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Abstract

A bipartite graph is biplanar if the vertices can be placed on two parallel lines

(layers) in the plane such that there are no edge crossings when edges are drawn as

line segments between the layers. In this paper we study the 2-Layer Planarization

problem: can k edges be deleted from a given graph G so that the remaining graph

is biplanar? This problem is NP-complete, and remains so if the permutation of the

vertices in one layer is fixed (the 1-Layer Planarization problem). We prove that

these problems are fixed-parameter tractable by giving linear-time algorithms for their

solution (for fixed k). In particular, we solve the 2-Layer Planarization problem in

O(k ·6k + |G|) time and the 1-Layer Planarization problem in O(3k · |G|) time. We

also show that there are polynomial-time constant-approximation algorithms for both

problems.
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1 Introduction

In a 2-layer drawing of a bipartite graph G = (A,B;E), the vertices in A are positioned on

a line in the plane, which is parallel to a different line containing the vertices in B, and the

edges are drawn as line-segments. Such drawings have applications in visualization [3, 14],

DNA mapping [27], and VLSI layouts [15]; a recent survey [19] gives more details.

A biplanar graph is a bipartite graph that admits a 2-layer drawing with no edge cross-

ings; we call such a drawing a biplanar drawing. Consider a 2-layer drawing of a bipartite

graph produced by first drawing a maximum biplanar subgraph with no crossings and then

drawing all the remaining edges. Although such a drawing is unlikely to minimize the

number of crossings, there is some experimental evidence to suggest that 2-layer drawings

in which all the crossings occur in a few edges are more readable than drawings with fewer

total crossings [18]. Maximizing the size of a biplanar subgraph is equivalent to minimizing

the number of edges not in it. This leads naturally to the definition of the 2-Layer Pla-

narization problem: given a graph G (not necessarily bipartite), and an integer k, can G

be made biplanar by deleting at most k edges? This problem is the focus of this paper.

Two-layer drawings are of fundamental importance in the “Sugiyama” approach to mul-

tilayer graph drawing [24]. This method first assigns vertices to layers, then makes repeated

sweeps up and down the layers to determine an ordering of the vertices in one layer with

respect to the ordering of the preceding layer. This involves solving the 1-Layer Pla-

narization problem: given a bipartite graph G = (A,B;E), a permutation π of A, and

an integer k, can at most k edges be deleted to permit G to be drawn without crossings

with π as the ordering of vertices in A? In this paper, we present results on this problem

as well.

Crossing minimization background. Instead of deleting edges, one can seek to minimize

the number of crossings in a 2-layer drawing. Since graphs that admit 2-layer drawings

are necessarily bipartite, the input graph here must be bipartite as well. The problems

associated with one or zero permutations as part of the input are called 1- and 2-Layer

Crossing Minimization, respectively. Both of these well studied problems are NP-

complete [10, 11]. The 1-Layer Crossing Minimization problem is NP-complete even

for graphs with only degree-1 vertices in the fixed layer and vertices of degree at most four

in the other layer [17]; that is, for a forest of 4-stars.

Integer linear programming algorithms have been presented for 1- and 2-Layer Cross-

ing Minimization [13, 26]. Jünger and Mutzel [13] surveyed numerous heuristics proposed

for both problems, and experimentally compared their performance with the optimal solu-

tions. They reported that the iterated barycentre method of Sugiyama et al. [24] performed

best in practice. However, from a theoretical point of view the median heuristic of Eades and

Wormald [10] is a better approach for 1-Layer Crossing Minimization. In particular,
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the median heuristic is a linear-time 3-approximation algorithm, whereas the barycentre

heuristic is a Θ(
√

n)-approximation algorithm [10]. Furthermore, for graphs with maxi-

mum degree three in the free layer, the median heuristic is a 2-approximation algorithm

for this problem [3]. A more general approximation result with respect to the maximum

degree in the free layer is obtained by Yamaguchi and Sugimoto [28]. Recently, Nagamochi

[21] devised a 1.47-approximation algorithm for the problem. Shahrokhi et al. [22] gave a

polynomial time algorithm that approximates 2-Layer Crossing Minimization within

a factor of O(log n) for a wide class of n-vertex graphs. Demetrescu and Finocchi [2] pre-

sented a heuristic for 1-Layer Crossing Minimization based on feedback arc sets.

Planarization background. Despite the practical significance of the problems, 1- and

2-Layer Planarization have received less attention in the graph drawing literature than

their crossing minimization counterparts. The 2-Layer Planarization problem is NP-

complete [9, 25] even for planar biconnected bipartite graphs with vertices in the respective

bipartitions having degree two and three [9]. The 1-Layer Planarization problem is also

NP-complete, even for graphs with only degree-1 vertices in the fixed layer and vertices of

degree at most two in the other layer [9]; that is, for collections of 1- and 2-paths. With

the order of the vertices in both layers fixed the problem can be solved in polynomial

time [9, 20].

Integer linear programming algorithms have been developed for these problems [18, 20].

Shahrokhi et al. [22] present an O(n) time dynamic programming algorithm for 2-Layer

Planarization of weighted acyclic graphs, for which the objective is to minimize the total

weight of deleted edges. Although Tomii et al. [25] claim an O(n3) time algorithm for the

2-Layer Planarization problem on acyclic graphs, Mutzel [18] demonstrates a tree for

which their algorithm is not optimal.

Fixed parameter tractability. When the maximum number k of allowed edge deletions

is small, it may be useful to have an algorithm for 1- or 2-Layer Planarization whose

running time is exponential in k but polynomial in the size of the graph. The theory of

parameterized complexity [4] addresses complexity issues of this nature, in which a problem

is specified in terms of one or more parameters. A parameterized problem with input size

n and parameter size k is fixed parameter tractable, or in the class FPT , if there is an

algorithm to solve the problem in f(k) · nα time, for some function f and constant α. A

problem in FPT is thus solvable in polynomial time for fixed k where the degree of the

polynomial is independent of k.

In this paper we consider the parameterized analogues of the 1- and 2-Layer Pla-

narization problems, where k is the fixed parameter, not included in the input. In

a companion paper [5], we prove using bounded pathwidth techniques that the h-layer

generalizations of the 2-Layer Crossing Minimization and 2-Layer Planarization

4



problems are in FPT , where h is also considered a parameter of the problem. The 1-

layer versions of these problems can also be solved using this approach. Unfortunately,

a pathwidth-based approach is not particularly practical, since the running time of the

algorithms is O(232(h+2k)3n). Recently, Dujmović and Whitesides [7] developed a more

practical FPT algorithm for the 1-Layer Crossing Minimization problem, which was

further improved in [6].

We expect the parameter k to be small in practice. Instances of the 1- and 2-Layer

Planarization for dense graphs are of little interest from a practical point of view, since

such instances have a high number of crossings in any 2-layer drawing[3]. Therefore, they

are hardly worth optimizing, as the resulting drawing will be unreadable anyway.

Note that there can be many ways of formulating a parameterized version of an opti-

mization problem. For example, 2-layer planarization is closely related to the Spanning

Caterpillar Forest problem, where a caterpillar (as defined formally in Section 2.1)

is a graph the removal of whose leaves results in a path. This problem asks if a graph

G = (V,E) has a spanning forest consisting of ` component caterpillars. G has a bipla-

narizing set with k edges if and only if G has a spanning forest with ` = k − (|E| − |V |)
component caterpillars. From a traditional point of view, the Spanning Caterpillar

Forest problem (that of determining whether or not G has a spanning forest with at

most ` component caterpillars) is equivalent to the 2-Layer Planarization problem. In

particular, both are NP-complete. In fact, the Spanning Caterpillar Forest problem

with ` = 1 is NP-complete by a simple reduction from Hamiltonian Path. Therefore,

unless P=NP, Spanning Caterpillar Forest is not in FPT , as a polynomial time

algorithm for ` = 1 would imply P=NP. Thus, from the perspective of parameterized

complexity, unless P=NP, the complexities of the Spanning Caterpillar Forest and

2-Layer Planarization problems are different. In this sense, the parameterized com-

plexity provides a more fine-grained classification of the complexity of problems compared

to the traditional complexity approach.

