comput.

16 (3) (1987) 421–443.

[31] R. Tamassia, I. Tollis, A uni�ed approach to visibility representations of planar graphs, Discrete Comput.

Geom. 1 (1986) 321–341.

[32] R. Tamassia, I. Tollis, E�cient embeddings of planar graphs in linear time, IEEE Symposium on

Circuits and Systems (1987) 495–498.

[33] R. Tamassia, I. Tollis, Planar grid embedding in linear time, IEEE Trans. Circuits and Systems Vol.

36 (9) (1989) 1230–1234.

[34] D. Wood, On higher-dimensional orthogonal graph drawing, Proceedings of CATS’97, Computing: The

Australasian Theory Symposium, February 1997, Sydney, Australia, pp. 3–8.