Our results. In this paper, we apply more practical methods from the theory of fixed

parameter tractability to obtain algorithms for the 1- and 2-Layer Planarization prob-

lems. In particular, using a “kernelization” approach we obtain an O(
√

k · 17k + |G|) time

algorithm for 2-Layer Planarization in a graph G, which we improve to O(k · 6k + |G|)
using a “bounded search tree” approach combined with kernelization. Here |G| = |V |+ |E|
for a graph G = (V,E). For small values of k, the 2-Layer Planarization problem

is thus solvable optimally in a reasonable amount of time. We solve the 1-Layer Pla-

narization problem in O(3k · |G|) time using the bounded search tree approach. As a

by-product of our study and the fact that 2-layer planarization can be solved optimally for

trees [22], we derive a linear-time 2-approximation algorithm for the optimization version of

the 2-Layer Planarization problem, and a polynomial-time 3-approximation algorithm
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for the optimization version of the 1-Layer Planarization.

This paper is organized as follows. After definitions and preliminary results in Section 2,

we present the kernelization approach for 2-Layer Planarization in Section 3. Section 4

describes our bounded search tree algorithm for the same problem. In Section 5 we consider

the 1-Layer Planarization problem, and present a bounded search tree algorithm for

its solution. Section 6 describes constant approximation algorithms for the optimization

versions of the 1- and 2-Layer Planarization problems. We conclude in Section 7.

2 Preliminaries

In this section we introduce notation, recall a characterization of biplanar graphs, formalize

the problem statements, and give an overview of the kernelization method.

In this paper each graph G = (V,E) is simple and undirected. The set of vertices of G is

sometimes denoted by V (G) and the set of edges by E(G). The following terms are defined

for an arbitrary set of edges S ⊆ E(G) ∪ E(G) and an arbitrary edge vw ∈ E(G) ∪ E(G),

where G is the complement of G. G \ S denotes the graph with vertex set V (G) and edge

set E(G) \ S, and G \ vw denotes G \ {vw}. G∪S denotes the graph with vertex set V (G)

and edge set E(G)∪S, and G∪vw denotes G∪{vw}. S \vw denotes S \{vw}, and S∪vw

denotes S ∪ {vw}.
A vertex with degree one is a leaf. If vw is the edge incident to a leaf w, then we say w

is a leaf at v and vw is a leaf edge at v. The degree of a vertex v in graph G is the number

of edges incident to v in G, and is denoted by degG(v), or deg(v) if the graph G is clear

from the context. The non-leaf degree of a vertex v in G is the number of non-leaf edges

incident to v in G, and is denoted by deg′G(v), or deg′(v) if the graph G is clear from the

context.

2.1 Biplanar graphs

A bipartite graph is biplanar if it admits a biplanar drawing, that is, a 2-layer drawing

with no edge crossings. For example, a path is biplanar, but not all trees are biplanar. For

example, the 2-claw shown in Figure 1(b) is not biplanar. Also, graphs containing cycles

are clearly not biplanar.

To state the characterization for biplanar graphs we first formalize this terminology.

A graph is a caterpillar if deleting all the leaves produces a (possibly empty) path (see

Figure 1(a)). This path is the spine of the caterpillar. A 2-claw is a graph consisting of

one degree-3 vertex, the centre, coloured black in Figure 1(b), which is adjacent to three

degree-2 vertices, coloured gray in Figure 1(b), each of which is adjacent to the centre and

one leaf. If v is the centre of a 2-claw C, then C is centred at v. Edges of C incident to v

are called primary edges of C. Edges of C incident to the leaves of C are called secondary
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edges of C.
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Figure 1: (a) caterpillar with spine v1, . . . , vp, (b) 2-claw centred at v.

Biplanar graphs are easily characterized, and there is a simple linear-time algorithm to

recognize biplanar graphs, as the next lemma makes clear.

Lemma 1 ([8, 12, 25]). Let G be a graph. The following are equivalent:

(a) G is biplanar.

(b) G is a forest of caterpillars (see Figure 2).

(c) G is acyclic and contains no 2-claw.

(d) The graph obtained from G by deleting all leaves is a forest and contains no vertex of

degree three or greater.

Figure 2: A biplanar graph is a forest of caterpillars. Spine edges are thick.

Lemma 1 implies that any planarization algorithm must destroy all cycles and 2-claws.

Hence the vertices with non-leaf degree at least three are of particular interest since each

such vertex lies on a cycle or a 2-claw, as demonstrated in the next lemma.

Lemma 2. If there exists a vertex v in a graph G such that deg ′
G(v) ≥ 3 then G contains

a 2-claw or a 3- or 4-cycle containing v.

Proof. Let w1, w2, w3 be three distinct non-leaf neighbours of v. If some pair of these

neighbours is adjacent then there is a 3-cycle containing v. Otherwise, let xi be a neighbour

of wi such that xi 6= v, 1 ≤ i ≤ 3. Such an xi exists since wi is not a leaf. If all xi are distinct

then {v, w1, w2, w3, x1, x2, x3} forms a 2-claw; otherwise G contains a 4-cycle through v.
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We define V3 = {v ∈ V : deg′(v) ≥ 3} and V ′
3 = {w ∈ V \ V3 : deg(w) ≥ 2, ∃ v ∈

V3 s.t. vw ∈ E}. That is, V3 is the set of vertices with at least three non-leaf neighbours, and

V ′
3 is the set of non-leaf neighbours of vertices in V3 that are not themselves in V3. Observe

that the centre of a 2-claw is in V3. In Figure 1 and subsequent illustrations, vertices in V3

are black and vertices in V ′
3 are gray. In fact, when convenient, we will sometimes refer to

vertices of G in V3 as black, those in V ′
3 as gray, and vertices that are neither in V3 nor in

V ′
3 as white.

2.2 Problem statements

A set T of edges of a (not necessarily bipartite) graph G is called a biplanarizing set if

G \ T is biplanar. The bipartite planarization number of a graph G, denoted by bpr(G),

is the size of a minimum biplanarizing set for G. Thus the 2-Layer Planarization

problem is: given a graph G and an integer k, is bpr(G) ≤ k? For a given bipartite graph

G = (A,B;E) and permutation π of A, the 1-layer biplanarization number of G and π,

denoted bpr(G, π), is the minimum number of edges in G whose deletion produces a graph

that admits a biplanar drawing with π as the ordering of the vertices in A. The 1-Layer

Planarization problem asks if bpr(G, π) ≤ k.

2.3 Terminology

To describe our kernelization algorithm we introduce some terminology. A component

caterpillar of a graph is a connected component that is a caterpillar. Let P = (v1, v2, . . . , vp)

be a path in G with p ≥ 3 vertices. If deg′G(v1) ≥ 3, deg′G(vi) = 2 for all i, 1 < i < p, and

deg′G(vp) = 1, then P together with all the leaves at vertices v2, . . . , vp comprises a pendant

caterpillar, as illustrated in Figure 3(a). A pendant caterpillar is said to be connected at v1,

its connection point. If deg′G(v1) ≥ 3, deg′G(vi) = 2 for all i, 1 < i < p, and deg′G(vp) = 3,

then P together with all the leaves at vertices v2, . . . , vp−1 comprises an internal caterpillar,

as illustrated in Figure 3(b). An internal caterpillar is said to be connected at v1 and vp,

its connection points. An internal caterpillar where p = 4, degG(v2) = 2 and degG(v3) = 2

is called an internal 3-path. Edge v2v3 in an internal 3-path is called its middle edge. The

number of edges in a pendant (or internal) caterpillar is called its size.

��� ��� ����� �	��
�� �	�

��	�

��� ��� ����� �	��
�� �	�

����

Figure 3: (a) pendant caterpillar, (b) internal caterpillar.

Consider a p-cycle C = (v1, v2, . . . , vp) in G. If deg′G(vi) = 2 for all i, 1 ≤ i ≤ p, then
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C together with all the leaves at v1, . . . , vp comprises a component wreath, as illustrated in

Figure 4(a). A graph consisting of one component wreath is a wreath. If deg ′
G(v1) ≥ 3, and

deg′G(vi) = 2 for all i, 2 ≤ i ≤ p, then C together with all the leaves at v2, . . . , vp comprises

a pendant wreath, as illustrated in Figure 4(b). A pendant wreath is said to be connected

at v1, its connection point. The number of edges in a pendant wreath is called its size. A

pendant wreath of size three is called a pendant triangle. Edge v2v3 in a pendant triangle is

called its middle edge. Edges that lie on C are called cycle edges of a (pendant, component)

wreath, and C is called a wreath cycle.

�����

��� �	�
��


�
���

Figure 4: (a) wreath, (b) pendant wreath.

Notice that a connected graph that does not have a vertex v with deg ′(v) ≥ 3 is either a

caterpillar or a wreath, and that any two of the structures defined above are edge-disjoint.

For example, an edge of G cannot belong to two internal caterpillars, or to a pendant

caterpillar and an internal caterpillar. In particular, these structures are maximal: for

example an internal caterpillar cannot contain another internal caterpillar.

2.4 Regular biplanarizing sets

A biplanarizing set T of G is regular if T contains no leaf edge, and each edge of T with

both endpoints white is in a component wreath of G. The following lemma shows that to

solve our planarization problem, it suffices to look for regular biplanarizing sets.

Lemma 3. Let T be a biplanarizing set of G. There exists a regular biplanarizing set T ′

of G such that |T ′| ≤ |T |.

Proof. We first show that there exists a biplanarizing set T ′′ that contains no leaf edge and

has |T ′′| ≤ |T |. Let F be the forest of caterpillars G \T . To prove that T ′′ exists, it suffices

to show that for any leaf edge vw ∈ T , either F ∪ vw is biplanar or there exists a non-leaf

edge e ∈ E(G) such that (F ∪ vw) \ e is biplanar. F contains a component Fw = {w} and

a component Fv such that v ∈ Fv . F ∪ vw is biplanar if and only if F ′ = Fv ∪ Fw ∪ vw

is biplanar. Since degG(w) = 1, F ′ is acyclic. Now suppose that there is a 2-claw C in F ′

centred at x. Since w is a leaf, v 6= x and w 6= x. Since each 2-claw in F ′ contains vw, edge
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vw is a secondary edge of C. Since Fv is a caterpillar and thus has no 2-claws, it follows

that v has no neighbours other than x and w in F ′. Therefore F ′ \ xv is biplanar since it

consists of one component that is an edge vw and a second component that is a subgraph

of Fv . Since xv is not a leaf edge in G, this completes the proof that T ′′ exists.

We now show that T ′′ can be transformed into a regular biplanarizing set T ′ such that

|T ′| ≤ |T ′′|. Let H denote G \ T ′′. Suppose that T ′′ contains an edge vw, where both v

and w are white and vw does not belong to a component wreath. To complete the proof,

it suffices to show that if H ′ = H ∪ vw is not biplanar then there exists a non-leaf edge xy

with x or y non-white such that H ′\xy is biplanar. Assume H ′ is not biplanar. H ′ does not

contain a 2-claw, since vw, having both endpoints white, does not belong to any 2-claw in

G. Therefore, H ′ is comprised of component caterpillars and exactly one component wreath

W that contains vw. By the assumption, vw does not belong to a component wreath of

G, thus W is a subgraph of a component in G that is not a wreath. Therefore, the wreath

cycle of W contains edge xy such that x or y is black in G. This completes the proof since

H ′ \ xy is clearly biplanar.

3 Kernelization algorithm

A basic method for developing FPT algorithms is to reduce a parameterized problem in-

stance I to an “equivalent” instance Ikr (the kernel), where the size of Ikr is bounded

by some function of the parameter. Then the instance Ikr is solved using an exhaustive

search method, and its solution is then used to determine a solution to the original instance

I. Downey and Fellows [4, Chapter 3.2] survey this general approach, which is known as

kernelization.

We now give an overview of our kernelization algorithm for the 2-Layer Planariza-

tion problem in a graph G. The construction of a kernelized instance has two phases.

In the first phase we identify a set of edges SG of G that may be assumed without loss of

generality to be in a biplanarizing set. More precisely, there exists a minimum biplanarizing

set that contains SG.

In the second phase, loosely speaking, we contract the edges of G with both endpoints

white. The intuition behind this is that an edge with both endpoints white does not belong

to any 2-claw. Furthermore, contracting such edges preserves cycles. We obtain a graph

Gkr such that bpr(G) = bpr(Gkr) + |SG|. We then use exhaustive search to determine if

Gkr has a biplanarizing set of size at most k − |SG|. If it does, we use this to produce a

biplanarizing set for G with k edges in O(|G|) time.

To obtain a total running time of the form f(k) + O(|G|), we prove that if a certain

condition is satisfied, then |Gkr| ∈ O(k). In fact this condition is necessary for bpr(Gkr) ≤ k

and can be tested in O(|Gkr|) time.
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3.1 First phase

We now describe the first phase of the kernelization. For a given graph G, construct SG as

follows:

• Add a cycle edge from each component wreath to SG.

• For each pendant wreath, if it is a pendant triangle, add its middle edge to SG;

otherwise, add a cycle edge incident to the connection point to SG.

The next two technical lemmas will enable us to prove, in Lemma 6, that SG belongs

to a minimum biplanarizing set for G.

Lemma 4. Let vw be the middle edge of a pendant triangle of G. If bpr(G) ≤ k then

bpr(G \ vw) ≤ k − 1.

Proof. Let T be a biplanarizing set for G with |T | = k and let (v, w, x) be a pendant triangle

connected at x. Then vw ∈ SG. Let G′ = G \ vw.

Since biplanar graphs are acyclic, T must contain some edge from the triangle. If vw ∈ T

then T \ vw is a biplanarizing set for G′ with at most k − 1 edges; thus bpr(G′) ≤ k − 1.

Now assume vw 6∈ T . Hence, at least one of xv or xw, say xv, belongs to T . If T \ xv is

a biplanarizing set for G′ then bpr(G′) ≤ k − 1. Now assume T \ xv is not a biplanarizing

set for G′. By Lemma 1(c), G′ \ (T \ xv) contains a subgraph C that is a cycle or 2-claw.

Furthermore, since T is a biplanarizing set for G′, edge xv belongs to C. Since xv is not in

a cycle of G′, C is a 2-claw. C must be centred at some vertex u 6∈ {v, w} that is adjacent

to x, as illustrated in Figure 5(a). All edges xy (y 6= {v, u}), including xw, must be in T , as

otherwise G\T contains a 2-claw. Thus all the 2-claws in G′ \ (T \xv) must be centred at u

and contain xv. Now replace xv and xw in T by xu to obtain T ′ = (T \ {xv, xw}) ∪ xu, as

illustrated in Figure 5(b). Since T ′ is a biplanarizing set for G′ with |T ′| = |T | − 1 ≤ k − 1,

bpr(G′) ≤ k − 1.

� �
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Figure 5: Replacing xv and xw by xu in a biplanarizing set

Lemma 5. Let e be a cycle edge incident to the connection point of a pendant wreath in a

graph G that is not a pendant triangle. If bpr(G) ≤ k then bpr(G \ e) ≤ k − 1.
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Proof. Let T be a biplanarizing set for G with |T | = k, and let W be a pendant wreath

connected at v1 with cycle (v1, . . . , vp) where e = v1v2 ∈ SG. Let G′ = G \ e.

If v1v2 ∈ T then T \ v1v2 is a biplanarizing set of G′ with at most k − 1 edges; thus

bpr(G′) ≤ k−1. Now assume v1v2 does not belong to T . Hence T must contain some other

edge of the wreath cycle of W .

Consider first the case that T contains two edges e1 and e2 of W neither of which is v1v2.

By the definition of a component wreath, G \ {v1v2, vpv1} is comprised of a component H ′

and a component caterpillar. Furthermore, G \ {e1, e2} has a component H ′′ such that H ′

is a subgraph of H ′′. Since T \ {e1, e2} is a biplanarizing set for H ′′, T \ {e1, e2} is also a

biplanarizing set for H ′. Thus (T \ {e1, e2}) ∪ {v1v2, vpv1} is a biplanarizing set for G; and

therefore, (T \ {e1, e2}) ∪ vpv1 is a biplanarizing set for G′ with at most k − 1 edges, and

hence bpr(G′) ≤ k − 1.

Now assume T contains exactly one edge of W . This edge must be a cycle edge vivi+1,

for some 2 ≤ i ≤ p where vp+1 = v1. We claim that T \ vivi+1 is a biplanarizing set of G′.
Otherwise, by Lemma 1(c), G′ \ (T \ vivi+1) contains a subgraph C containing vivi+1 that

is either a cycle or a 2-claw. Since the only cycle in G containing vivi+1 is the cycle of W ,

and this cycle does not occur in G′, C is not a cycle. Thus C is a 2-claw, and its centre

is either v1 or some neighbour of v1. We now show that in either case there is a 2-claw in

G \ T , which contradicts the fact that T is a biplanarizing set for G.

If C is centred at some neighbour u of v1 then i = p and (C \ vpv1) ∪ v1v2 is a 2-claw

in G \ T .

Suppose now that C is centred at v1. Then i ∈ {p − 1, p}. First suppose i = p − 1. If

there is a leaf y at vp then (C \vp−1vp)∪vpy is a 2-claw in G\T . (Recall that vpy 6∈ T since

vivi+1 is the only edge in T ∩ W ). Suppose now there is no leaf at vp. Since W is not a

pendant triangle, there is a 2-path (v1, v2, z) in G not containing the edge vp−1vp; here the

vertex z is either v3 or some leaf at v2. Then (C \ {vp−1vp, vpv1}) ∪ {v1v2, v2z} is a 2-claw

in G \ T . If i = p then (C \ vpv1) ∪ {v1v2, v2v3} contains a 2-claw in G \ T .

No matter where C is centred there is a 2-claw in G \T , which is a contradiction. Thus

our claim is proved; that is, T \ vivi+1 is a biplanarizing set for G′ with |T | − 1 ≤ k − 1

edges. Thus, bpr(G′) ≤ k − 1.

Now we prove that SG belongs to a minimum biplanarizing set for G.

Lemma 6. For every graph G, bpr(G) ≤ k if and only if bpr(G \ SG) ≤ k − |SG|.
Proof. Denote the subgraph G \ SG by G′. We first prove that if bpr(G′) ≤ k − |SG| then

bpr(G) ≤ k. Let T ′ be a biplanarizing set for G′ with |T ′| ≤ k − |SG|. Then T = T ′ ∪SG is

a biplanarizing set for G with |T | ≤ k. Hence bpr(G) ≤ k.

We now prove that if bpr(G) ≤ k then bpr(G′) ≤ k − |SG|. It suffices to show that if G

has a pendant or component wreath W , then bpr(G \ (SG ∩ W )) ≤ k − 1. Lemmas 4 and

5 prove this in the case that W is a pendant wreath.
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Now consider the remaining case, in which W is a component wreath. Let T be a

biplanarizing set for G with |T | = k. Since biplanar graphs are acyclic, T must contain

some edge vw from the cycle of W . Then T \ vw is a biplanarizing set for G \ (SG ∩ W )

since W \ (SG ∩ W ) is a caterpillar. Thus bpr(G \ (SG ∩ W )) ≤ k − 1.

This completes the first phase of the kernelization. We now describe the second phase.

3.2 Second phase

By Lemma 6 we may now assume that the input graph contains neither pendant nor

component wreaths. Instead of working with a problem instance G′ with parameter k′, we

can work with G = G′ \ SG′ and parameter k = k′ − |SG′ |.
The graph induced by the white vertices in any graph is comprised of component wreaths

and a forest of caterpillars. Since G has no wreaths by the above assumption, the induced

graph is a forest of caterpillars. This motivates the second phase of our algorithm. Specifi-

cally, in the second phase we construct a kernel graph Gkr = (Vkr, Ekr) from G by performing

the following reduction operations on G in the order given below.

Reduction operations:

1. For each vertex v of G, replace a set of leaf edges at v by a single leaf edge at v.

2. While there is an edge vw of G with both v and w white in G, contract vw.

3. Delete isolated vertices.

Since the graph induced by the white vertices of G is a forest of caterpillars, the above

operations create neither loops nor multiple edges. Therefore, the cycle structure of G is

not affected by the reduction operations as there is a bijection between the cycles of G

before and after these operations. Similarly, the set of non-leaf edges of G with at least one

non-white endpoint is also preserved by the reduction operations.

Lemma 7. For every graph G with SG = ∅, bpr(G) ≤ k if and only if bpr(Gkr) ≤ k.

Proof. Let S ⊆ E(G) be the set of non-leaf edges of G with at least one non-white endpoint.

The reduction operations do not affect the edges in S, thus S ⊆ Ekr. By Lemma 3, there

exists a minimum biplanarizing set of G that is a subset of S, and equivalently there exists

a minimum biplanarizing set of Gkr that is a subset of S. To prove the lemma it suffices to

show that T ⊆ S is a biplanarizing set of G if and only if T is a biplanarizing set of Gkr.

Consider the graph G′ obtained from G after completing reduction operation 1. Since

T contains no leaves, T is a biplanarizing set of G if and only if T is a biplanarizing set of

G′. Therefore, we need only prove that T is a biplanarizing set of G′ if and only if T is a

biplanarizing set of Gkr.
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Since, by the assumption, G′ has no component wreaths, and as previously pointed out,

the cycle structure of G′ is not affected by the reduction operations. Thus the existence

of a cycle in G′ \ T implies that there is a cycle in Gkr \ T and equivalently, the existence

of a cycle in Gkr \ T implies that there is a cycle in G′ \ T . Furthermore, since no 2-claw

contains an edge with both endpoints white, there is a bijection between the 2-claws in G ′

and the 2-claws in Gkr. Therefore, the existence of a 2-claw in G′ \ T implies that there is

a 2-claw in Gkr \ T and equivalently, the existence of a 2-claw in Gkr \ T implies that there

is a 2-claw in G \ T .

To prove that |Gkr| ∈ O(k) (assuming bpr(Gkr) ≤ k and SG = ∅), we introduce the

following potential function, whose definition is suggested by Lemma 1(d). For a graph

G = (V,E), define

∀v ∈ V, ΦG(v) = max{deg′G(v) − 2, 0}, and Φ(G) =
∑

v∈V

ΦG(v) .

Intuitively, ΦG(v) approximates the number of edges in the distance-2 neighbourhood

of v that must be included in a biplanarizing set for G.

Lemma 8. Φ(G) = 0 if and only if G is a collection of caterpillars and wreaths.

Proof. Since neither caterpillars nor wreaths have vertices with non-leaf degree greater

than two, their potential function is clearly equal to zero. For the other direction, suppose

Φ(G) = 0 and consider a graph G′ obtained from G by deleting all its leaves. G′ does not

have a vertex of degree three or more, so G′ is a collection of paths and cycles. Therefore,

G is a collection of caterpillars and wreaths.

Notice that Lemma 8 proves another characterization of biplanar graphs. Namely, G

is biplanar if and only if G is acyclic and Φ(G) = 0. Thus for graphs G with Φ(G) = 0,

a minimum biplanarizing set of G consists of one cycle edge from each component wreath.

For graphs with Φ(G) > 0 the following observation will be useful.

Lemma 9. Let G be a graph with Φ(G) > 0 (that is, V3 6= ∅), and let d denote the average

non-leaf degree of vertices in V3. Then |V3| = Φ(G)
d−2 .

Proof. By definition,

d|V3| =
∑

v∈V3

deg′(v) =
∑

v∈V3

(ΦG(v) + 2) = Φ(G) + 2|V3| .

Thus, (d − 2)|V3| = Φ(G), and the result follows.

We now prove that Φ(G) provides a lower bound for bpr(G).

Lemma 10. For every graph G, bpr(G) ≥ 1
2Φ(G).
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Proof. The result follows from Lemma 8 if we prove that deleting one edge vw from G with

Φ(G) > 0 reduces Φ(G) by at most two; that is Φ(G) − Φ(G \ vw) ≤ 2. For every vertex

u ∈ V (G), let Φ∗(u) = ΦG(u) − ΦG\vw(u).

First suppose that at least one of v and w (say v) is a leaf in G. Then Φ∗(v) = 0 and

Φ∗(w) = 0. If w becomes a leaf by deleting vw, then w has one neighbour x for which

Φ∗(x) ≤ 1. Thus Φ(G) − Φ(G \ vw) ≤ 2. Now suppose that neither v nor w are leaves in

G then there are three possible outcomes when the edge vw is deleted.

Case 1. Φ∗(v) > 0 and Φ∗(w) > 0: Then deg′G(v) ≥ 3 and deg′G(w) ≥ 3. Thus Φ∗(v) = 1

and Φ∗(w) = 1. Furthermore, v and w do not become leaves by deleting vw, and Φ∗(u) = 0

for all vertices u 6∈ {v, w}. Therefore, Φ(G) − Φ(G \ vw) ≤ 2.

Case 2. Exactly one of Φ∗(v) and Φ∗(w) is positive, say Φ∗(v): Then deg′G(v) ≥ 3

and deg′G(w) ≤ 2. Thus, w has at most one neighbour x (6= v) such that Φ∗(x) > 0.

Furthermore Φ∗(x) ≤ 1. Thus for each neighbour u 6= x of v, Φ∗(u) = 0. Therefore,

Φ(G) − Φ(G \ vw) ≤ 2.

Case 3. Φ∗(v) = 0 and Φ∗(w) = 0: Thus, deg′G(v) ≤ 2 and deg′G(w) ≤ 2. Each of v and

w has at most one neighbour x and y, respectively, for which Φ∗(x) > 0 and Φ∗(y) > 0.

If x 6= y, then Φ∗(x) ≤ 1 and Φ∗(y) ≤ 1; if x = y then Φ∗(x = y) ≤ 2. Therefore,

Φ(G) − Φ(G \ vw) ≤ 2.

Now consider an instance (G, k) of the 2-Layer Planarization problem such that

SG = ∅. If 2k < Φ(Gkr) then we can immediately conclude from Lemma 10 that bpr(Gkr) >

k and hence bpr(G) > k. On the other hand, if 2k ≥ Φ(Gkr) then, as we now prove, the

size of the kernel graph is bounded by a function solely of k.

Lemma 11. For every graph G and integer k, if SG = ∅ and 2k ≥ Φ(Gkr), then the kernel

has at most 20k edges and |Gkr| ∈ O(k).

Proof. If |V3| = 0, then Φ(G) = 0. In that case, since G has no component wreaths, G

is biplanar and bpr(G) = 0. Furthermore, since all the vertices of G are white, Gkr is the

empty graph and thus |Gkr| = 0 ≤ 20k.

Consider now the case that |V3| > 0. We count the edges in Gkr with respect to the

black vertices; that is, the vertices in V3. Since each gray vertex in Gkr has at most two

non-leaf neighbours, at least one of which is black, the number of non-leaf edges in Gkr is at

most 2
∑

v∈V3
deg′Gkr

(v). Furthermore, since every leaf vertex is white, only black and gray

vertices may be incident to leaf edges. Therefore the total number of leaf edges in Gkr is at

most |V3| + |V ′
3 |. Since the number of vertices in V ′

3 is at most
∑

v∈V3
deg′Gkr

(v), we have

|Ekr| ≤ |V3| +
∑

v∈V3

3 deg′Gkr
(v) = |V3| +

∑

v∈V3

(3ΦGkr
(v) + 6) = 3Φ(Gkr) + 7|V3| .

By Lemma 9 applied to Gkr and since d ≥ 3, we have |V3| ≤ Φ(Gkr). Since by assumption

Φ(Gkr) ≤ 2k, we have |Ekr| ≤ 20k, and since Gkr has no isolated vertices, |Gkr| ∈ O(k).
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One solution to the 2-Layer Planarization problem is to search through all sets of

edges in Gkr with k edges. We obtain an algorithm whose running time is O(k ·
(20k

k

)

+ |G|).
However, we now prove that we need only search through a subset K of the edges in Gkr.

Let K contain all the non-leaf edges vw of Gkr such that if v is black and w is gray then w

is not an endpoint of a middle edge in Gkr. The set K is called the sub-kernel of Gkr.

It is convenient to introduce the idea of a minimal biplanarizing set. A biplanarizing

set T for a graph G is minimal if T \ vw is not a biplanarizing set for any edge vw ∈ T .

Lemma 12. Let T be a biplanarizing set for Gkr. Then there exists a biplanarizing set for

Gkr contained in K with at most |T | edges.

Proof. By Lemma 3, we may assume that T is a minimal regular biplanarizing set for Gkr,

and hence T contains no leaf edges of Gkr. Thus to prove the lemma, it suffices to show that

for every non-leaf edge e ∈ T such that e 6∈ K there is an edge e′ ∈ K such that (T \ e) ∪ e′

is a biplanarizing set for Gkr.

Suppose T contains a non-leaf edge vw 6∈ K. Then vw is a non-middle edge in an internal

3-path; let wx ∈ K be the middle edge of that internal 3-path. Let G′
kr = (Gkr \ T ) ∪ vw.

By minimality of T , G′
kr is not biplanar. We prove the lemma by demonstrating that either

G′
kr \ wx is biplanar or there is a neighbour u 6= w of v such that uv ∈ K and G′

kr \ uv is

biplanar.

Every cycle and 2-claw in G′
kr must contain vw. Since w has degree two, every cycle

in G′
kr also contains wx. Thus G′

kr \ wx is a forest. If G′
kr \ wx is biplanar we are done;

otherwise, there is at least one 2-claw, C, in G′
kr \wx. Since w is a leaf in G′

kr \wx, vw must

be a secondary edge of C. Thus C is centred at some neighbour u 6= w of v, and therefore

u ∈ V3 and uv ∈ K. Thus degG′
kr
(v) = 2 (as otherwise Gkr \ T has a 2-claw) and therefore

we know that in G′
kr vertices v, w and x have degree at most two. Since every cycle in G′

kr

must contain vw, these vertex degrees imply that every cycle in G′
kr must contain uv. Hence

G′
kr \ uv is a forest. Furthermore, degG′

kr
\uv(v) = 1 and all the vertices in the distance two

neighbourhood of v in G′
kr \ uv have degree in G′

kr at most two. Thus G′
kr \ uv is biplanar,

which completes the proof since uv ∈ K.

Lemma 13. Let (G, k) be an instance of the 2-Layer Planarization problem such that

SG = ∅ and 2k ≥ Φ(Gkr) > 0. If bpr(Gkr) ≤ k then |K| ≤ 2kd
d−2 .

Proof. By definition of K, each edge in K is not a leaf edge and at least one of its endpoints

is in V3. Therefore when counting the number of edges in K with respect to the vertices in

V3, we have:

|K| ≤
∑

v∈V3

deg′Gkr
(v) =

∑

v∈V3

(ΦGkr
(v) + 2) = 2|V3| + Φ(Gkr) .

By Lemma 9, |K| ≤ Φ(Gkr)(1 + 2/(d − 2)) = Φ(Gkr) d/(d − 2). Since Φ(Gkr) ≤ 2k,

|K| ≤ 2k d/(d − 2).
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Since d ≥ 3, the size of the sub-kernel |K| ≤ 6k. The graph illustrated in Figure 6(a)

has biplanarization number one, and its sub-kernel of six edges is shown in Figure 6(b).

Thus our analysis for the size of the sub-kernel is tight.

����� �����

Figure 6: A graph with biplanarization number one and with a sub-kernel of 6 edges.

Recall the definition of pendant caterpillar from Section 2.3. An internal caterpillar

where p = 3 and degG(v2) = 2 is called a pendant 2-path. In the example of Figure 6, it is

not necessary to include the edges contained in the pendant 2-paths in any biplanarizing

set. This observation suggests the following methods for further reducing the size of the

sub-kernel.

Observation 1. For each vertex v ∈ V3, let α(v) be the number of pendant 2-paths con-

nected at v in Gkr.

1. Every biplanarizing set must contain max{α(v) − 2, 0} edges from the α(v) 2-paths

connected at v. We may as well put max{α(v) − 2, 0} of the edges incident to v in

these pendant 2-paths in a biplanarizing set. Thus we can assume that α(v) ≤ 2.

2. If α(v) = 2 and deg′Gkr
(v) = 3 then none of the edges in these two 2-paths need be in

K.

3. If α(v) = 1, then none of the edges in the pendant 2-path need be in K.

Proof. The correctness of the first observation is obvious. Now consider the second obser-

vation. Let T ⊆ K be a biplanarizing set for Gkr. Let x, y and z be the non-leaf neighbours

of v where vx and vy belong to the two pendant 2-paths connected at v. Since T ⊆ K, no

edge of the two pendant 2-paths other than vx and vy may belong to T . If z is an endpoint

of a middle edge in Gkr, let w 6= v be the neighbour of z and let T ′ = (T \ {vx, vy}) ∪ zw.

Otherwise, let T ′ = (T \ {vx, vy}) ∪ vz. Gkr \ T ′ is clearly biplanar. Since the edge (zw

or vz) added to the biplanarizing set belongs to K, and since neither vz nor zw belongs to

any pendant 2-path in Gkr, the correctness of the second observation follows.

Consider now the third observation. Let x denote the non-leaf neighbour of v that

belongs to the pendant 2-path connected at v. Let T ⊆ K be a minimum biplanarizing set

for Gkr. If T contains no edge of the pendant 2-path we are done; otherwise, since T ⊆ K,

we may assume that T contains vx and no other edge of the pendant 2-path. (G \ T ) ∪ vx

is acyclic and by minimality of T it contains a 2-claw C. C must contain vx. Thus v has
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a non-leaf neighbour z 6= x. If z is an endpoint of a middle edge in Gkr let w 6= v be the

neighbour of z and let T ′ = (T \ vx) ∪ zw. Otherwise, let T ′ = (T \ vx) ∪ vz. Gkr \ T ′ is

clearly biplanar, and since the edge (zw or vz) added to the biplanarizing set belongs to

K, and since neither vz nor zw belong to any pendant 2-path in Gkr, the correctness of the

third observation follows.

While in many cases arising in practice the above observations could lead to improved

running time for our algorithm, we now describe a pathological family of graphs for which

our analysis in Lemma 12 for the size of the sub-kernel is tight even with the above im-

provements. Consider the graph Gp,q (p, q ∈ N) consisting of an inner cycle (v1, . . . , v2p)

and an outer cycle (w1, . . . , w2p) with v2i connected by q 2-paths to w2i for all i, 1 ≤ i ≤ p,

as illustrated in Figure 7(a) in the case of G8,3. All vertices in V3 have non-leaf degree

d = q + 2. Gp,q has (d + 2)p vertices and 2dp edges. It is easily verified that the sub-kernel

of Gp,q is the whole graph. As shown in Figure 7(b), Gp,q has a spanning caterpillar with

p(d + 2)− 1 edges. There is no larger biplanar subgraph than a spanning caterpillar. Thus

bpr(Gp,q) = 2dp − (p(d + 2) − 1) = p(d − 2) + 1. The ratio of the number of edges in the

sub-kernel of Gp,q to bpr(Gp,q) is 2dp
p(d−2)+1 → 2d

d−2 as p → ∞. Thus the analysis of the size

of the sub-kernel in Lemma 12 is tight for all d.

����� �����

Figure 7: The graph G8,3 and a spanning caterpillar of G8,3.

3.3 Algorithm

We now present our algorithm for the 2-Layer Planarization problem based solely on

kernelization.

Algorithm Kernelization

input : graph G = (V, E)

parameter : non-negative integer k

output : NO if bpr(G) > k; otherwise, YES and a biplanarizing set for G
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1. determine SG and let k′ = k − |SG|
2. determine the kernel Gkr = (Vkr, Ekr) of G \ SG

3. if Φ(Gkr) > 2k′ then return NO

4. determine the sub-kernel K ⊆ Ekr of Gkr

5. if k′ ≥ |K| then return YES and K ∪ SG

else if ∃T ⊆ K such that |T | = k′, Gkr \ T is acyclic, and Φ(Gkr \ T ) = 0 then

return YES and T ∪ SG

else return NO

Theorem 1. Given a graph G = (V,E) and integer k, the algorithm Kernelization (G, k)

determines if bpr(G) ≤ k and if so, returns a biplanarizing set of size at most k. The

running time is O(
√

k · ( 2e d
d−2 )k + |G|), where d is the average non-leaf degree of vertices in

V3, and e is the base of the natural logarithm.

Proof. By Lemma 6, bpr(G) ≤ k if and only if bpr(G \ SG) ≤ k′. By Lemma 7, bpr(G \ SG) ≤
k′ if and only if bpr(Gkr) ≤ k′. Thus, bpr(G) ≤ k if and only if bpr(Gkr) ≤ k′. By Lemma 10,

if Φ(Gkr) > 2k′ then bpr(Gkr) > k′; thus Step 3 is valid. By Lemma 12, the entire sub-kernel

K is a biplanarizing set for Gkr. Therefore if k′ ≥ |K|, Gkr has a biplanarizing set of size at

most k′, in which case, by Lemma 7, K ∪ SG is a biplanarizing set for G of size at most k.

Otherwise if k′ < |K|, then by Lemma 12, to determine if bpr(Gkr) ≤ k′ it suffices to test if

Gkr has a biplanarizing set comprised of k ′ edges contained in K. To do this, the algorithm

simply searches through every subset T of k ′ edges in K, and tests if T is a biplanarizing set

for Gkr. If a set T ⊂ K is found to be biplanarizing set for Gkr, then by Lemma 7, T ∪ SG

is a biplanarizing set for G. Thus Step 5 of algorithm Kernelization is valid.

We now analyze the running time of the algorithm. By Lemma 1(d), testing whether

T ⊂ K is a biplanarizing set for Gkr can be carried out in O(|Gkr|) time, which by Lemma 11

is O(k′) time. Since k′ ≤ k, O(k′) ∈ O(k). If k′ < |K| then by Lemma 13, |K| ≤ 2k′ d/(d−2).

The number of k′-edge subsets of K is at most
(2k′ d/(d−2)

k′

)

< (2k′ d/(d−2))k
′

k′! < (2e d/(d−2))k
′

√
k′

,

by Stirling’s Formula. Thus step 5 of the algorithm runs in O(
√

k′ · (2e d/(d − 2))k′
) time.

Since steps 1 to 4, determining Gkr and K, take O(|G|) time, the total running time of the

algorithm is O(
√

k′·(2e d/(d−2))k′
+|G|). Since k′ ≤ k this gives O(

√
k·(2e d/(d−2))k+|G|)

running time.

Since d ≥ 3, in the worst case the running time of algorithm Kernelization is O(
√

k ·
(6e)k + |G|) ∈ O(

√
k · 17k + |G|). Notice that if the parameter k is big; that is, k ≥ |K| the

running time of the algorithm is O(|G|). That is also the case if Φ(G) = 0.
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4 Bounded search tree

A second approach for producing FPT algorithms is called the method of bounded search

trees [4, Chapter 3.1]. Here one uses exhaustive search in a tree whose size is bounded

by a function of the parameter. In this section we present an algorithm for the 2-Layer

Planarization problem based on a bounded search tree approach. Each node of the search

tree corresponds to a subproblem (G′, k′), where G′ ⊆ G and k′ ≤ k. At each node we find,

if possible, a subgraph C that is a 2-claw or a small cycle. Since every biplanarizing set must

contain at least one of the edges in C, our algorithm recursively solves |E(C)| subproblems

with one of the edges in C deleted from the graph in each subproblem. Recall that Lemma

2 provided a sufficient condition for the existence of such a set C.

Algorithm 2-Layer Bounded Search Tree

input : graph G0 = (V0, E0)

parameter : non-negative integer k0

output : YES if and only if bpr(G0) ≤ k0

1. if Φ(G0) > 2k0 then return NO.

2. else if Φ(G0) = 0 then

if k0 ≥ # component wreaths of G0 then return YES.

else return NO.

3. else (∃ v ∈ V0 such that deg′

G0
(v) ≥ 3)

if k0 > 0 then

(a) find a 2-claw, 3-cycle or 4-cycle C in G0 containing v

as described in Lemma 2

(b) for each edge xy ∈ C do

if 2-Layer Bounded Search Tree(G0 \ xy, k0 − 1) returns YES then

return YES.

return NO.

Note that the algorithm can be easily modified to return a biplanarizing set for YES

instances of the 2-Layer Planarization problem. We could solve 2-Layer Planariza-

tion by running 2-Layer Bounded Search Tree (G, k). Instead, we apply 2-Layer Bounded

Search Tree to the kernel of G so that the running time at each node of the search tree is

O(k) rather than O(|G|).
The above description of our algorithm is recursive and we do not explicitly build a

search tree. However, as is standard, associated with our recursive algorithm is a recursion

tree [1], or search tree.
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Theorem 2. Given a graph G and integer k, let Gkr be the kernel of G\SG. The algorithm

2-Layer Bounded Search Tree (Gkr, k − |SG|) determines if bpr(G) ≤ k in O(k · 6k + |G|)
time.

Proof. We prove the correctness of the algorithm by induction on k0 with the following

induction hypothesis: “2-Layer Bounded Search Tree (G0, k0) returns YES if and only if

bpr(G0) ≤ k0”. The base case, k0 = 0, (Step 1, Step 2 and the last line of Step 3) follows

immediately from Lemma 8 and Lemma 10. Assume k0 > 0 and the induction hypothesis

holds for k0 − 1. By Lemma 10, if Φ(G0) > 2k0 then bpr(G0) > k0; thus Step 1 is valid. If

Φ(G0) = 0 (as in Step 2) then by Lemma 8, every connected component is a caterpillar or

a wreath. Caterpillars and wreaths have biplanarization numbers of 0 and 1, respectively.

Thus bpr(G0) is the number of component wreaths of G0, and hence Step 2 of the algorithm

is valid.

Now assume k0 > 0 and Φ(G0) > 0; that is, there exists a vertex v ∈ V such that

deg′G0
(v) ≥ 3. By Lemma 2, G0 contains a 2-claw or a 3- or 4-cycle C. Every biplanarizing

set for G0 must contain an edge in C. Thus bpr(G0) ≤ k0 if and only if there exists an edge

xy ∈ C such that bpr(G0 \ xy) ≤ k0−1. By induction, 2-Layer Bounded Search Tree (G0\xy,

k0 − 1) correctly determines if bpr(G0 \ xy) ≤ k0 − 1. Therefore the algorithm correctly

determines if bpr(G0) ≤ k0. In particular, 2-Layer Bounded Search Tree (Gkr, k − |SG|)
correctly determines if bpr(Gkr) ≤ k − |SG|, which holds if and only if bpr(G) ≤ k by

Lemmas 6 and 7.

In each recursive call, k is reduced by one. Thus the height of the search tree is at

most k. At each node of the search tree, there are |E(C)| branches. Since |E(C)| ≤ 6, the

search tree has at most 6k nodes. At any given node of the search tree, the algorithm takes

O(|G0|) time. Each G0 is a subgraph of Gkr. Since the algorithm immediately terminates if

Φ(G0) > 2k0, |Gkr| ∈ O(k) by Lemma 11. Hence the time taken at each node of the search

tree is O(k). Therefore the running time of the algorithm is O(k · 6k + |G|).

We now compare the exponential terms of the time bounds for the Kernelization and

2-Layer Bounded Search Tree algorithms. The exponential term for Kernelization is ( 2e d
d−2 )k

while the exponential term for 2-Layer Bounded Search Tree is 6k. In the worst case, when

d = 3, the Kernelization term is approximately 17k, which is considerably more than 6k.

However, for d ≥ 22, 2e d
d−2 < 6, and the Kernelization algorithm provides an exponential term

with a smaller base than the 2-Layer Bounded Search Tree algorithm.

5 1-Layer planarization

We now consider the 1-Layer Planarization problem defined in Section 2.2: given a

bipartite graph G = (A,B;E) and permutation π of A, is bpr(G, π) ≤ k? If bpr(G, π) = 0

we say that G is π-biplanar. The figures in this section show vertices in A as gray and
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vertices in B as white. We found it elusive to design an algorithm for this problem based

on the kernelization method. However we did find an algorithm based on the bounded

search tree method. The following result characterizes π-biplanar graphs.

Lemma 14. A bipartite graph G = (A,B;E) with a fixed permutation π of A is π-biplanar

if and only if G is acyclic and the following condition holds.

For every path (x, v, y) of G with x, y ∈ A, and for every vertex u ∈ A between x

and y in π, the only edge incident to u (if any) is uv.
(?)

Proof. We first show that if a bipartite graph G = (A,B;E) with a fixed permutation π of

A is π-biplanar, then G is acyclic and (?) holds. The fact that every biplanar drawing is

a forest of caterpillars implies the necessity for G to be acyclic. The necessity of condition

(?) is also easily verified by observing that if (?) does not hold for some path (x, v, y) and

vertex u, then u has a neighbour w 6= v. Regardless of the relative positions of w and

v in the permutation of B, uw must cross xv or yv, as illustrated in Figure 8(a). This

observation was also made by Mutzel and Weiskircher [20].
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Figure 8: Forbidden structures for π-biplanarity.

We now show that if a bipartite graph G = (A,B;E) with a fixed permutation π of A

is acyclic and (?) holds, then G is π-biplanar. Suppose G is acyclic and condition (?) holds.

To construct a 2-layer drawing of G, we describe the permutation of B. Let (1, 2, . . . , |A|)
be the left to right ordering of vertices in A defined by π. For each vertex v ∈ B, define

L(v) = min{i : iv ∈ E}; that is, L(v) is the leftmost neighbour of v in the fixed permutation

of A. We say a vertex v ∈ B belongs to i if L(v) = i. Order the vertices v ∈ B by increasing

value of L(v), breaking ties as follows. For each i, 1 ≤ i ≤ |A|, break ties between the

leaf neighbours of i arbitrarily. There is at most one non-leaf vertex belonging to i, as

otherwise condition (?) is violated, as illustrated in Figure 9(a). Therefore, if i has a non-

leaf neighbour, place all the leaf neighbours of i to the left of its non-leaf neighbour. This

defines a 2-layer drawing.

Suppose there is a crossing between some edges iw and jv with i, j ∈ A (i < j) and

v, w ∈ B. Then v is to the left of w in the permutation of B, and thus L(v) ≤ L(w) ≤ i. If

L(v) < i then the condition (?) is violated for the path (L(v), v, j) and vertex i, as illustrated

in Figure 9(b). Otherwise, if L(v) = i then vertex w cannot be a leaf as otherwise w would
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Figure 9: Construction of the permutation of B.

be to the left of v. If w is not a leaf, then let l be another neighbour of w. We know that

l 6= j as otherwise there would be a cycle in G. Then the condition (?) is violated either

for the path (i, w, l) and vertex j, or for the path (L(v), v, j) and vertex l. Thus there is no

crossing in the 2-layer drawing of G.

Lemma 15. If G = (A,B;E) is a bipartite graph and π is a permutation of A that satisfies

condition (?), then all the cycles of G are 4-cycles and any two non-edge-disjoint cycles

share exactly two edges. Moreover, the degree of any vertex in B that appears in a cycle is

exactly two.

Proof. Suppose G contains a cycle C with 2k edges with k ≥ 3. Let C = (v1, v2, . . . , v2k, v2k+1)

with v1 = v2k+1 ∈ A. Suppose without loss of generality that v1 is to the left of v3 in π.

If v5 is between v1 and v3 then condition (?) is not satisfied for the path (v1, v2, v3) and

vertex v5. If v5 is to the left of v1, then condition (?) is not satisfied for the path (v3, v4, v5)

and vertex v1. Thus v5 is to the right of v3. Continuing this argument, v2i+1 is to the right

of v2i−1 for all i, 1 ≤ i ≤ k. Thus v2k+1(= v1) is to the right of v1, which is a contradiction.

Thus every cycle in G has four edges.

If G contains two distinct 4-cycles C1 and C2 that share exactly one edge vw, then

(C1 ∪ C2) \ vw is a 6-cycle, which is a contradiction. No two distinct 4-cycles in a simple

graph can share more than two edges. Thus, any two non-edge-disjoint cycles share exactly

two edges.

Let (x, a, y, b) be a 4-cycle of G with x to the left of y in π. Suppose there is an edge

aw in G with x 6= w 6= y. If w is between x and y in π, then condition (?) is not satisfied

for the path (x, b, y) and vertex w. Otherwise, without loss of generality, say y is between

x and w in π. Then condition (?) is not satisfied for the path (x, a, w) and vertex y. Thus

there is no such edge aw. Hence, the degree of all vertices in B that appear in a cycle is

exactly two.

Let G = (A,B;E) be a bipartite graph with a fixed permutation of A that satisfies

condition (?). Let H = K2,p be a complete bipartite subgraph of G with H ∩ A = {x, y},
and H ∩ B = {v ∈ B : vx ∈ E, vy ∈ E,degG(v) = 2}, and |H ∩ B| = p. Then H is called

a p-diamond. A 5-diamond is illustrated in Figure 10.

23



It follows from Lemma 15 that every cycle of G is in some p-diamond with p ≥ 2.

The next lemma gives the 1-layer biplanarization number bpr(G, π) of G in terms of its

p-diamonds, where G is a graph with permutation π satisfying condition (?).
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Figure 10: (a) 5-diamond, (b) 2-layer drawing of a 5-diamond.

Lemma 16. If G = (A,B;E) is a bipartite graph and π is a permutation of A satisfying

condition (?) then

bpr(G, π) =
∑

maximal p-diamonds of G

(p − 1) .

Proof. For each maximal p-diamond H of G, delete p − 1 of the edges incident to one of

the vertices in H ∩ A. The resulting graph is acyclic and satisfies condition (?), and thus,

by Lemma 14, is π-biplanar. To remove all cycles from G requires the deletion of at least

p−1 edges from each maximal p-diamond since maximal p-diamonds are edge-disjoint. The

result follows.

We now have the following bounded search tree algorithm for the 1-Layer Planariza-

tion problem. Our recursive description of the algorithm assumes that a bipartite graph

G = (A,B;E) and permutation π of A are given.

Algorithm 1-Layer Bounded Search Tree

input : graph G0 = (A0, B0, E0); permutation π0 of A0

parameter : non-negative integer k0

output : NO if bpr(G0, π0) > k; otherwise, YES.

1. if (?) fails for some path (x, v, y) and vertex u of G0 then

if k0 > 0 then

for each edge e ∈ {xv, yv, uw} do

if 1-Layer Bounded Search Tree (G0 \ e,π0, k − 1) returns YES then

return YES.
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return NO.

2. else if k ≥
∑

maximal p-diamonds of G0

(p − 1) then return YES.

3. else return NO.

As in Section 4 we associate the search (recursion) tree with the recursive description

of our algorithm.

Theorem 3. Given a bipartite graph G = (A,B;E), a fixed permutation π of A, and

integer k, the algorithm 1-Layer Bounded Search Tree (G, π, k) determines if bpr(G, π) ≤ k

in O(3k · |G|) time.

Proof. The correctness of the algorithm follows from Lemmas 14 and 16. We now analyze

the running time of the algorithm. First we order the adjacency lists of vertices in B

according to π in O(|G|)-time. For each vertex v ∈ B, let L(v) = min{i : iv ∈ E}; and

R(v) = max{i : iv ∈ E}; that is, L(v) and R(v) are the leftmost and rightmost neighbours

of v in the fixed permutation of A. We now check if condition (?) holds in O(|A|) time as

follows. For every non-leaf vertex v ∈ B we test if (?) is satisfied for a 2-path L(v), v, R(v)

and all the vertices of A in the open interval (L(v), R(v)). This procedure stops when a 2-

path and a vertex are found that violate condition (?) or when all non-leaf vertices v ∈ B are

considered. The procedure runs in O(|A|) time since it stops the first time it encounters two

intervals (L(v), R(v)) and (L(w), R(w)) for v 6= w with non-empty intersection; otherwise

all the intervals (L(v), R(v)) and (L(w), R(w)) for v 6= w have empty intersection. To count

the number and size of the diamonds in G takes O(|G|) time. Thus, the algorithm takes

O(|G|) time at each node of the search tree. Since each node of the search tree has three

children, and the height of the tree is at most k, the algorithm runs in O(3k · |G|) time.

6 Approximations

It is simple to verify that Lemmas 10 and 13 imply that there is a linear-time 2d
d−2 -

approximation algorithm for the 2-Layer Planarization problem where d ≥ 3 is the

average non-leaf degree of vertices in V3. However, it is easy to do better. The following

observation seems to have gone unnoticed in the literature.

Lemma 17. There is a linear-time 2-approximation algorithm for the optimization version

of the 2-Layer Planarization problem.

Proof. Let G = (V,E) be a connected graph with n vertices and m edges. Let r = m −
(n − 1). Then bpr(G) ≥ r, since a biplanar graph is a forest of caterpillars with at most

n− 1 edges. Consider the following algorithm. Let S be a set of edges of G such that G \S

25



is a spanning tree T of G. Then |S| = r. Apply the linear-time algorithm of Shahrokhi

et al. [22] to obtain a minimum set of edges ST ⊆ E(T ) such that T \ ST is biplanar. Then

S ∪ ST is a biplanarizing set of G with r + |ST | = r + bpr(T ) ≤ r + bpr(G) ≤ 2 bpr(G)

edges. Thus this algorithm is a 2-approximation, and it clearly runs in O(n+m) time.

Lemma 18. There is a polynomial-time 3-approximation algorithm for the optimization

version of the 1-Layer Planarization problem.

Proof. Consider an instance (G, π) of the 1-Layer Planarization problem with a bipar-

tite graph G = (A,B;E) and a fixed permutation π of A. Motivated by Lemma 14, we

define the following forbidden structure. A path (x, v, y) with x, y ∈ A and an edge uw

with w 6= v, u ∈ A and x < u < y is called a forbidden structure in (G, π), as illustrated in

Figure 8.

Consider the following algorithm. While condition (?) in Lemma 14 is violated by some

forbidden structure (x, v, y), uw delete all three edges xv, vy and uw. Let S denote the set

of deleted edges. The instance (G \ S, π) satisfies the constraints imposed by Lemma 16.

Therefore, (G \ S, π) can be solved optimally.

The number of edge-disjoint forbidden structures in the instance (G, π) is at least |S|
3 . By

Lemma 14, at least one of the edges from each of the forbidden structures has to be deleted.

Thus any optimal solution contains a set of edges R ⊂ S such that R contains exactly one

edge from each of the |S|
3 edge-disjoint forbidden structures. Therefore, bpr(G, π) = |S|

3 +

bpr(G \ R, π). The number of edges deleted from G by the algorithm is |S|+bpr(G \ S, π).

Since G \ S is a spanning subgraph of G \ R, bpr(G \ R, π) ≥ bpr(G \ S, π). Therefore

|S| + bpr(G \ S, π) ≤ 3
( |S|

3 + bpr(G \ R, π)
)

= 3 bpr(G, π) and thus the algorithm is a

3-approximation. A running time analysis, similar to the one presented in the proof of

Theorem 3, reveals that the algorithm can be implemented to run in O(|A||B|2) time.

7 Conclusion

In this paper we have presented two methods for producing FPT algorithms in the context of

2-layer and 1-layer planarization. In particular, for fixed k, we have linear-time algorithms

to determine if bpr(G) ≤ k and bpr(G, π) ≤ k. For small values of k our algorithms provide

a feasible method for the solution of these NP-complete problems.

The results presented in this paper suggest the following open problems.

Open Problem 1. Is there a c-approximation algorithm for the optimization version of

the 2-Layer Planarization problem with c < 2? Is there an FPT algorithm for the

2-Layer Planarization problem parameterized by the number of edge deletions k, with

the exponential part of the running time less than 6k?
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Open Problem 2. Is there a c-approximation algorithm for the 1-Layer Planarization

problem with c < 3? Is there an FPT algorithm for the optimization version of the 1-

Layer Planarization problem parameterized by the number of edge deletions k, with

the exponential part of the running time less than 3k?

In this paper, we have not emphasized implementation details that may in practice

reduce the running time. For example, the algorithm 2-Layer Bounded Search Tree could

be modified to recompute the kernel and the subkernel at each (or selected) node(s) of the

search tree. Furthermore, the recursive calls should be made only on those edges of 2-claws,

3- or 4-cycles that are in the subkernel.

Notice that the exact values for bpr(G) or bpr(G, π) can be determined by running

our algorithms for each k = 0, 1, 2, . . . until the first value of k is reached that gives the

“YES” instance. Clearly that value is equal to bpr(G) (or bpr(G, π)). Therefore, our algo-

rithms can be used to compute optimal solutions for 1- and 2-Layer Planarization in

time O(3bpr(G, π) · |G|) and O(bpr(G) · 6bpr(G) + |G|), respectively. Initial experiments [23]

comparing these algorithms with the other known method for optimal 1- and 2-layer pla-

narization, namely, integer linear programming [18, 20] suggest that our approach may be

worthwhile in practice.
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[6] V. Dujmović, H. Fernau, and M. Kaufmann, Fixed parameter algorithms for

1-sided crossing minimization revisited. In [16], pp. 332–344.
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